Maxim Ballmer, Anna Gülcher, Jun Yan, Matteo Desiderio, Lauren Waszek

The <distribution> of *primordial* and *recycled* <u>mantle</u> <u>heterogeneity</u> *through* time

plum pudding

VS.

marble cake

INTRODUCTION

INTRODUCTION MOTIVATION

INTRODUCTION

Peridotite/Pyrolite

What is the composition of the Bulk Silicate Earth?

What is the composition of the Lower Mantle?

INTRODUCTION INTRODUCTION INTRODUCTION Key geophysical observations

Why do some slabs stagnate at about 800-1100 km depth?

Seismic imaging of slabs in the lower mantle attests to whole-mantle convection

30

50

+0.5%

van der Meer, 2010

60

20

-0.5%

10

Depth (km) 1500

2000

2500

INTRODUCTION INTRODUCTION INTRODUCTION Key geochemical constraints

→ ancient/primordial Heterogeneity in the mantle

distribution of mantle heterogeneity ?

Tackley (2000)

How to create primordial heterogeneity?

Moon-Forming Giant Impact

Courtesy by Miki Nakajima

magma ocean

slightly enriched magma ocean

MgSiO₃ bridgmanite

slightly **more** enriched magma ocean

MgSiO₃ bridgmanite

slightly **more** enriched magma ocean

Mg/Si=1.3

MgSiO₃ bridgmanite

slightly **MOTE** enriched magma ocean

Mg/Si=1.3

MgSiO₃ bridgmanite

Basal Magma Ocean

-> Basal Magma Ocean with variable size and composition depending on formation scenario

→ Basal Magma Ocean cumulates variably Fe-enriched depending on formation scenario

INTRODUCTION

INTRODUCTION Outline

INTRODUCTION

(1) how can compositional heterogeneity be sustained ?

(a) "un-mixing"

(b) compositional rheology

(2) consistent with geophysical observations ?

"un-mixing" of recycled heterogeneity

Mantle stirring of Basalt & Harzburgite

Mantle compositional profiles for different ...

Predicted compositional stratification with basalt/harzburgite enriched reservoirs above/below the 660 is highly robust

al.

et

Yan

Lower mantle and MTZ are enriched in recycled "basalt" → BSE is enriched

How to test these model predictions ?

Waszek et al. (in press)

Maguire et al. (2017); Yu et al (2018)

Predicted reflection coefficients (far from subduction zones)

"layered" model as predicted

artificial "non-layered" reference model

5.5 Synthetic test and observation

Predicted vs. observed reflection coefficients

effects of compositional rheology

compositional rheology in the lower mantle

for a viscosity contrast of a factor ~100 => distinct dynamic behaviour

Thermochemical Mantle Evolution

Gülcher et al., 2021

Thermochemical Mantle Evolution

- ROC heterogeneity as dense piles, an enriched MTZ and "marble cake" streaks
- Primordial heterogeneity (*Br*-enriched) as **blobs** and **streaks** in the mid-mantle

Thermochemical Mantle Evolution

- ROC heterogeneity as dense piles, an enriched MTZ and "marble cake" streaks
- Primordial heterogeneity (*Br*-enriched) as blobs and streaks in the mid-mantle

= geodynamically viable!

Relationship mantle domains and flow

Mid-mantle characteristics:

- Primordial material fraction f_{prim}
- Radial velocity $\,V_z\,$
- Horizontal T anomaly $\,dT$

Pile characteristics:

- Pile thickness D_{pile}
- Average pile material age

Correlation of Blobs and Piles

Correlation of Blobs and Piles

Correlation of Blobs and Piles

Breakdown of primordial layering

All the models in this study involve a **compositional overturn**, i.e., the breakdown of the initially layered mantle

This overturn occurs after 0.5-1.2 Gyr (dependent on model parameters)

During this overturn, major geodynamic changes occur. This short period is associated with:

- A burst of melting activity and ROC recycling
- The onset of ...
 - ... whole-mantle convection
 - ... deep plume sampling
 - ... material mixing
 - ... plate-tectonic behavior

Breakdown: comparison with geochemistry

Many geochemical studies show evidence for a rapid change in isotopic signatures (i.e., ¹⁴²Nd/¹⁴⁴Nd and ¹⁸²W/¹⁸⁴W) in basalts in the Archean Earth.

Processing rate of primordial material

In our numerical models, primordial material is mostly processed (~**melting**) shortly after the compositional overturn.

The processing rate of primordial material (~melting rate) **gradually decreases** over time

How to test these model predictions ?

- Slab Stagnation

- Plume Deflection
- Mid-mantle Reflectors
- Primordial Geochemical Reservoirs
- balance Si-budget

French & Romanowicz, 2015

☺ Three reflectors

- Slab Stagnation
- Plume Deflection
- Mid-mantle reflectors
- Primordial Geochemical Reservoirs
- balance Si-budget

- Slab Stagnation
- Plume Deflection
- Primordial Geochemical Reservoirs
- balance Si-budget

10.0

-10.0

0.0

OJP

Pd-2

Rizo et al. (2016)

50.0

40.0

Pi-23a

Pi-23b

Alfa Aesar W Standard

20.0

μ¹⁸²W (ppm)

30.0

VF-32

BHVO-1

Comparison with Seismic Tomography

Primordial domains:

- Thermal effect (slightly warmer)
- **Compositional** effect (MgSiO₃-enriched)
- \rightarrow Translate *c*,*T*,*P* into **seismic velocities** using *Perple_X*

"hidden" from seismic tomography?

Seismic signatures

• Compare seismic signatures of **different** mantle **heterogeneity styles**

- Compare (quantitatively) with **seismic tomography** or other seismic observations
- Waveform modelling
- 3D models vs. 2D models

Preliminary results

Conclusion / Highlights

A basalt/harzburgite enriched layer above/below the 660 can be maintainted in the mantle that covects as a whole due to gravitational "un"-mixing

Intrinsically-strong (bridgmanitic) heterogeneity can be preserved as mid-to-large sized blobs in the mid-mantle for a wide range of conditions (geodynamically viable), but their geophysical signatures need further testing