

Influence of mantle complex rheology on lower mantle dynamics

Anne Davaille (1), Nicolo Sgreva (1), Thibaut Chasse (1), Anna Massmeyer (1), Erika Di Giuseppe (1) Neil Ribe (1), Philippe Carrez (2), and Patrick Cordier (2)

(1) Laboratoire FAST (CNRS / Univ. Paris-Saclay), Orsay, France
(2) UMET-Unite Materiaux et Transformations, Univ. Lille / INRA / ENSCL / CNRS, Lille, France

1-Observations: large-scale structures

S-wave velocity models at 2700 km depth

SAW24B16

- 2 LLSVP delimited by subduction
- surface hotspots
- Chemical heterogeneities
 - anticorrelation of shear and bulk sound V .sharp edges

1-Observations: large-scale structures

- 2 LLSVP + 1 + ...
- chemical heterogeneity
- old material (e.g. Jackson et al, 2010)
- surface hotspots

=> Hot, stagnant, and denser piles ?

NB: Normal modes, tides, CMB topo => denser or lighter than ambient mantle ?

College de France - 8 oct 2021

1-Convection characteristics

In a mantle with strongly temperature-dependent viscosity, the cold slabs circulation delimits the LLSVPs

Ra ~ 4. 10^7 ; intermediate viscosity ratio

(Androvandi & al, 2009, 2011)

1-Convection characteristics

Even in the presence of a dense material at the bottom of the mantle, the cold slabs circulation creates LLSVPs

College de France - 8 oct 2021

(A) Compositionally distinct, dense piles

Patterns after 120 Myr of cold slabs history

(McNamara & Zhong, 2005)

MB

(C) Dense piles and temperatures

Hot, less viscous => conduit diameter ~100-200 km

(e.g. Whitehead & Luther, 1975; Olson & Singer, 1985; Griffiths, 1986; Sleep, 1990 ...)

=> Challenge for tomography

2-Slow (hot) seimic anomalies in the mantle:

Zhao (2001) large anomalies below ~ hotspots

.Travel times .Finite frequency

Resolution tests: D<600 km not visible

Below ~10 hot spots: tubes with D~600-800 km

FAT plumes

Figure 22. Three-dimensional view of the plumes beneath Cook Island and Tahiti in both the (left) *P*-model and (right) *S*-model. Plotting format as in Figure 12a.

(Montelli et al, 2004; 2006)

2-Slow (hot) seimic anomalies in the mantle:

Resolution: loss of amplitude (1/4) for cylinders 400 km in diameter

2-Slow (hot) seimic anomalies in the mantle:

SEMUCB-WM1 (French & Romanowicz, 2014, 2015)

⇒ At least 2 bundles of thermochemical plumes

(Davaille & Romanowicz, 2020)

-2

How to create fat plumes in a newtonian mantle ?

Finger morphology when a more viscous intrudes a less viscous material (Whitehead & Luther, 1975; Olson & Singer, 1985)

. Hot is more viscous:

-> grain size (Solomatov, 1996 ; Korenaga, 2005)

$$\dot{\gamma} = A \sigma^{n_E} d^{-p} f_{H_2O} \exp\left(\beta \Phi\right) \exp\left(-\frac{E^* + P V^*}{RT}\right)$$

How to create fat plumes in a newtonian mantle ?

- . lower mantle is heterogeneous
 - =>Thermo-chemical plume

Initial buoyancy ratio $B_1 = \Delta \rho_x / \rho_0 \alpha \Delta T$

How to create fat plumes in a newtonian mantle ?

- . lower mantle is heterogeneous
 - =>Thermo-chemical plume

when recirculation within conduit => conduit thicker (x 2-5)

Initial buoyancy ratio $B_1 = \Delta \rho_x / \rho_0 \alpha \Delta T$

3- Observations: « Horizon » around 800-1000 km depth

- Viscosity jump (Rudolph et al, 2015)?
- Chemical stratification (Ballmer et al,
- BEAMS (Ballmer et al, 2017)?

What if :

- fat plumes
- 1000 km-depth horizon
- fat slabs

were due to the complex nature of lower mantle rheology ?

Several phases and compositions, texture

4-Texture and jamming:

Carbopol

4-Texture and jamming:

Hydrogels (Sgreva et al, 2020)

4-Texture and jamming:

Carbopol

Non linear damper (Norton): K, n

 $\sigma = \sigma_0 + K_v \dot{\gamma}^{n_{\rm HB}}$

. Carbopol ETD 2050 + glycerin + water, pH=5-7

for $\sigma < \sigma_0$, elastic

for
$$\sigma > \sigma_0$$
, Herschel-Bulkley:: $\sigma = \sigma_0 + K_v \dot{\gamma}^n HB$

 σ_0 = yield stress, comes from structure jamming

$$n_{HB} = 0.3-0.75;$$

 $\sigma_0 = 0.02-0.4 \text{ Pa}$
 $K_v = 0.3 - 2.5$ (Tp-dependent

$$\dot{\gamma}^{=>} \eta = \sigma/\dot{\gamma} = \sigma_0 \dot{\gamma}^{-1} + K_v \dot{\gamma}^{n_{\mathrm{HB}}-1}$$

NB: Earth => $n_F = 1/n_{HB} \sim 3$

⁽Davaille et al, JNNFM, 2013; Massmeyer et al, 2013; Di Giuseppe et al, 2015)

5- Convection in a visco-plastic fluid

Tcold = Thot - ΔT

Thot

-Homogeneous Temperature on the Cu plates

- -Good insulation of the side walls
- ⇒Very nice linear unstable temperature gradient
- For 3 weeks.... NEVER became unstable.
- => NEED of a finite amplitude perturbation (e.g. Zhang & Frigaard, 2007)

ex: shake the tank !! Localized heating Compositional heterogeneities Impacts, ...

CARBOPOL: $P = 4.15 \text{ W}, Y_0 = 554 \text{ (time x 250)}$

Less viscous mushroom More viscous finger

Fat finger

The isotherms are: 23°C, 27°C, 31°C, 35°C, 39°C.

- Strong shear localization
- Pseudo-Plug flow

0.045

0.04

0.035

0.03

0.025

0.02

0.015

0.01

0.005

2.2

1.8

1.6

1.4

1.2

50

Unyielded regions

The plume can stop before reaching the surface

(1)
$$Y_0 = \frac{gD\Delta\rho}{\sigma_0} > Y_c = 15 \pm 3.6$$
 => Plume
Fat Finger => 10 $Y_c > Y_0 > Y_c$

(2)
$$Bi = \frac{\sigma_Y}{K_v \dot{\gamma}^{n_{HB}}} < 1.0$$
 => rising

=> Characteristic (minimum) strain rate $\dot{\gamma}_c = (\sigma_Y/K_v)^{1/n_{HB}}$

Each dislocation creates a stress field
 Dislocations interact => jamming

=> Need to overcome a critical stress to start motion

G=shear modulus b=Burgers vector β=1-5 (Friedel, 1964)

dislocation climb

Each dislocation creates a stress field
 Dislocations interact => jamming

=> Need to overcome a critical stress to start motion

G=shear modulus b=Burgers vector β=1-5 (Friedel, 1964)

dislocation climb

- . Each dislocation creates a stress field
- . Dislocations interact => jamming

. Once motion starts => shear-thinning (Nabarro, 1967; Reali et al, 2019)

$$\dot{\gamma} = \frac{D^{sd}Gb}{\pi k_BT} (\frac{\sigma}{G})^3 / ln(\frac{4G}{\pi\sigma})$$

 $D_{sd} = X_v D_v$

Self-diffusion coefficient

$$D_v = \frac{Zl^2\nu}{6}exp(\frac{\Delta H_M}{RT})$$

Vacancy diffusion coefficient

$$X_v$$
 vacancy concentration (~ 10⁻⁶ - 10⁻²)

- . Each dislocation creates a stress field
- . Dislocations interact => jamming

. Once motion starts => shear-thinning (Nabarro, 1967; Reali et al, 2019)

So

$$\sigma = \sigma_0 + K_v \dot{\gamma}^{n_{\rm HB}}$$

with

$$\sigma_y \propto \frac{Gb}{\beta I} = \frac{1}{\beta} Gb \rho_d^{1/2}$$

$$K_v = \frac{G}{f} \left(\frac{D^{sd}Gb}{\pi k_B T}\right)^{-1/3}$$

=> depends on vacancy concentration

$$n_{HB} = 1/3$$

so
$$\sigma = \sigma_0 + K_v \dot{\gamma}^{n_{\text{HE}}}$$

h
$$\sigma_y \propto \frac{Gb}{\beta I} = \frac{1}{\beta} Gb \rho_d^{1/2}$$

$$K_v = \frac{G}{f} \left(\frac{D^{sd}Gb}{\pi k_B T}\right)^{-1/3}$$

 $n_{HB} = 1/3$

Lab measurements cannot see the yield stress !

7- FAT plumes in a Bridgmanite mantle

(1)
$$Y_0 = \frac{gD\Delta\rho}{\sigma_0} > Y_c = 15 \pm 3.6$$
; $\Delta\rho = \alpha\rho\Delta T_{av}$

7-800 km-depth horizon in a Bridgmanite mantle

(2)
$$Bi = \frac{\sigma_Y}{K_v \dot{\gamma}^{n_{HB}}} < 1.0$$

For Xv ~ 10-4, a plume could rise from CMB But stop around 30 Gpa

7- Filtering thin slabs in a Bridgmanite mantle

(1)
$$Y_0 = \frac{gD\Delta\rho}{\sigma_0} > Y_c = 15 \pm 3.6$$

 $\Delta\rho_{slab} = \alpha\rho_m\Delta T_{slab} + \Delta\rho_x\phi_{crust}$

for different slab averaged temperature and crust density anomalies (ΔT_{slab} , $\Delta \rho_x$). Red: (-200°, 0.5%); magenta: (-200°, 3.0%); cyan: (-400°, 0.5%); blue: (-400°, 3.0%). The lines thicknesses represent the uncertainty in Y_c . ΔT (slab) ~ 200-400°C

(Billen, 2008; Fukao et al, 2009)

 $\Delta \rho_x$ (slab) ~ 0.5-3%

(Hirose, 2005; Fukao et al, 2009; Ricolleau et al, 2010)

7- Filtering thin slabs in a Bridgmanite mantle

$$Y_0 = \frac{gD\Delta\rho}{\sigma_0} > Y_c = 15 \pm 3.6$$

key=slab folding

-thin slab => cannot enter LM

-folded pile => can enter LM

(Ribe et al, 2007)

(T. Chasse, 2021)

7- Filtering thin slabs in a Bridgmanite mantle

$$Y_0 = \frac{gD\Delta\rho}{\sigma_0} > Y_c = 15 \pm 3.6$$

key=slab folding

-thin slab => cannot enter LM

-folded pile => can enter LM

CONCLUSIONS:

THANK YOU

- 1- Plume morphology strongly depends on mantle rheology and composition
 - => we need better seismic tomography images, amplitudes, attenuation,... => OBS, MERMAIDS,...
- 2- The lower mantle might be visco-plastic because dislocation climb and also if mixture of two phases

3- Bad news= lab measurements will not see the yield stress because squeeze too quickly and too hard

4- Good news: + Subducted pile can penetrate LM; + 800-1000 km horizon could be produced

5- Shear should be localized, and large areas may remain isolated => need more modeling to quantify mixing, length- and time- scales

6- Questions: + mixture of Mg-FeO + Bridgmanite ? (Thielmann et al, 2020) + Is Mg-FeO really softer than Bridgmanite ?

College de France - 8 oct 2021

F- Implications for Head+Tail?

= Upper mantle filter

-fat plumes in LM => yield stress

-plume existence => lateral chemical heterogeneities

ZOOM under Carolina

SEMUCB-WM1 + off-plane reflections Schumacher et al, 2018

> => evidence for chemical heterogeneities

D-FAT plumes in a visco-plastic mantle

$$Y_0 = \frac{gD\Delta\rho}{\sigma_0} > Y_c = 15 \pm 3.6 \quad ; \Delta\rho = \alpha \ .\Delta T$$

E- A visco-plastic rheology for the lower mantle ?

В

Diffusion creep :

vacancy flux from one grain boundary to the next

=> .depends on grain size .no yield stress .n_F=1

$$\dot{\gamma} = A \sigma^{n_E} d^{-p} f_{H_2O} \exp\left(\beta \Phi\right) \exp\left(-\frac{E^* + P V^*}{RT}\right)$$

Dislocation: glide and climb

independent of grain size (p=0)
 .n_E=3
 .rotation of the grain

College de France - 8 oct 2021

Dislocation: glide

- .independent of grain size (p=0) .n_E=3
- . NO rotation of the grain

Local Buoyancy ratio

 $B_1 = \Delta \rho_x / \rho_0 \alpha \Delta T(r,z)$

Table 1

B	Regim	$\gamma = \eta_d / \eta_m$	Rad	$a = h_d/H$	Upwellings morphology	Fig.	References
< 0.03	1-layer				Thermal plumes with no big head	5a	
0.03 <b<b<sub>c~0.4</b<b<sub>	Whole-layer				Active domes and passive ridges		[86, 61-62]
			< Ra _c ~1000		Passive ridges = return flow to downwellings	5c	
		<1	>Ra _c	$a < a_c$ $a_c = 1/(1 + \gamma^{-1/3})$	Active hot upwellings -Cavity plumes (or « mega-plumes ») through collection of small thermal instabilities -detach from hot bottom boundary (HBB)	5e 5g	
			>Ra _c	a > a _c	Passive ridges =return flow to cold more viscous downwellings	5c	
		>1	> Ra _e		-Active hot diapirs detach from HBB if a<0.3 and B<0.2 continuous fingers from HBB otherwise -Secondary plumes on top of domes	5f 5g 5h	
		1/5<γ<5			Overturning = immediate stirring after first instabilities		[86]
		γ < 1/5 or γ>5			Pulsations = two layers retain their identity for several doming cycles	5f+5h	[59, 61-62]
> B _c	2-layers			-4	-Stratified convection above and below interface -Anchored hot thermochemical plumes arise from TBL at the interface. No big head.	5b-d 5d	[85, 58, 67] [66, 57, 67, 59, 69]
B>1	Nearly flat interface				Thermochemical plumes in upper layer		[58,67]
B _c <b<1< td=""><td>Dynamic</td><td></td><td></td><td></td><td>Dynamic topography does not reach the upper boundary</td><td>5b-c</td><td>[66,61,92]</td></b<1<>	Dynamic				Dynamic topography does not reach the upper boundary	5b-c	[66,61,92]
	topography	<1			Passive ridges (2D) or piles (3D) formed in response to cold viscous downwellings	5c	
		>1	<ra<sub>c</ra<sub>		Passive ridges (2D) or piles (3D)	5c	
			Ra _c <ra<sub>d<10⁴</ra<sub>	1	Upwelling ridges	5b	
			>104		Upwelling domes, or superplumes	5b	

Convective regime and upwellings morphology as a function of B, viscosity ratio y, layer depth ratio a and internal Rayleigh number of the denser bottom layer Rad

For depth- or temperature-dependent properties, the viscosities are taken at the averaged temperature of each layer, and α is taken at the interface [59,62]. We focuss on high global Ra (>10⁶). Note that if Ra_d<Ra_c, the denser layer cannot convect on his own.

C- How to create fat plumes in a newtonian mantle ?

b) Eact=500 kJ/mol

- Compressibility

+

Depth-dependence

(Thompson & Tackley, 1998)

FLUID MECHANICS : convection in an heterogeneous mantle

2- Thermochemical instabilities
 => zoology of shapes
 + time-dependence

 $B_1 = \Delta \rho_x / \rho_0 \alpha \Delta T$

(Kumagai et al, 2007, 2008)