Earth's mantle seismic properties from laboratory experiments

Hauke Marquardt

hauke.marquardt@earth.ox.ac.uk

DEEP-MAPS

erc

Thanks to

Alba San Josè Méndez Viktoria Trautner Biao Wang

Stephen Stackhouse Hanns-Peter Liermann Niccolo Satta Rachel Husband Johannes Buchen

Seismic properties from laboratory experiments

 $V_{\rho} = [(K+4/3G)/\rho]^{0.5}$ $V_{s} = (G/\rho)^{0.5}$ Anisotropy (c_{ij}s, CPO)

Attenuation (f-dependence)

Experimental Elasticity of Earth's Mantle - Methods

I. LVP Ultrasonics

- + High-temperature
- Pressure limited to ~25 GPa
- Polycrystalline samples
- Only average wave velocities
- Ideally need Synchrotron

12

30

II. Light scattering techniques in DAC

- + High-pressure possible
- + Elastic anisotropy can be measured (Cijs)
- Temperature difficult (but possible)
- Polycrystalline sample measurements of unclear quality
- Non-transparent samples challenging

a ь Acoustic velocity (km s⁻¹) DAC compression axis 80 Incoming laser Diamond 70 Sample 60 Intensity (counts) Ruby 50 -1 mm Propagation direction 🗲 40 of sound waves in sample 30 20 Scattered 10 laser light -Direct laser Scattering -30 -20-100 10 angle Frequency shift (GHz)

Experimental Elasticity of Earth's Mantle - Status

Marquardt & Thomson, Nature Reviews Earth & Env., 2020

2007

2020

Experimental Elasticity of Earth's Mantle – Major gaps

Marquardt & Thomson, Nature Reviews Earth & Env., 2020

2020

Interpretive Cartoon of Mantle Seismic Structures

Marquardt & Thomson, Nature Reviews Earth & Env., 2020

Interpretive Cartoon of Mantle Seismic Structures

- Systematic variations with chemistry
- Understanding measurements on polycrystals
 - Statistics

Can only partially (or not) be done

- High-temperature (particular in DAC)
 - Time-dependence
 - Signature of phase transitions

The Iron Spin Crossover in (Mg,Fe)O

The Iron Spin Crossover in (Mg,Fe)O - Impact

Wu, *JGR*, 2016

 $Vp^2 = (\mathbf{K} + 4/3^*G)/\rho$

The "mixed" spin state is markedly different from "pure" high or low spin

- Bulk modulus softens (~50%)
- Viscosity decreases (~10-100x)
- Thermal transport properties change
- Electrical conductivity increases
 - Fe partitioning is affected

The Iron Spin Crossover in (Mg,Fe)O – Bulk modulus

-> Bulk modulus is the key parameter!

V(P) data from traditional (static) DAC experiments

Time-resolved XRD in (dynamic) DAC

PhD work Alba San José Méndez

Jenei et al., RSI, 2019;

Mendez et al., RSI, 2020

V(P) data from time-resolved (dynamic) DAC experiments

Bulk modulus softening in (Mg_{0.8}Fe_{0.2})O

Mendez et al., EPSL, in review

Bulk Modulus Softening in (Mg_{0.8}Fe_{0.2})O at High Temperature

The iron spin crossover in Earth's lower mantle

Outlook: Stress Cycling Experiments

Outlook: Stress Cycling Experiments

Towards Continuous Maps of Mantle Seismic Properties

Marquardt & Thomson, Nature Reviews Earth & Env., 2020

Potential of time-resolved XRD experiments:

- "Continuous" maps of mantle seismic properties in *P*,*T*,*C*-space
- Direct monitoring of bulk modulus (and density) across phase transitions in *P*,*T*,*C*-space
- Time-/frequency-dependence of processes (e.g. phase transitions), "resonant frequencies"

Mantle Convection and Surface Expressions

Editors Hauke Marquardt Maxim Ballmer Sanne Cottaar Jasper Konter

Hauke Marquare Maxim Ballmer Sanne Cottaar Jasper Konter

erc

DEEP-MAPS

WILEY

Thanks to

Alba San Josè Méndez Viktoria Trautner Biao Wang

Stephen Stackhouse Hanns-Peter Liermann Niccolo Satta Rachel Husband Johannes Buchen