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Defects and Diffusion is important:
• Controls chemical exchange between crystalline, melt 

and fluid phases
• Degree of composition zoning in minerals
• Kinetics of phase transitions
• Rate at which minerals grow and their grain sizes
• Has a central role in controlling rheology 

(Deformation)

• High P & T experiments on diffusion are hard.
• So our approach is to use a theoretical approach (ab 

initio or first principles).
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Forces are calculated either from “First principles” - quantum 
mechanics - or from “empirical potentials”.
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He diffusion in 
perovskite - the 
exception.
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Theory: Wright & Price (1993) = 9.4 eV (empirical potentials)
Experiments: Yamazaki et al., (2000) = 3.6 eV
Theory: Karki and Khanduja (2007) = 9 eV (DFT)
Experiments: Dobson et al, (2008) = 3.7 eV

Text

Migration enthalpy of Si diffusion in MgSiO3 perovskite  
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Si Diffusion 
in Perovskite
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Si diffusion in MgSiO3 perovksite
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Agreement with experiment (3.6 eV) is better than previous 
estimates (9 eV) but still not great!
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Six-jump cycle for 
Si diffusion in 
MgSiO3 Perovskite
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Si diffusion in perovksite does not seem to occur via a simple vacancy 
hoping mechanism. 

Apparent activation energy for the total cycle is 3.6 eV.  This agrees well with 3.61 eV 
and 3.5 eV found by Dobson et al. (2008) and Yamazaki et al (2000).
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PEROVSKITE DIFFUSION RATES
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Absolute Diffusion Rates in MgO
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What about other components? 
Fe2+, Fe3+, Al3+ etc.

And in particular the effect of spin transition in Fe.
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High - Low Spin Transition 
in Ferropericlase

14Wentzcovitch et al. PNAS 2009, 
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Diffusion in post-perovskite
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Diffusion in post-perovskite is extremely anisotropic. 

Si and Mg  
diffusion in the 
<100> 
direction is 
very fast
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Katayama,  Geology (2012)

Deformation Map for Olivine

Don’t know deformation map 
for PPV, but ....

If diffusion creep, PPV could 
be several orders of 
magnitude more viscous that 
PV.

If dislocation creep, PPV 
could be up to four orders of 
magnitude weaker than PV - 
if climb controlled. 
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Dislocation creep is generally controlled by climb - and 
this is also a diffusion controlled mechanism.

So the much faster diffusion of Si in the [100] direction in post-
perovskite relative to post-perovskite should make it creep faster too - 
i.e., post-perovskite should be up to 4 orders of magnitude weaker 
than perovskite.

What about dislocation creep?

Thursday, 15 November 12



College de France,  2012 22

0

100

200

300

400

500

600

700

800

0 1000 2000 3000 4000 5000 6000 7000 8000

Time (s)

le
ng

th
 (p

ix
el

s)

CaIrO3

MgO

D-DIA

X-rays

COMPRES beamline at the NSLS

Experimental creep rates in transforming CaIrO3

Hunt et al, Nature Geoscience 2009
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Cadek and Fleitout (2005)

Other implications for weak post-perovskite:
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Akber-Knutson et al, (2005)

Catalli et al (2009)

Is the phase transition too wide to be consistent with a sharp 
seismic refector?
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Ammann, Brodholt, Wookey and Dobson, Nature (2010)
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Energy removedEnergy added

Thermal conductivity (k)
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Flow model

Anisotropy (LPO)

Conductive heat flow

Implications?
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from Walker et al, 2011
and
Simmons et al 
(2007,2008)

Flow Model
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Anisotropy 
Walker et al (2011)
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Total heat flow = 3.5, 4.9, 4.8 TW for three models 
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Does this matter?

Isotropic Anisotropic
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Conclusions
• Can use ab initio methods to calculate diffusion rates 

of minerals difficult to measure experimentally
• Ferro-periclase is much weaker than perovskite 

throughout the mantle. Spin transition slightly 
weakens it further.

• Lower mantle viscosity could be controlled by ferro-
periclase in areas of high strains.

• Post-perovskite has very anisotropic diffusion rates 
and is probably much weaker than perovksite

• Post-perovskite has somewhat anisotropic 
conductivity, which may help stabilise plumes.
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