Maud Boyet

Claudine Israel, Régis Doucelance, Pierre Bonnand, Paul Frossard, Delphine Auclair Laboratoire Magmas et Volcans, Université Clermont-Auvergne

Global Scale Seismic Imaging and Dynamics of the Earth's Mantle, Paris, 6-7 November, 2021

European Research Council

Different geochemical signatures in modern mantle-derived samples:

- Trace elements
- Long-lived isotopes systematics

Ocean Island Basalts vs. Mid-Ocean Ridge Basalts:

- Melting at greater depth
- Ancient chemical heterogeneities preserved in the source mantle

Different geochemical signatures in modern mantle-derived samples:

- Trace elements
- Long-lived isotopes systematics

Ocean Island Basalts vs. Mid-Ocean Ridge Basalts:

- Melting at greater depth
- Ancient chemical heterogeneities preserved in the source mantle

Long-lived systematics (noble gas):

- The MORB source represent a wellhomogeneised mantle (R/Ra=8).
- OIB shows a large variation and present nonradiogenic ratios (R/Ra up to 50 on Baffin Island picrites): undegassed reservoir
- Hawaii, Iceland and Galapagos hotspots also show primitive helium isotopic ratios.

Moreira Geoch. Persp. 2013

1. Recycled material

La-Ce systematics:

¹³⁸La \longrightarrow ¹³⁸Ce (T_{1/2}= 292.5 Ga) ¹³⁸La decreased by 1% in 4.567 Ga

Two main oxidation states : Ce³⁺/Ce⁴

Under current oceanic conditions, Ce is oxidized into insoluble Ce⁴⁺ and it is subtracted from seawater, resulting in high La/Ce fractionation.

Cerium anomaly Ce/Ce* = Ce_N / (La_N^{0.5} x Pr_N^{0.5})

Ce/Ce*<0: Radiogenic Ce isotopic composition with time.

1. Recycled material

Nature and chemistry of the material currently recycled:

Bulk composition for sediments subducting (25 trenches) called GLOSS: GLobal Subducting Sediment *Plank TOG 2013*

GLOSS Ce/Ce*= 0.95

60% of the trenches have negative cerium anomalies up to 0.35

Carbonate sediments from DSDP Site 495 (Cocos Plate)

Sequence of pelagic oozes recovered from Nasca Plate (Leg 34- hole 319).

Mean of 5 trenchs (Kermadec, Tonga, Vanuatu, Marianas, Izu-Bonin).

Negative cerium anomalies measured in lavas:

1. Recycled material

Arc lavas

J. geol. Soc. London, Vol. 141, 1984, pp. 453-472, 11 figs, 3 tables. Printed in Northern Ireland.

Subduction of pelagic sediments: implications for the origin of Ce-anomalous basalts from the Mariana Islands

M. J. Hole, A. D. Saunders, G. F. Marriner & J. Tarney

Recycled sediments involved in the source of arc lavas (fluid/melting).

Negative cerium anomalies measured in both:

Ocean island lavas

Interpretations:

- Shallow-level contamination by local marine sediments.
- Consequence of weathering processes.
- Variable amounts of a sediment component in the mantle plume source.

La-Ce systematics:

¹³⁸La
$$\longrightarrow$$
 ¹³⁸Ce (T_{1/2}= 292.5 Ga)

When combined to ¹⁴⁷Sm-¹⁴³Nd systematics:

- 1. Define the shape of the Light rare earth element pattern
- 2. Identify decoupling of the two systematics (cerium anomaly)

La-Ce systematics may help deciphering the nature of the sediments invloved in the source of OIB.

The chemistry of the sediments have changed through time: no Ce⁴⁺ before the Great Oxygenation Event (2.3-2.6 Ga)

Ce isotopic composition of Gough Island lavas (EM1):

- Only few samples have resolvable negative cerium anomalies (0.92-0.96)
- Ce/Ce*do not correlate with measured Ce isotope ratios (ε^{138} Ce)

Measured ϵ^{138} Ce values between -0.39 and 0.15 are too low to give support to the incorporation of recycled pelagic sediments in the mantle source of Gough Island lavas.

Hf-Ce-Nd isotopic compositions of Gough Island lavas (EM1):

- Values are more consistent with the contribution in proportions between 10% and 30% of subcontinental lithospheric material.
- Gough classified as a deep-rooted mantle plume But samples have low ³He/⁴He (=MORBs).
- Negative, elemental cerium anomalies are reported in subcontinental lithospheric (kimberlites and lamproites) from different locations.

Published by AGU and the Geochemical Society

Shallow lithospheric contribution to mantle plumes revealed by integrating seismic and geochemical data

Jasper G. Konter Department of Geological Sciences, University of Texas at El Paso, El Paso, Texas 79968, USA

(jgkonter@utep.edu)

Thorsten W. Becker Department of Earth Sciences, University of Southern California, Los Angeles, California 90089, USA

1. Recycled material

Global picture of the Ce-Nd isotope systematics :

IAB Ce-Nd isotope signature explained by the involvement of sediments in the mantle source \rightarrow recycling of trench sediments through active subduction.

How to form the mantle array ?

Participation of both oceanic crust and sediments in the mantle through time.

The most extreme EM-like signatures require the involvement of oceanic sediments that formed under reduced conditions before the Great Oxygenation Event at 2.4 Ga, and which are devoid of Ce elemental anomalies.

Ce-Nd mantle array (Israel et al., EPSL 2019) IAB: Lesser Antilles and Mariana (Bellot et al., GCA 2015 and Chem Geol 2018) Bulk upper continental crust = average of 6 loess samples (Israel et al., EPSL 2019)

ECe

1. Recycled material

IAB Ce-Nd isotope signature
explained by the involvement of
sediments in the mantle source
→ recycling of trench sediments
through active subduction.

How to form the mantle array ?

Participation of both oceanic crust and sediments in the mantle through time.

The most extreme EM-like signatures require the involvement of oceanic sediments that formed under reduced conditions before the Great Oxygenation Event at 2.4 Ga, and which are devoid of Ce elemental anomalies.

Ce-Nd mantle array (Israel et al., EPSL 2019) IAB: Lesser Antilles and Mariana (Bellot et al., GCA 2015 and Chem Geol 2018) Bulk upper continental crust = average of 6 loess samples (Israel et al., EPSL 2019)

2. Early-formed reservoirs

Back to 2005:

The first high-precision ¹⁴⁶Sm-¹⁴²Nd data measured on chondritic meteorites showed that their ¹⁴²Nd/¹⁴⁴Nd ratio were 20 ppm lower than that of most terrestrial rocks.

Evidence for a global differentiation of the Earth's mantle (Silicate Earth) within 30-50 million years of Earth's formation.

Before 30 Myr magma ocean crystallization

Boyet and Carlson, Science 2005

Early formed heterogeneities preserved in the deep mantle.

2. Early-formed reservoirs

Where are we after 15 years of measurement?

- The different groups of chondrites have different ¹⁴²Nd signature.
- Enstatite chondrites (EC) have isotope signatures that are the closest to the Earth value.
- Nucleosynthetic anomalies: ¹⁴²Nd correlated with mass independent Nd isotope ratios (145, 148).

2. Early-formed reservoirs

Where are we after 15 years of measurement?

- The different groups of chondrites have different ¹⁴²Nd signature.
- Enstatite chondrites (EC) have isotope signatures that are the closest to the Earth value.
- Nucleosynthetic anomalies: ¹⁴²Nd correlated with variations in mass independent Nd isotope ratios (145, 148).

No proof for a **large** early-formed silicate reservoir hidden in the deep mantle and preserved form mantle convection since the Hadean.

Can small size heterogeneities be preserved over 4.5 Ga?

¹⁸²Hf-¹⁸²W systematics:

- Negative ¹⁸²W anomalies measured in OIB.
- Core: reservoir with negative ¹⁸²W signature (outer core: μ¹⁸²W=-200)
- Do OIB sample an early-formed mantle reservoir?

2. Early-formed reservoirs

2. Early-formed reservoirs

Published by the European Association of Geochemistry

Potential of Earth's core as a reservoir for noble gases: Case for helium and neon

M.A. Bouhifd^{1,2*}, A.P. Jephcoat^{2,3}, D. Porcelli², S.P. Kelley^{4,§}, B. Marty⁵

The core is a reservoir that has long been neglected by geochemists.

Metal-silicate partition coefficients measured at high P, T conditions show that the core stored **He**, **Ne**, I (¹²⁹I–¹²⁹Xe).

The measured noble gas signature in some OIBs could be influenced from a small core component.

2. Early-formed reservoirs

- Differently sloping He-W trends for variable OIB systems.
- Iceland: two separate trends broadly defined by age.
- The most negative ¹⁸²W values are reproduced with a small (<0.3%) proportion of this core-mantle equilibrated reservoir.

Link with seismic tomography:

- LLSVP: Early formed mantle reservoir (dense thermochemical pile).
- ULVZ: Partially molten zone that could equilibrate with the outer core.

¹⁴⁶Sm-¹⁴²Nd systematics:

- Track hadean (500 Ma) silicate differentiation processes.
- ¹⁴²Nd anomalies measured in Archean rocks (Greenland, Canada, South Africa, etc).

¹⁴²Nd measurements on OIBs:

- Very few samples have resolved ¹⁴²Nd anomalies (La Reunion, Samoa).
- No global correlation with ³He/⁴He, ¹⁸²W.

Data from Andreasen et al 2008; Burkhardt et al. 2016; de Leeuw et al 2017; Garçon et al. 2018; Jackson and Carlson 2012; Horan et al. 2018; Hyung and Jasobsen 2020; Murphy et al 2018; Peters et al 2018; Saji et al. 2016.

2. Early-formed reservoirs

- Combining La-Ce and Sm-Nd systematics may help deciphering the nature of recycled component in the mantle plume source.
- Pre vs post GOE sediments.

Mass-independent S isotopic fractionations measured in olivinehosted suggest the recycling of surface materials that existed in a reduced atmosphere before the GOE (Cabral et al., 2013; Delavault et al., 2016).

- The chemical signature of the core is detected in OIBs (¹⁸²W).
- Both depleted and enriched early-formed silicate reservoirs sampled in la Reunion. These reservoirs have survived in the deep Earth for billions of years, despite sustained mantle convection.
- ¹⁴²Nd anomalies have been resolved only for samples from la Reunion. More high-precision data are necessary.

Recycling of surface material

