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Lavas	as	Probes	of	the	Mantle’s	Composition

	 
 
Radiogenic	isotopes	(e.g.,	87Sr/86Sr,	143Nd/144Nd,	206Pb/204Pb)	

and	some	trace	element	ratios	are	not	changed	between

solid	and	melt	during	partial	melting. 

87Sr/86Sr	solid	mantle	(peridotite)	=

																														87Sr/86Sr	melt	(basalt)	
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“fingerprinting	mantle	
sources”

OIB	Source	Components:	Hawai‘i	and	Kerguelen	both	have	EM-I	characteristics
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Mantle	Components	&	Reservoirs

Certain	oceanic	islands	or	groups	of	islands	are	characterized	by	specific	isotopic	
compositions	and	can	be	used	to	“map”	a	series	of	distinct	mantle	components	
or	reservoirs,	which	may	be	identifiable	separate	volumes	in	the	mantle	or	
extremes	of	a	continuum	of	compositions:


• DMM	=	depleted	MORB	mantle,	the	continuously	depleted	upper	mantle	reservoir,	source	of	
mid-ocean	ridge	basalts.


• EM-1	=	enriched	mantle	1,	mantle	that	reflects	addition	of	crustal	materials,	either	recycling	of	
delaminated	subcontinental	lithospheric	mantle,	or	recycling	of	subducted	ancient	pelagic	
sediment.


• EM-2	=	enriched	mantle	2,	mantle	that	reflects	addition	of	recycled	oceanic	crust.

• HIMU	=	high	µ,	where	µ	=	U/Pb	(and	Th/Pb),	reflecting	recycling	of	“enriched”	oceanic	
lithosphere	that	has	been	infiltrated	by	low-degree	partial	melts.


• A	common	mantle	component	variously	referred	to	as:

• PREMA	=	prevalent	mantle

• C	=	“common”’	component

• FOZO	=	focal	zone



Oceanic	Islands,	Mantle	Plumes	and	
Mantle	End-Members

Stracke,	2012

PREMA

(FOZO)

EM-II

EM-I

Mixing	different	sources	of	mantle	
heterogeneity	creates	different	“flavors”	of	OIBs


Mixing	different	components	in	various	
proportions	results	in	the	variability	in	
composition	we	observe	in	global	OIBs



Oceanic	Islands,	Mantle	Plumes	
and	Mantle	End-Members

		All	OIBs	“point”	to	a	common	mantle	
component	FOZO	(or	PREMA)


	FOZO	or	PREMA	is	a	ubiquitous	component	in	
all	deep	sourced	OIBs	globally


		Ambient	deep	mantle,	very	close	to	bulk	
silicate	earth	composition

Hart	et	al,	1992

Redrawn	by	White.



DePaolo	and	Wasserburg,	1979

Isotopic	Mixing	Modelling

=+

Component	1 Component	2 Mixture	of	Components	1	and	2

We	can	model	the	mixing	of	melts	with	different	concentrations	and	isotopic	compositions	using	a	
simple	equation

(87Sr/86Sr)1 (87Sr/86Sr)2

(87Sr/86Sr)3


Weighed	mean:	
intermediate	in	

composition	between	
(87Sr/86Sr)1	and	(87Sr/

86Sr)2

x	=	weight	fraction	of	component	1	or	2

1	and	2	=	two	components	being	mixed

1

1
1

2
2

2
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Subducting	
Slabs	&	
Recycling

⎼		Down-going	subducted	oceanic	
lithosphere	can	be	traced	by	
seismic	tomography	using	P-	and	
S-wave	variations.	


⎼	Subducted	material:	peridotites,	
harzburgites,	gabbros,	tholeiitic	
and	alkali	basalts,	terrigenous	and	
pelagic	sediments,	and	lower	
crustal	metamorphic	rocks.



Albarède	&	Van	der	Hilst	2002

Sediment	–	0.3-0.7	km3/year	subducts	
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adapted	from	Coffin	et	al.	2006

*Goodliffe	&	Martinez	1997

Mahoney	J.	J.	&	Coffin	M.	F.	(eds.)	1997

Hotspot	Track:

Ninetyeast	Ridge

Hotspot	Track:

Hawaiian-Emperor	Chain

Kerguelen

Hawai‘i

Gough

Pitcairn
Tristan

Continental	flood	basalts/volcanic	rifted	margins

Oceanic	flood	basalts


Modified	from	Thorne	et	al	2004

African	LLSVP										Pacific	LLSVP
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When	projected	onto	the	CMB,	many	mantle	
plumes	plot	at	the	edge	of	the	LLSVPs



Zhao	et	al	2015

Williams	et	al	2015

Hotspot	Locations	on	top	of	a	Global	Tomography	Shear	Velocity	Model	
TXBW	(Grand,	2002)

Sl
ee
p	
(1
99
0)

Global	Distribution	

3He/4He	Ratios




Kaua‘i,	Waimea	Canyon

Hawai‘i?

I	-	Largest	buoyancy	flux	and	erupted	volume	of	lavas	

II	-	The	Hawai‘i	mantle	plume	flux	has	become	stronger	with	time

III	-	Volcanoes	arranged	in	2	parallel	geographical	chains,	geochemically	distinct

IV	-	Dominated	by	tholeiitic	shield	compositions

VI	-	Deep	Mantle	Origin	-	CMB,	where

VII	-	the	Loa	trend	samples	enriched	(EM-I)	compositions




160°W 159°W 158°W 157°W 156°W 155°W

23°N

22°N

21°N

20°N

19°N

0 50 MILES

0 50 100 KILOMETERS
SCALE APPROX 1:85,342

0

0

3000
Water Depth

15,000 FEET

METERS

10,0005000

1000 2000 4000 5000

KaKa‘ulaulaKa‘ula

NiNi‘ihauihauNi‘ihau

Moloka‘i

Hawai‘i

Maui

Kaho‘olawe

O‘ahu

Kaua‘i

Ni‘ihau

Mauna LoaMauna LoaMauna Loa

Mauna KeaMauna KeaMauna Kea

KohalaKohalaKohala

West MauiWest MauiWest Maui

East MolokaEast Moloka‘iEast Moloka‘i

WaiWai‘anaeanaeWai‘anae
KoKo‘olauolauKo‘olau

West MolokaWest Moloka‘iWest Moloka‘i

Ka‘ula

WaiWai‘aleale‘alealeWai‘ale‘ale

KalaupapaKalaupapaKalaupapa

KahoKaho‘olaweolaweKaho‘olawe

Clark  1

Clark  2

Puna   R
id

ge

Kiholo Ridge

Kaua‘i

O‘ahu

Kaho‘olawe      Trough

Kaho‘olawe

Fan

Pa‘uwela Ridge

Slump

Slump

Slump

Maui

Deep

Hawaiian

Deep

Wailau

Slide

W
ai

pi
‘o

Va
lle

y

Pail
olo

Channel

Kalohi
Channel

‘A
u

‘a
u

C
h

a
n

n
el

Keala
ik

ahik
i

Channel

Kohala Canyon

Hilo  Ridge

K
ona C

oast

Nu‘uanu

Slide

Slide

Alika 2

Slide

Alika 1

Slide

South Kona

Slide

Papa‘u
Seamount

Hohonu
Seamount

HILINA FAULT

Punalu‘u
Slump

Apu‘upu‘u

Seamount

Dana
Seamount

Indianapolis

Seamount

Jaggar

Seamount

Clark

Seamount

Day
Seamount

Palmer

Seamount

McCall

Seamount

Perret

Seamount

Green

Seamount

Pensacola

Seamount
Daly

Seamount

Swordfish

Seamount

Cross

Seamount

Washington

Seamount

Ellis

Seamount
Brigham

Seamount

Bishop

Seamount

Powers

Seamount

Dutton

Seamount

Tuscaloosa

Seamount

Penguin
 B

ank

K
a

 L
a

e
  
R

id
g

e

KEALAKEKUA

FAULT

Ka Lae West
Slide Ka Lae East

Slide

Wai‘anae

Slump

South Kaua‘i

Slide

North Kaua‘i

Slide

K
a

‘en
a

  R
id

g
e

North  Kona

Slump

Moloka‘i      
  Fracture        

Zone

Puna   C
anyon

K
a
iw

i 
C

h
a
n
n
el

Crater

Caldera

Caldera

K
a

u
a

‘i
  
  
  
C

h
a

n
n

el

Ka‘ena

Slump

K
A

H
U

K
U

FA
U

LT

Maui      
  Fracture       

 Zone

Maui

H
aw

ai‘i

Deep

Deep

Deep

Deep

Slide

Hilina

Slump

Moloka‘i     
   Fracture       

 Zone

Southwest O‘ahu

Volcanic Field

Fracture        Z
one

Fracture    Zone

DiamondDiamond
HeadHead

Diamond
Head

N

HaleakalaHaleakala
_

Haleakala
_

Haleakala
_

Pu‘u ‘O‘o
_ _
Kupaianaha

_Kilauea-

LanaLana‘i
_

Lana‘i
_

Lana‘i
_

South  Kona

Slump

Lana‘i
_

LoLo‘ihiihi
_

Lo‘ihi
_

Laupahoehoe
_

Hamakua Coast

__

Pololu
_

P
ol

ol
u

Va
lle

y

_

_
HualalaiHualalaiHualalai

_

Moku‘aweoweo
_

MahukonaMahukonaMahukona
__

Honolulu

KilaueaKilaueaKilauea--

K
a

u
la

k
a

h
i      C

h
a

n
n

el

‘Alenuihaha   C
hannel

_ _

‘A
la

la
k

eik
i

C
h

a
n

n
el

_

Hana   Ridge

_

Hana
_

‘Opana
_

H

A

A

A

A

W

I

I

N

H

R

C

H
A

A

A

W

I

I

N

A

M

O

T

H
A

A

A

A

W

I
I

N

H

R

C

KaKa‘ulaula
(4.0 Ma)(4.0 Ma)
Ka‘ula

(4.0 Ma)

Mauna LoaMauna Loa
(0 Ma)(0 Ma)

Mauna KeaMauna Kea
(0.4 Ma)(0.4 Ma)

KohalaKohala
(0.4 Ma)(0.4 Ma)

West MauiWest Maui
(1.3 Ma)(1.3 Ma)

East MolokaEast Moloka‘i
(1.8 Ma)(1.8 Ma)

WaiWai‘anaeanae
(3.7 Ma)(3.7 Ma)

KoKo‘olauolau
(2.6 Ma)(2.6 Ma)

West MolokaWest Moloka‘i
(1.9 Ma)(1.9 Ma)

KahoKaho‘olaweolawe
(1.0 Ma)(1.0 Ma)

WaiWai‘aleale‘aleale
(5.1 Ma)(5.1 Ma)

NiNi‘ihauihau
(4.9 Ma)(4.9 Ma)

un.un.

un.un.

KilaueaKilauea
(0 Ma)(0 Ma)
-

HaleakalaHaleakala
(1.0 Ma)(1.0 Ma)

_

LanaLana‘i
(1.3 Ma)(1.3 Ma)

_

LoLo‘ihiihi
(0 Ma)(0 Ma)

_

MahukonaMahukona
(0.5 Ma)(0.5 Ma)

_

HualalaiHualalai
(0 Ma)(0 Ma)

_

Mauna Loa
(0 Ma)

Mauna Kea
(0.4 Ma)

Kohala
(0.4 Ma)

West Maui
(1.3 Ma)

East Moloka‘i
(1.8 Ma)

Wai‘anae
(3.7 Ma)

Ko‘olau
(2.6 Ma)

West Moloka‘i
(1.9 Ma)

Kaho‘olawe
(1.0 Ma)

Wai‘ale‘ale
(5.1 Ma)

Ni‘ihau
(4.9 Ma)

un.

un.

Kilauea
(0 Ma)
-

Haleakala
(1.0 Ma)

_

Lana‘i
(1.3 Ma)

_

Lo‘ihi
(0 Ma)

_

Mahukona
(0.5 Ma)

_

Hualalai
(0 Ma)

_

160°W23°N

22°N

21°N

20°N

19°N

159°W 158°W 157°W 156°W 155°W160°W23°N

22°N

21°N

20°N

19°N

159°W 158°W 157°W 156°W 155°W

0 100

KILOMETERS

AREA OF MAP

HAWAIIAN  RIDGE

95 mm/yr

E
M

P
E

R
O

R
  S

E
A

M
O

U
N

TS

ALEUTIAN  TRENCH

PACIFIC

PLATE

NORTH  AMERICAN

PLATE

KURIL
  T

RENCH

50°N

40°N

30°N

20°N

160°E 170°E 180° 170°W 160°W 150°W

5000

KILOMETERS

Additional reading: 
Decker, R.W., Wright, T.L., and Stauffer, P.H., eds., 1987, Volcanism in Hawaii: U.S. Geological Survey 

Professional Paper 1350, 2 v., 1667 p.
Francis, Peter, 1993, Volcanoes—A planetary perspective: Oxford, Clarendon Press, 433 p.
Heliker, Christina, Swanson, D.A., and Takahashi, T.J., eds., 2003, The Pu‘u ‘O‘o-Kupaianaha eruption 

of Kilauea Volcano, Hawai‘i—The first 20 years: U.S. Geological Survey Professional Paper 1676, 
206 p.

Macdonald, G.A., Abbott, A.T., and Peterson, F.L., 1983, Volcanoes in the sea—The geology of Hawaii 
(2d ed.): Honolulu, University of Hawai‘i Press, 517 p.

Rhodes, J.M., and Lockwood, J.P., eds., 1995, Mauna Loa revealed—Structure, composition, history, 
and hazards: American Geophysical Union Geophysical Monograph 92, 348 p.
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Kerr, B.C., Neal, C.R., Frey, F.A., Torii, Masayuki, and Carvallo, Claire, 2003, The Emperor 
Seamounts—Southward motion of the Hawaiian hotspot plume in Earth's mantle: Science, v. 301, 
p. 1064-1069.

__ _
-

Bathymetry of the northwest Pacific Ocean. The linear Hawaiian Ridge 
and older Emperor Seamounts are generally accepted to have formed by 
northwestward motion of the Pacific Plate over a hot spot in the mantle that 
itself migrated southward in the past; arrow denotes present plate motion. 
The Hawaiian Islands represent the latest volcanism associated with this hot 
spot, which has been vigorous enough to build massive volcanoes that 
breach the sea surface.
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3-D perspective view of Hawaii.  The Hawaiian Islands (shown in green; 
white at summits of Mauna Loa [4,170 m high] and Mauna Kea [4,206 m 
high]) are the tops of massive volcanoes, most of whose bulks lie below the 
sea surface. Ocean depths are colored from purple (5,750 m deep northeast 
of the Island of Maui) and blue to light gray (shallowest).  Historical lava flows, 
erupted from the summits and rift zones of Mauna Loa, Kilauea, and Hualalai 
volcanoes on the Island of Hawai‘i, are shown in red.
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The volcanoes of Hawaii
Hawaiian volcanoes typically evolve in four stages as 

volcanism waxes and wanes: (1) early alkalic, when 
volcanism originates on the deep sea floor; (2) shield, when 
roughly 95 percent of a volcano's volume is emplaced; (3) 
post-shield alkalic, when small-volume eruptions build 
scattered cones that thinly cap the shield-stage lavas; and (4) 
rejuvenated, when lavas of distinct chemistry erupt 
following a lengthy period of erosion and volcanic 
quiescence. During the early alkalic and shield stages, two 
or more elongate rift zones may develop as flanks of the 
volcano separate. Mantle-derived magma rises through a 
vertical conduit and is temporarily stored in a shallow 
summit reservoir from which magma may erupt within the 
summit region or be injected laterally into the rift zones. The 
ongoing activity at Kilauea's Pu‘u ‘O‘o cone that began in 
January 1983 is one such rift-zone eruption. The rift zones 
commonly extend deep underwater, producing submarine 
eruptions of bulbous pillow lava.

Once a volcano has grown above sea level, subaerial 
eruptions produce lava flows of jagged, clinkery ‘a‘a or 
smooth, ropy pahoehoe. If the flows reach the ocean they 
are rapidly quenched by seawater and shatter, producing a 
steep blanket of unstable volcanic sediment that mantles the 
upper submarine slopes. Above sea level then, the volcanoes 
develop the classic shield profile of gentle lava-flow slopes, 
whereas below sea level slopes are substantially steeper. 
While the volcanoes grow rapidly during the shield stage, 
they may also collapse catastrophically, generating giant 
landslides and tsunami, or fail more gradually, forming 
slumps. Deformation and seismicity along Kilauea's south 
flank indicate that slumping is occurring there today.

Loading of the underlying Pacific Plate by the growing 
volcanic edifices causes subsidence, forming deep basins at 
the base of the volcanoes. Once volcanism wanes and lava 
flows no longer reach the ocean, the volcano continues to 
submerge, while erosion incises deep river valleys, such as 
those on the Island of Kaua‘i. The edges of the submarine 
terraces that ring the islands, thus, mark paleocoastlines that 
are now as much as 2,000 m underwater, many of which are 
capped by drowned coral reefs.
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Mapping the sea floor around Hawaii
The Japan Marine Science and Technology Center 

(JAMSTEC) funded and led a four-year collaborative 
survey of the underwater flanks of Hawaii's shield 
volcanoes. This exploration, involving scientists from the 
U.S. Geological Survey (USGS) and other Japanese and 
U.S. academic and research institutions, utilized manned 
and unmanned submersibles, rock dredges, and sediment 
piston cores to directly sample and visually observe the sea 
floor at specific sites. Ship-based sonar systems were used 
to more widely map the bathymetry from the sea surface.

The state-of-the-art multibeam sonar systems, mounted 
on the hull of GPS-navigated research vessels, convert the 
two-way travel times of individual sonar pings and their 
echoes into a line of bathymetry values across the ship track. 
The resulting swaths across the ocean bottom, obtained 
along numerous overlapping ship tracks, reveal the sea floor 
in stunning detail. The survey data collected by JAMSTEC 
form the basis for the bathymetry shown on the map, 
augmented with bathymetric data from other sources. 
Bathymetry that is predicted from variations in sea-surface 
height, observable from satellites, provides the low-
resolution (fuzzy) bathymetry in between ship tracks. 
Subaerial topography is from a USGS 30-m digital elevation 
model of Hawaii. Historical lava flows are shown in red.

Prominent terraces (shown in orange and yellow) 
illustrate the larger size of the islands in the past; O‘ahu and 
the Maui-Nui complex (Maui, Moloka‘i, Lana‘i, and 
Kaho‘olawe islands, and Penguin Bank), in particular, are 
mere vestiges of their former extent. Lo‘ihi, the youngest 
volcano in the chain, has not yet reached the sea surface. 
Fields of blocky debris, such as Ko‘olau's Nu‘uanu Slide, 
were created by catastrophic landslides, which carried large 
parts of some volcanoes as much as 200 km across the sea 
floor. Slower-moving, sediment-blanketed slumps, in 
contrast, typically develop ridges that parallel the 
paleocoastlines, such as Haleakala's Hana Slump. Eruptions 
along the submarine part of a volcano's rift zone produce a 
rugged morphology, as at Kilauea's Puna Ridge. Numerous 
seamounts of Late Cretaceous age (approximately 80 Ma) 
are scattered across the deep sea floor and are unrelated to 
the hot spot that supplies Hawaii's volcanoes.

_
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_

Interpretive map of Hawaii's volcanoes.  Transparent pastel colors on a 
slope map define the approximate extent of each known major Hawaiian 
shield volcano and its landslide debris; white denotes steep slopes, dark gray 
denotes flat-lying areas. Circles mark the location of main eruptive centers, 
presumably overlying summit magma reservoirs; dashed lines mark well-
developed rift zones. The westward-increasing ages of shield-stage lavas 
(given in millions of years [Ma] for each volcano) continues along the 
Hawaiian Ridge and on through the Emperor Seamounts (76 Ma at the 
northern end), supporting the plate-motion theory.

Mercator map projection; image illuminated from 
the northeast to emphasize sea-floor relief.
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Bathymetry of the northwest Pacific Ocean. The linear Hawaiian Ridge 
and older Emperor Seamounts are generally accepted to have formed by 
northwestward motion of the Pacific Plate over a hot spot in the mantle that 
itself migrated southward in the past; arrow denotes present plate motion. 
The Hawaiian Islands represent the latest volcanism associated with this hot 
spot, which has been vigorous enough to build massive volcanoes that 
breach the sea surface.
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3-D perspective view of Hawaii.  The Hawaiian Islands (shown in green; 
white at summits of Mauna Loa [4,170 m high] and Mauna Kea [4,206 m 
high]) are the tops of massive volcanoes, most of whose bulks lie below the 
sea surface. Ocean depths are colored from purple (5,750 m deep northeast 
of the Island of Maui) and blue to light gray (shallowest).  Historical lava flows, 
erupted from the summits and rift zones of Mauna Loa, Kilauea, and Hualalai 
volcanoes on the Island of Hawai‘i, are shown in red.
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The volcanoes of Hawaii
Hawaiian volcanoes typically evolve in four stages as 

volcanism waxes and wanes: (1) early alkalic, when 
volcanism originates on the deep sea floor; (2) shield, when 
roughly 95 percent of a volcano's volume is emplaced; (3) 
post-shield alkalic, when small-volume eruptions build 
scattered cones that thinly cap the shield-stage lavas; and (4) 
rejuvenated, when lavas of distinct chemistry erupt 
following a lengthy period of erosion and volcanic 
quiescence. During the early alkalic and shield stages, two 
or more elongate rift zones may develop as flanks of the 
volcano separate. Mantle-derived magma rises through a 
vertical conduit and is temporarily stored in a shallow 
summit reservoir from which magma may erupt within the 
summit region or be injected laterally into the rift zones. The 
ongoing activity at Kilauea's Pu‘u ‘O‘o cone that began in 
January 1983 is one such rift-zone eruption. The rift zones 
commonly extend deep underwater, producing submarine 
eruptions of bulbous pillow lava.

Once a volcano has grown above sea level, subaerial 
eruptions produce lava flows of jagged, clinkery ‘a‘a or 
smooth, ropy pahoehoe. If the flows reach the ocean they 
are rapidly quenched by seawater and shatter, producing a 
steep blanket of unstable volcanic sediment that mantles the 
upper submarine slopes. Above sea level then, the volcanoes 
develop the classic shield profile of gentle lava-flow slopes, 
whereas below sea level slopes are substantially steeper. 
While the volcanoes grow rapidly during the shield stage, 
they may also collapse catastrophically, generating giant 
landslides and tsunami, or fail more gradually, forming 
slumps. Deformation and seismicity along Kilauea's south 
flank indicate that slumping is occurring there today.

Loading of the underlying Pacific Plate by the growing 
volcanic edifices causes subsidence, forming deep basins at 
the base of the volcanoes. Once volcanism wanes and lava 
flows no longer reach the ocean, the volcano continues to 
submerge, while erosion incises deep river valleys, such as 
those on the Island of Kaua‘i. The edges of the submarine 
terraces that ring the islands, thus, mark paleocoastlines that 
are now as much as 2,000 m underwater, many of which are 
capped by drowned coral reefs.
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Mapping the sea floor around Hawaii
The Japan Marine Science and Technology Center 

(JAMSTEC) funded and led a four-year collaborative 
survey of the underwater flanks of Hawaii's shield 
volcanoes. This exploration, involving scientists from the 
U.S. Geological Survey (USGS) and other Japanese and 
U.S. academic and research institutions, utilized manned 
and unmanned submersibles, rock dredges, and sediment 
piston cores to directly sample and visually observe the sea 
floor at specific sites. Ship-based sonar systems were used 
to more widely map the bathymetry from the sea surface.

The state-of-the-art multibeam sonar systems, mounted 
on the hull of GPS-navigated research vessels, convert the 
two-way travel times of individual sonar pings and their 
echoes into a line of bathymetry values across the ship track. 
The resulting swaths across the ocean bottom, obtained 
along numerous overlapping ship tracks, reveal the sea floor 
in stunning detail. The survey data collected by JAMSTEC 
form the basis for the bathymetry shown on the map, 
augmented with bathymetric data from other sources. 
Bathymetry that is predicted from variations in sea-surface 
height, observable from satellites, provides the low-
resolution (fuzzy) bathymetry in between ship tracks. 
Subaerial topography is from a USGS 30-m digital elevation 
model of Hawaii. Historical lava flows are shown in red.

Prominent terraces (shown in orange and yellow) 
illustrate the larger size of the islands in the past; O‘ahu and 
the Maui-Nui complex (Maui, Moloka‘i, Lana‘i, and 
Kaho‘olawe islands, and Penguin Bank), in particular, are 
mere vestiges of their former extent. Lo‘ihi, the youngest 
volcano in the chain, has not yet reached the sea surface. 
Fields of blocky debris, such as Ko‘olau's Nu‘uanu Slide, 
were created by catastrophic landslides, which carried large 
parts of some volcanoes as much as 200 km across the sea 
floor. Slower-moving, sediment-blanketed slumps, in 
contrast, typically develop ridges that parallel the 
paleocoastlines, such as Haleakala's Hana Slump. Eruptions 
along the submarine part of a volcano's rift zone produce a 
rugged morphology, as at Kilauea's Puna Ridge. Numerous 
seamounts of Late Cretaceous age (approximately 80 Ma) 
are scattered across the deep sea floor and are unrelated to 
the hot spot that supplies Hawaii's volcanoes.
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Interpretive map of Hawaii's volcanoes.  Transparent pastel colors on a 
slope map define the approximate extent of each known major Hawaiian 
shield volcano and its landslide debris; white denotes steep slopes, dark gray 
denotes flat-lying areas. Circles mark the location of main eruptive centers, 
presumably overlying summit magma reservoirs; dashed lines mark well-
developed rift zones. The westward-increasing ages of shield-stage lavas 
(given in millions of years [Ma] for each volcano) continues along the 
Hawaiian Ridge and on through the Emperor Seamounts (76 Ma at the 
northern end), supporting the plate-motion theory.

Mercator map projection; image illuminated from 
the northeast to emphasize sea-floor relief.
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Hawaiian	Shield	Basalts	Evolution	over	4.5	myr


Northwestern	Hawaiian	Ridge:	45	myr

Kilauea	Crater,	April	2008
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1)	Sample	Collection														2)	Sequential	Acid	Leaching														3)	Chemical	Separation
1st	step

Intermediate	steps

Last	acid	step	

(>15x)

4)	High-Precision	Isotopic	Analyses

MC-ICP-MS TIMS

Samples,	Chem	Lab	Preparation	and	Isotopic	Analyses



Pb-Pb	Isotope	Systematics:	Improved	Resolution:	Mixing	lines
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Regression	lines	through	
individual	volcanoes.

		Isochron:	No

		Mixing	lines:	Yes

Triple	Spike	Pb	Isotope	Data:	Shield	Stage	Lavas

Blichert-Toft	et	al.

1999

Abouchami	et	al.	2005
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≈
Th
U

 and where init stands for the primordial ratios of the Earth.

where	init	stands	for	Earth’s	primordial	Pb	isotopic	composition

High-Precision	Pb	Hawai’i

Where	did	it	start?

Abouchami	et	al.	2005
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High-Precision	Pb	Isotope	Data:	Hawai‘i	Shield	Lavas
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High-Precision	Pb	Isotope	Data:	Hawai‘i	Shield	Lavas
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Kea	end-member:

•common	to	many	Pacific	islands


•similar	to	“c”	or	super	
chondritic	BSE


Loa	trend	volcanoes:

•higher	208Pb/204Pb	ratios	for


	a	given	206Pb/204Pb,

higher	87Sr/86Sr	and


lower	εNd	and	εHf	

•more	heterogeneous
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Bathymetry of the northwest Pacific Ocean. The linear Hawaiian Ridge 
and older Emperor Seamounts are generally accepted to have formed by 
northwestward motion of the Pacific Plate over a hot spot in the mantle that 
itself migrated southward in the past; arrow denotes present plate motion. 
The Hawaiian Islands represent the latest volcanism associated with this hot 
spot, which has been vigorous enough to build massive volcanoes that 
breach the sea surface.
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3-D perspective view of Hawaii.  The Hawaiian Islands (shown in green; 
white at summits of Mauna Loa [4,170 m high] and Mauna Kea [4,206 m 
high]) are the tops of massive volcanoes, most of whose bulks lie below the 
sea surface. Ocean depths are colored from purple (5,750 m deep northeast 
of the Island of Maui) and blue to light gray (shallowest).  Historical lava flows, 
erupted from the summits and rift zones of Mauna Loa, Kilauea, and Hualalai 
volcanoes on the Island of Hawai‘i, are shown in red.
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The volcanoes of Hawaii
Hawaiian volcanoes typically evolve in four stages as 

volcanism waxes and wanes: (1) early alkalic, when 
volcanism originates on the deep sea floor; (2) shield, when 
roughly 95 percent of a volcano's volume is emplaced; (3) 
post-shield alkalic, when small-volume eruptions build 
scattered cones that thinly cap the shield-stage lavas; and (4) 
rejuvenated, when lavas of distinct chemistry erupt 
following a lengthy period of erosion and volcanic 
quiescence. During the early alkalic and shield stages, two 
or more elongate rift zones may develop as flanks of the 
volcano separate. Mantle-derived magma rises through a 
vertical conduit and is temporarily stored in a shallow 
summit reservoir from which magma may erupt within the 
summit region or be injected laterally into the rift zones. The 
ongoing activity at Kilauea's Pu‘u ‘O‘o cone that began in 
January 1983 is one such rift-zone eruption. The rift zones 
commonly extend deep underwater, producing submarine 
eruptions of bulbous pillow lava.

Once a volcano has grown above sea level, subaerial 
eruptions produce lava flows of jagged, clinkery ‘a‘a or 
smooth, ropy pahoehoe. If the flows reach the ocean they 
are rapidly quenched by seawater and shatter, producing a 
steep blanket of unstable volcanic sediment that mantles the 
upper submarine slopes. Above sea level then, the volcanoes 
develop the classic shield profile of gentle lava-flow slopes, 
whereas below sea level slopes are substantially steeper. 
While the volcanoes grow rapidly during the shield stage, 
they may also collapse catastrophically, generating giant 
landslides and tsunami, or fail more gradually, forming 
slumps. Deformation and seismicity along Kilauea's south 
flank indicate that slumping is occurring there today.

Loading of the underlying Pacific Plate by the growing 
volcanic edifices causes subsidence, forming deep basins at 
the base of the volcanoes. Once volcanism wanes and lava 
flows no longer reach the ocean, the volcano continues to 
submerge, while erosion incises deep river valleys, such as 
those on the Island of Kaua‘i. The edges of the submarine 
terraces that ring the islands, thus, mark paleocoastlines that 
are now as much as 2,000 m underwater, many of which are 
capped by drowned coral reefs.

_

__

-

-
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Mapping the sea floor around Hawaii
The Japan Marine Science and Technology Center 

(JAMSTEC) funded and led a four-year collaborative 
survey of the underwater flanks of Hawaii's shield 
volcanoes. This exploration, involving scientists from the 
U.S. Geological Survey (USGS) and other Japanese and 
U.S. academic and research institutions, utilized manned 
and unmanned submersibles, rock dredges, and sediment 
piston cores to directly sample and visually observe the sea 
floor at specific sites. Ship-based sonar systems were used 
to more widely map the bathymetry from the sea surface.

The state-of-the-art multibeam sonar systems, mounted 
on the hull of GPS-navigated research vessels, convert the 
two-way travel times of individual sonar pings and their 
echoes into a line of bathymetry values across the ship track. 
The resulting swaths across the ocean bottom, obtained 
along numerous overlapping ship tracks, reveal the sea floor 
in stunning detail. The survey data collected by JAMSTEC 
form the basis for the bathymetry shown on the map, 
augmented with bathymetric data from other sources. 
Bathymetry that is predicted from variations in sea-surface 
height, observable from satellites, provides the low-
resolution (fuzzy) bathymetry in between ship tracks. 
Subaerial topography is from a USGS 30-m digital elevation 
model of Hawaii. Historical lava flows are shown in red.

Prominent terraces (shown in orange and yellow) 
illustrate the larger size of the islands in the past; O‘ahu and 
the Maui-Nui complex (Maui, Moloka‘i, Lana‘i, and 
Kaho‘olawe islands, and Penguin Bank), in particular, are 
mere vestiges of their former extent. Lo‘ihi, the youngest 
volcano in the chain, has not yet reached the sea surface. 
Fields of blocky debris, such as Ko‘olau's Nu‘uanu Slide, 
were created by catastrophic landslides, which carried large 
parts of some volcanoes as much as 200 km across the sea 
floor. Slower-moving, sediment-blanketed slumps, in 
contrast, typically develop ridges that parallel the 
paleocoastlines, such as Haleakala's Hana Slump. Eruptions 
along the submarine part of a volcano's rift zone produce a 
rugged morphology, as at Kilauea's Puna Ridge. Numerous 
seamounts of Late Cretaceous age (approximately 80 Ma) 
are scattered across the deep sea floor and are unrelated to 
the hot spot that supplies Hawaii's volcanoes.

_

-

_

_

_

Interpretive map of Hawaii's volcanoes.  Transparent pastel colors on a 
slope map define the approximate extent of each known major Hawaiian 
shield volcano and its landslide debris; white denotes steep slopes, dark gray 
denotes flat-lying areas. Circles mark the location of main eruptive centers, 
presumably overlying summit magma reservoirs; dashed lines mark well-
developed rift zones. The westward-increasing ages of shield-stage lavas 
(given in millions of years [Ma] for each volcano) continues along the 
Hawaiian Ridge and on through the Emperor Seamounts (76 Ma at the 
northern end), supporting the plate-motion theory.

Mercator map projection; image illuminated from 
the northeast to emphasize sea-floor relief.
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How	to	Move	Forward?

Need	to	Break	some	Boundaries	…
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Back	to	Hawai‘i

Shield	Lavas

Kaua‘i,	Kalalau	Valley
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A	Simple	Bilateral	Source?	Some	Challenges

Only	shield	lavas

Only	modern,	high-precision	data

~800	samples
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Seismically-Imaged	Mantle	Heterogeneity	and	Potential	Source	of	Hawaiian	
Geochemical	Variation

Central Pacific

LOA
KEA A’EnrichedLoa
TransitionalKeaKohala

A  Cross-section of possible lower mantle origin of Hawaiian geochemical groups

Modified	from	Weis	et	al	2011
French	&	Romanowicz	2015


Torsvik	et	al	2017



B  Potential origin of Hawaiian geochemical groups from seismically-imaged heterogeneity

LOA: Heterogeneity inside LLSVP       KEA: Heterogeneity outside the LLSVP 
   (ULVZ)          (Ambient Pacific Mantle)
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Thallium	Isotopic	Compositions:

Evidence	for	Recycled	Materials	on	
the	Kea	Side	of	the	Hawaiian	
Mantle	Plume
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•	There	is	a	clear	difference	between	Loa	and	Kea	trend	volcanoes:

•Kea	Volcanoes	≈	Ambient	Pacific	Mantle	(+	ancient,	recycled	pelagic	sediment)

			The	Kea	trend	samples	the	Pacific	deep	mantle.

•Loa	enriched	compositions	come	from	LLSVP	and	ULVZ	(Enriched	Loa).


•	Statistically,	six	groups	can	be	identified	on	Hawaii:

•	two	major	ones:	Kea	and	Loa,	plus,

•	four	minor	ones,	finite	in	time/space:	(WMaui-EMoloka‘i,	Kohala),	(Enriched	Loa,	Lō’ihi).


•	Both	Loa	and	Kea	trends	are	heterogeneous	and	composed	of	multiple	compositional	
components.	Loa	is	much	more	heterogeneous	(by	a	factor	of	1.5-2)


•	Hawai‘i	is	also	unique	because	there	are	enough	samples	and	high	precision	data	for	
robust	statistical	analysis.

Hawaiian	Islands	Geochemistry

Mauna	Kea	post-shield	cones
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•		Mantle	plume	tails	are	dynamic	and	can	change	compositionally	with	time.


•		Hawaiian	plume	drift	samples	multiple	mantle	domains	which	has	impact	on:

•		Geochemistry,	spatial	organization	and	timing

•		Magmatic	Flux

•		Volcanic	Propagation	Rate


•		The	EM-I	geochemical	signatures	are	related	to	the	presence	of	enriched,	recycled	continental	
material	in	these	anomalous	velocity	zones	at	the	CMB	-	each	with	a	different	composition	
(African	LLSVP,	slightly	more	enriched	-	older?).


•		The	appearance	of	Loa	signatures	early	on	the	NWHR	indicates	that	LLSVP	are	long-lived	
features	of	the	deep	mantle	that	also	play	a	significant	role	in	the	geochemical	signature	of	strong	
mantle	plumes.

Implications	for	the	Deep	Mantle	and	LLSVPs

Kaua’i,	NaPali	coast	



Model:	a	Fine	Structure	of	the	Hawaiian	Mantle	Plume

with	a	compositional	gradient	away	from	the	Pacific	ULVZ	that	provides	the	enriched	components	in	the	Loa	Trend	
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Conceptual	Cross	Section: 
Mapping	the	Hawaiian	Geochemical	Components	at	the	Base	of	the	Mantle
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Kaua‘i,	Sunset





Lower	Mantle	Shear	Velocity	Heterogeneity

S20RTS	 δVs	contours

ULVZ	Thickness	Distribution	Map

Zhao	et	al	2015

δVs

0.5%

0.8%



Torsvik	et	al	2017

N-S	Vertical	Slice	of	the	SEMUCB-WM143	Mantle	Tomography	Model	
through	the	Pacific	LLSVP



Garnero	&	McNamara	2008

Shear	velocity	perturbations	between	660	km	
depth	and	the	CMB,	isocontoured	at	±0.6%	
(blue/	red)	for	model	S20RTS.	Sharp	LLSVP	edges	
=	yellow	dashed	lines.


Equatorial	cross	section

View	from	the	south

High	(blue)	and	Low	(red)	Seismic	Shear	Velocity	Variations	in	Earth’s	Mantle



Why	Hawai‘i?

Kaua‘i,	NaPali	coast

Link	Deep	Mantle	and	Geochemistry

Magma	Flux	and	Source	Components

Origin	of	Enriched	Components	(EM-I)





New Nd-Hf Array for Hawaii

Figure	from	Bizimis	et	al.,	2013

V. Radiogenic Hf isotopes (EpiHf up to 43 in 
continental xenoliths) originate from ancient MORB 
melting that creates small fractionations of Lu-Hf, 
Sm-Nd in the restite lithosphere that grow to large 
differences in isotopic signature; High Hf also in 
Hawaiian xenoliths!



NWHR Shield Isotopes



NWHR Shield Isotopes
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Very	limited	isotopic	data	
were	available	for	the	entire	
Hawaiian	Ridge	up	to	now

Figure	from	Tanaka	et	al.	(2008)	DSDP	&	ODP	samples



Figure modified from Harrison et al., 2015

Figure modified and 
updated from Weis et al., 
2011

Hawaiian Islands: Two Geochemical Signatures


