Enigmatic Martian mantle reservoirs: Can dynamic models help?

D. Breuer, A.-C. Plesa, and N. Tosi, German Aerospace Center Institute of Planetary Research

Geochemical models

- Nd anomalies in the SNCs indicate the existence of at least 3 reservoirs, which formed early and did not remix.
- As a comparison, Earth has ϵ^{142} Nd of 0 to 0.1.

- Large spatial separation and inefficent mantle mixing could account for reservoir preservation.
- This appears to be incompatible with vigorous whole mantle convection.

Reservoir formation

100

How did they form and remain stable over the entire Martian history?

Geodynamical models

3

Th.

Efficient mixing with low degree convection?

Keller and Tackley (2009)

Re.

Geodynamical scenarios

> Partial melting and mantle differentiation [Ogawa & Yanagisawa, 2011,

Magma ocean crystalization

The.

[Lebrun et al., 2013]

- ➤ Fractional crystallization ⇒ unstable density gradient ⇒ overturn ⇒ stably stratified mantle
- Late mantle cumulates enriched in incompatible heat producing elements
 ⇒ upon overturn, heat sources accumulate at the CMB

Cooling

Temperature

[Elkins-Tanton et al., 2005]

- ➤ Fractional crystallization ⇒ unstable density gradient ⇒ overturn ⇒ stably stratified mantle
- Late mantle cumulates enriched in incompatible heat producing elements
 ⇒ upon overturn, heat sources accumulate at the CMB

- Overturn style? \triangleright
- **Reservoir formation?** \triangleright
- Subsequent evolution after overturn? \triangleright

Thermo-chemical Convection

Conservation equations of

- > mass $\nabla \cdot \vec{u} = 0$
- linear momentum

$$\nabla \cdot [\eta (\nabla \vec{u} + (\nabla \vec{u})^T)] - \nabla p = Ra(T - BC)\vec{e}_r,$$

> thermal energy

$$\frac{\partial T}{\partial t} + \vec{u} \cdot \nabla T - \nabla^2 T = \frac{Ra_Q}{Ra}$$

> material transport
$$\frac{\partial C}{\partial t} + \vec{u} \cdot \nabla C = 0$$

Buoyancy number:

$$B = \frac{Ra_C}{Ra} = \frac{\Delta\rho}{\rho\alpha\Delta T}$$

Cartesian models: a parameter study

0.8

1.0

0.00

0.25

0.50

Composition

0.75

1.00

Systems heated from below or from within

0.50

Temperature

Initial temperature at the solidus of peridotite + upper TBL

0.75

Present-day surface temperature (250 K)

0.25

0.8

1.0

0.00

10

> Unstable linear composition with B ∈[0,2] $\Rightarrow \Delta \rho \in [30, 300] \text{ kg/m}^3$

1.00

- > Reference Rayleigh number $10^6 10^7$ (T=1600 K, P=3 GPa)
- Constant, T-dependent or T- and stress-dependent viscosity

Overturn style

[Tosi et al., 2013]

Surface mobilization increases with increasing B

R

Reservoir stability: Mixing time scaling

- Mixing time scales exponentially with B
- Internally heated systems have much longer mixing times and complete mixing only occurs for the smallest values of B (B < 0.4 i.e, ∆p < 60kg/m³)
- For a one-plate planet heated
 from within, it is very difficult
 to erase chemical heterogeneities
 via mantle mixing apart from the smallest B

[Tosi et al., 2013]

radiogenic heat producing elements

- \triangleright
- Initial temperature at the solidus + upper TBL \geq
- Present-day surface temperature (250 K) \triangleright
- Heat sources enriched in the upper 50 km \triangleright
- Viscoplastic rheology

10

Subsequent evolution after overturn

overturn below the stagnant lid

whole-mantle overturn

[Plesa et al., 2014]

Subsequent evolution after overturn

overturn below the stagnant lid

100

[Plesa et al., 2014]

whole-mantle overturn

- Overturn below the stagnant lid: mantle cools conductively, short phase of mantle melting (< 1Ga)
- Whole-mantle overturn: mantle overheating above the CMB, temperatures above the liquidus, melt likely negatively buoyant

10

Geodynamical scenarios

Magma ocean cumulate overturn [Elkins-Tanton et al., 2003, 2005; Debaille et al., 2009]

> Partial melting and mantle differentiation [Ogawa & Yanagisawa, 2011,

Mantle Depletion

Density decrease due to the depletion of the mantle in crustal components

Reservoir formation: partial melting

Model features:

- \succ Mantle depletion \Rightarrow density variations
- > Mantle dehydration \Rightarrow stiffening of residual man
- Tracer particles carry density, water concentration, he ources, thermal conductivity

[Plesa & Breuer, 2014]

Generation of reservoirs by partial melting and secondary differentiation

Reservoirs may change/new reservoirs can form depending in particular on the density difference between primordial and depleted mantle

Generation of reservoirs by partial melting and secondary differentiation

[Balta & McSween, 2013]

[Plesa & Breuer, 2014]

Reservoirs may change/new reservoirs can form depending in particular on the density difference between primordial and depleted mantle

- > Overturn style:
 - whole mantle overturn more difficult to obtain than previously assumed, unless specific conditions are met (e.g., high surface temperature or low lithosperic strength)
 - overturn below lid would imply a dense surface layer
- Reservoir formation: yes

- sampling of the reservoirs unlikely
- long standing volcanic activity as expected for Mars unlikely
- in contrast with the study by [Scheinberg et al., 2014]

- Formation of reservoirs by partial melting and associated density variations due to mantle depletion
 - depending on the density contrast 2 4 reservoirs can form and are preserved over the entire planetary evolution
 - this scenario may be compatible with SNC isotopic characteristics but needs to be tested
 - Two-layered mantle may be seen with InSight ?

Future studies

- For a better understanding of the early evolution and differentiation:
 - > Density variation in depleted mantle upon melting
 - Solidification of the magma ocean (e.g. distribution of density, composition, temperature)
 - Global magma ocean vs. magma ponds
 - Depth of the magma ocean
 - Role of a primordial atmosphere (surface temperature)