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Tomographic Models of Seismic Heterogeneity 

•Seismic heterogeneity increases from the mid-mantle 
towards the core-mantle boundary 

dln vs [%] 

Surface 

Core-Mantle-Boundary (CMB) Schuberth et al., 2009a 
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dln vs [%] 

Origin of Heterogeneity in the Lowermost Mantle? 

•Seismic heterogeneity increases from the mid-mantle 
towards the core-mantle boundary 

Schuberth et al., 2009a 



4 

Standard deviation of traveltime variations 

Long-Period Body-Wave Observations 

Scaled Median Average Deviation 

Observations 
25 s dominant period 

Bolton & Masters 2001 

P S 
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Standard deviation of traveltime variations 

P S 

Long-Period Body-Wave Observations 

Scaled Median Average Deviation 

Observations 
25 s dominant period 

Bolton & Masters 2001 
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High Heat Flux   ~ 10 TW 
30 % of the total mantle heat budget  

(classically 2-3 TW) 

High CMB temperature ~ 4000 K 

A large thermal gradient in D” > 1000 K 

 
 

e.g., Glatzmaier & Roberts 1995, Kuang & Bloxham 1997, Buffett 2002, Nimmo 2004, 
Labrosse 2003, Gubbins et al. 2001, Boehler 2000, Steinle-Neumann et al. 2001, 
Alfé et al. 2002/2007, v. d. Hilst et al. 2007, Bunge et al. 2001, Sleep 2004, Bunge 2005 

Large lateral temperature variations are expected in the deep mantle, 
especially in hot upwelling plumes 

Heat Transport as the Dominant Physical Process? 
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High Heat Flux   ~ 10 TW 
30 % of the total mantle heat budget  

(classically 2-3 TW) 

High CMB temperature ~ 4000 K 

A large thermal gradient in D” > 1000 K 

But low plume excess temperatures in the asthenosphere (200-300 K) 
Schilling 1991, Presnall & Gudfinnson 2008 

e.g., Glatzmaier & Roberts 1995, Kuang & Bloxham 1997, Buffett 2002, Nimmo 2004, 
Labrosse 2003, Gubbins et al. 2001, Boehler 2000, Steinle-Neumann et al. 2001, 
Alfé et al. 2002/2007, v. d. Hilst et al. 2007, Bunge et al. 2001, Sleep 2004, Bunge 2005 

Large lateral temperature variations are expected in the deep mantle, 
especially in hot upwelling plumes 

Heat Transport as the Dominant Physical Process? 
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Plume excess temperatures near the surface: 
~ 250 K                      Schilling 1991, Presnall & Gudfinnson 2008 

Large Temperature Variations in the Deep Mantle 
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Depth [ km ] 

Plume excess temperatures near the surface: 
~ 250 K                      Schilling 1991, Presnall & Gudfinnson 2008 

But: 
Plume excess temperatures change with depth 
 
•The mantle is not adiabatic (radioactive heating)        
      e.g., Bunge 2005 

 

Large Temperature Variations in the Deep Mantle 

Depth [ km ] 
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Depth [ km ] 

Plume excess temperatures near the surface: 
~ 250 K                      Schilling 1991, Presnall & Gudfinnson 2008 

But: 
Plume excess temperatures change with depth 
 
•The mantle is not adiabatic (radioactive heating) 
      e.g., Bunge 2005 

    ~300 K                                            

 

 

Large Temperature Variations in the Deep Mantle 
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Depth [ km ] 

Adiabats for different 
footing temperatures 

Plume excess temperatures near the surface: 
~ 250 K                      Schilling 1991, Presnall & Gudfinnson 2008 

But: 
Plume excess temperatures change with depth 
 
•The mantle is not adiabatic (radioactive heating) 
      e.g., Bunge 2005 

    ~300 K        
 

•The adiabat itself depends on temperature             

 

 

Large Temperature Variations in the Deep Mantle 
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Depth [ km ] 

Adiabats for different 
footing temperatures 

plume adiabat Plume excess temperatures near the surface: 
~ 250 K                      Schilling 1991, Presnall & Gudfinnson 2008 

But: 
Plume excess temperatures change with depth 
 
•The mantle is not adiabatic (radioactive heating)       e.g., 
Bunge 2005 

    ~300 K        
 

•The adiabat itself depends on temperature 

+  ~300 K    

Large Temperature Variations in the Deep Mantle 
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Plume excess temperatures near the surface: 
~ 250 K                      Schilling 1991, Presnall & Gudfinnson 2008 

But: 
Plume excess temperatures change with depth 
 
•The mantle is not adiabatic (radioactive heating)       e.g., 
Bunge 2005 

    ~300 K        
 

•The adiabat itself depends on temperature 

+  ~300 K             

 

   ~900 K 

Depth [ km ] 

Adiabats for different 
footing temperatures 

plume adiabat 

Large Temperature Variations in the Deep Mantle 
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Large lateral temperature variations are expected in the deep mantle, 
especially in hot upwelling plumes 

•Can they explain the strong shear wave reduction and sharp sides of the 
low velocity bodies in the deep mantle? 
   Especially when accounting for the limited resolving power of seismic tomography? 

Key Questions 
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3-D Elastic Structure 

Classical Approach: Solve Inverse Problem 

Seismic Data 

Tomographic inversion 

Inverse 
Problem 
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3-D Elastic Structure 
Inverse 
Problem 

Seismic Data 

Limited Resolution Non-Uniqueness 

Tomographic inversion 

Classical Approach: Solve Inverse Problem 
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3-D Elastic Structure 

Joint Modeling Approach 

Pure 
Forward 
Modeling 
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Pure 
Forward 
Modeling 

Mantle Dynamics 

3-D Elastic Structure 

3-D Mantle Circulation Models 
(MCM) 

Temperature 

Joint Modeling Approach 
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Mantle Dynamics 

3-D Elastic Structure 

Mineralogy 

3-D Mantle Circulation Models 
(MCM) 

Temperature 

Thermodynamic Models + Composition 
Temperature ↔ Elastic parameters 

Joint Modeling Approach 

Pure 
Forward 
Modeling 
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Mantle Dynamics 

3-D Elastic Structure 

Mineralogy 

Model Planet 
Seismic heterogeneity 

3-D Mantle Circulation Models 
(MCM) 

Temperature 

Thermodynamic Models + Composition 
Temperature ↔ Elastic parameters 

Joint Modeling Approach 

Pure 
Forward 
Modeling 
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Large lateral temperature variations are expected in the deep mantle, 
especially in hot upwelling plumes 

In case of isochemical whole mantle flow with a pyrolite composition, they 
can explain the strength of S-wave heterogeneity 
Schuberth et al. 2009a,b 

Key Questions 

Low T-CMB 

High T-CMB 

S20RTS 

RMS(dln vs) [ % ] 

Effects of uneven data coverage and 
damping are taken into account! 
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Large lateral temperature variations are expected in the deep mantle, 
especially in hot upwelling plumes 

In case of isochemical whole mantle flow with a pyrolite composition, they 
can explain the strength of S-wave heterogeneity 
Schuberth et al. 2009a,b 

•Can they also explain P-wave heterogeneity at the same time? 

Key Questions 
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Large lateral temperature variations are expected in the deep mantle, 
especially in hot upwelling plumes 

In case of isochemical whole mantle flow with a pyrolite composition, they 
can explain the strength of S-wave heterogeneity 
Schuberth et al. 2009a,b 
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Large lateral temperature variations are expected in the deep mantle, 
especially in hot upwelling plumes 

In case of isochemical whole mantle flow with a pyrolite composition, they 
can explain the strength of S-wave heterogeneity 
Schuberth et al. 2009a,b 

•Can they also explain P-wave heterogeneity at the same time? 

•Can the differences between P- and S-wave traveltime variations be 
reconciled with a purely thermal origin of seismic heterogeneity? 

Test geodynamic hypotheses directly against seismic data 

Key Questions 



25 

Mantle Dynamics 

3-D Elastic Structure 

Mineralogy 

Model Planet 
Seismic heterogeneity 

3-D Mantle Circulation Models 
(MCM) 

Temperature 

Thermodynamic Models + Composition 
Temperature ↔ Elastic parameters 

Joint Modeling Approach 

Pure 
Forward 
Modeling 
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Mantle Dynamics 

3-D Elastic Structure 

Mineralogy 

Seismic Data 

Model Planet 
Seismic heterogeneity 

3-D Mantle Circulation Models 
(MCM) 

Temperature 

Thermodynamic Models + Composition 
Temperature ↔ Elastic parameters 

Full Waveforms 

Joint Modeling Approach 

Pure 
Forward 
Modeling 
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Wave Propagation 

Mantle Dynamics 

3-D Elastic Structure 

Mineralogy 

Spectral Element Method 

Seismic Data 

Model Planet 
Seismic heterogeneity 

3-D Mantle Circulation Models 
(MCM) 

Temperature 

Thermodynamic Models + Composition 
Temperature ↔ Elastic parameters 

Full Waveforms 

Joint Modeling Approach 

Pure 
Forward 
Modeling 
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Wave Propagation 

Synthetic 
Seismic Data 

Spectral Element Method 

Full Waveforms 

Mantle Dynamics 

3-D Elastic Structure 

Mineralogy 

Model Planet 
Seismic heterogeneity 

3-D Mantle Circulation Models 
(MCM) 

Temperature 

Thermodynamic Models + Composition 
Temperature ↔ Elastic parameters 

Joint Modeling Approach 

Pure 
Forward 
Modeling 
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The Simple-Most Model Planet 

QuickTime™ and a
GIF decompressor

are needed to see this picture.

3-D Spherical MCM 
compressible 

Isochemical 
Pyrolite 

Depth-dependent viscosity 
3 layers 

High CMB temperature 
4200 K 

High resolution 
80 million grid points 

 

Schuberth et al., 2009a 
hot – upwelling plumes              cold – downwellings slabs 

Temperature variations  
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Temperature 

Linking Temperatures to Seismic Velocities 
Mineralogical model 

e.g., Ricard et al. 2005, Stixrude & Lithgow-
Bertelloni 2005/2011, Piazzoni et al. 2007 

Gibbs Free Energy minimization 
Equilibrium phase assemblages 

➡ thermodynamically self-consistent 

Schuberth et al., 2009a 
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S-wave velocity 

Mineralogical model 
e.g., Ricard et al. 2005, Stixrude & Lithgow-
Bertelloni 2005/2011, Piazzoni et al. 2007 

Gibbs Free Energy minimization 
Equilibrium phase assemblages 

➡ thermodynamically self-consistent 

Linking Temperatures to Seismic Velocities 

Schuberth et al., 2009a 
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3-D Wave Propagation in a Synthetic Earth 

QuickTime™ and a
Motion JPEG OpenDML decompressor

are needed to see this picture.

Schuberth et al. 2012  
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Setup of Wave Propagation Simulations 

Wavefield with 10 s shortest period 
SPECFEM3D_GLOBE 
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Wavefield with 10 s shortest period 
SPECFEM3D_GLOBE 

Traveltime delays 
Full waveform cross-correlation at 15 s 

➡ Finite-frequency interpretation 

Setup of Wave Propagation Simulations 
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Setup of Wave Propagation Simulations 

Schuberth et al. 2012  

Wavefield with 10 s shortest period 
SPECFEM3D_GLOBE 

Traveltime delays 
Full waveform cross-correlation at 15 s 

➡ Finite-frequency interpretation 

3-D mantle heterogeneity only 
1-D crust 

no attenuation, anisotropy, topography, etc. 
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Full Waveforms for Model Planets 

Schuberth et al. 2012 
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Wavefield with 10 s shortest period 
SPECFEM3D_GLOBE 

Traveltime delays 
Full waveform cross-correlation at 15 s 

➡ Finite-frequency interpretation 

3-D mantle heterogeneity only 
1-D crust 

no attenuation, anisotropy, topography, etc. 

Global Event Distribution 
17 real earthquakes 

Setup of Wave Propagation Simulations 

at 50 km depth 

Schuberth et al. 2012  
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Setup of Wave Propagation Simulations 

Wavefield with 10 s shortest period 
SPECFEM3D_GLOBE 

Traveltime delays 
Full waveform cross-correlation at 15 s 
➡ Finite-frequency interpretation 

3-D mantle heterogeneity only 
-D crust 
o attenuation, anisotropy, topography, etc.  

Global Event Distribution 
7 real earthquakes 

Homogeneous data coverage 
2250 equidistant virtual stations 

 

~700,000 P- and S-wave 
measurements 

at 50 km depth 

Schuberth et al. 2012  
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Traveltime Variations at 15 s Period 

S P 

Schuberth et al. 2012  
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P S 

Long-Period Body-Wave Data 

Standard deviation of traveltime variations 

Observations 
25 s dominant period 

Bolton & Masters 2001 

Schuberth et al. 2012  
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P S 

Long-Period Body-Wave Data 

Standard deviation of traveltime variations 

Observations 
25 s dominant period 

Bolton & Masters 2001 

Schuberth et al. 2012  
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P S 

“first upswing” 
measurements 

Long-Period Body-Wave Data 

Standard deviation of traveltime variations 

Observations 
25 s dominant period 

Bolton & Masters 2001 

Schuberth et al. 2012  
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P S 

Finite-frequency 
effects? 

Long-Period Body-Wave Data 

Standard deviation of traveltime variations 

Observations 
25 s dominant period 

Bolton & Masters 2001 

Schuberth et al. 2012  

“first upswing” 
measurements 
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Long-Period Body-Wave Data 

Standard deviation of traveltime variations 

Observations 
25 s dominant period 

Bolton & Masters 2001 

Schuberth et al. 2012  

Finite-frequency 
effects? 

Length-scale of heterogeneity? 

Anelasticity correction? 

Postperovskite? 

Chemical Heterogeneity? 

P S 
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• A novel joint modeling approach 
• Mantle flow + Mineral physics + 3-D seismic wave propagation 

Summary 
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• Large lateral temperature variations are expected in the lowermost 
mantle 

• Strong lower mantle seismic heterogeneity 

• Long-period P- and S-wave traveltime variations can be explained 
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• A novel joint modeling approach 
• Mantle flow + Mineral physics + 3-D seismic wave propagation 
• Allows to quantitatively test geodynamic models directly against seismic 

data 

• Large lateral temperature variations are expected in the lowermost 
mantle 

• Strong lower mantle seismic heterogeneity 

• Long-period P- and S-wave traveltime variations can be explained 
by temperature alone 

• Chemical heterogeneity is undoubtedly important in the mantle, 
• but the seismic body-wave data do not require it on large-scales 

Summary 
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Outlook 

• Short-scale versus large-scale heterogeneity? 
• Better understanding of wavefield effects 

• Study all available data  
• Check MCMs against normal mode observations 

• Large-Low-Shear-Velocity Provinces 
• How robust is the density-Vs anti-correlation 
• Morphology and relation to Ultra-Low-Velocity Zones? 
• Role of thermal boundary layer? 

• Improve tomographic resolution and robustness 

• Use the joint forward-modeling approach as a complementary 
tool to test geodynamic hypotheses 
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