Mapping global scale mantle flow patterns with seismic anisotropy Ana M G Ferreira University College London, UK

Sung-Joon Chang, Manuele Faccenda, Elodie Kendall, Daniel Peter, Francesco Rappisi, Lewis Schardong, Will Sturgeon, Mike Witek

Seiemo

min

Global mantle flow

Crameri & Tackley, Progress in Earth Planet. Sci., 2016

Global mantle flow

Seismic data: key to constrain geodynamical models

Crameri & Tackley, Progress in Earth Planet. Sci., 2016

Seismic anisotropy

 Directional dependency of seismic wave speed

Seismic anisotropy

 Directional dependency of seismic wave speed

+ May be due to LPO or SPO

[after Moore, Garnero, Lay, Williams, JGR, 2004]

Seismic anisotropy

- Directional dependency of seismic wave speed
- + May be due to LPO or SPO
- + Key to constrain mantle flow

[after Moore, Garnero, Lay, Williams, JGR, 2004]

Seismic anisotropy: where?

http://www.grc.ehime-u.ac.jp/en/research/details

Upper mantle: Well-established

18%

+ Transition zone & lower mantle:

- More debated
- Stagnating slabs
- Laterally spreading plumes
- Water reservoir ?
- Boundary layer ?

Seismic anisotropy: how do we map it?

+ Shear wave splitting

+ Radial and azimuthal anisotropy tomography

+ Polarities of body wave reflections

Wookey & Kendall, JGR, 2004

Debayle et al., GRL, 2016

Seismic anisotropy: how do we map it?

+ Shear wave splitting

+ Radial and azimuthal anisotropy tomography

+ Polarities of body wave reflections

Wookey & Kendall, JGR, 2004

Debayle et al., GRL, 2016

SGLOBE-rani a global whole-mantle radially anisotropic model

Chang, Ferreira et al., JGR, 2015

SGLOBE-rani a global whole-mantle radially anisotropic model

+ Huge set of surface wave and body wave data (>55M)

+ Sensitivity from crust to lowermost mantle

+ Joint inversions for crustal and mantle structure

Chang, Ferreira et al., JGR, 2015

Plume-slab interactions

Chang, Ferreira & Faccenda, Nature Comms., 2016

Plume-slab interactions

Isotropy

Anisotropy

Seismo-geodynamics interpretation:

Slab-plume interaction beneath Tonga – a deep collision ~700 km beneath our feet:

- The upwelling plume favors stagnancy of the slab
- Coupled plume-fast slab retreat effect

Chang, Ferreira & Faccenda, Nature Comms., 2016

Upwelling is very dynamic !

Uppermost lower mantle anisotropy

Ubiquitous presence of anisotropy in top of lower mantle

Uppermost lower mantle anisotropy

Ubiquitous presence of anisotropy in top of lower mantle

Uppermost lower mantle anisotropy

The anomalies are consistent with dislocation creep in the lower mantle

Ferreira et al., Nature Geo., 2019

Challenges

- Uncertainty and model appraisal quantification

- Quantitative seismo-geodynamics integration

- Data, data, data

Challenges

- Uncertainty and model appraisal quantification

- Quantitative seismo-geodynamics integration

- Data, data, data

Quantitative model appraisal

Love

+ Compiled an independent seismic dataset (2,307 waveforms from 36 quakes)

+ Computed synthetic waveforms using the spectral element method for SGLOBE-rani

+ Compared the synthetic waveforms with real data: compute phase misfits

Quantitative model appraisal

Love

+ Compiled an independent seismic dataset (2,307 waveforms from 36 quakes)

+ Computed synthetic waveforms using the spectral element method for SGLOBE-rani

+ Compared the synthetic waveforms with real data: compute phase misfits

+ Inverted the phase misfits for Vs and radial anisotropy using SGLOBE-rani as starting 3-D model

- The data require an asymmetry at the East Pacific rise, requiring stronger radial anisotropy to the W of the EPR than to the E

- The data require an asymmetry at the East Pacific rise, requiring stronger radial anisotropy to the W of the EPR than to the E

- This is possibly due to LPO produced by shear-driven asthenospheric flow beneath the S Pacific Superswell

- The data require an asymmetry at the East Pacific rise, requiring stronger radial anisotropy to the W of the EPR than to the E

- This is possibly due to LPO produced by shear-driven asthenospheric flow beneath the S Pacific Superswell

- Anomaly beneath Nazca-S America subduction zone possibly due to mantle entrainment

- The data require an asymmetry at the East Pacific rise, requiring stronger radial anisotropy to the W of the EPR than to the E

- This is possibly due to LPO produced by shear-driven asthenospheric flow beneath the S Pacific Superswell

- Anomaly beneath Nazca-S America subduction zone possibly due to mantle entrainment

- Radial anisotropy reduces with lithospheric age, possibly due to a deviation from horizontal flow as the mantle is entrained with slabs

- The data require an asymmetry at the East Pacific rise, requiring stronger radial anisotropy to the W of the EPR than to the E

- This is possibly due to LPO produced by shear-driven asthenospheric flow beneath the S Pacific Superswell

- Anomaly beneath Nazca-S America subduction zone possibly due to mantle entrainment

- Radial anisotropy reduces with lithospheric age, possibly due to a deviation from horizontal flow as the mantle is entrained with slabs

Quantitative model appraisal and data assimilation approach

- The data require an asymmetry at the East Pacific rise, requiring stronger radial anisotropy to the W of the EPR than to the E

- This is possibly due to LPO produced by shear-driven asthenospheric flow beneath the S Pacific Superswell

- Anomaly beneath Nazca-S America subduction zone possibly due to mantle entrainment

- Radial anisotropy reduces with lithospheric age, possibly due to a deviation from horizontal flow as the mantle is entrained with slabs

Check out Auggie Marignier's poster: Proximal MCMC – towards a sparse Earth model

Challenges

- Uncertainty and model appraisal quantification

- Quantitative seismo-geodynamics integration

- Data, data, data

Approach

 Compute synthetic seismograms using the spectral element method (10,000 paths; T>24 s)

+ Use the surface waveform partitioned inversion method to invert the synthetics for isotropic and radially anisotropic structure

+ Joint inversions for crustal and mantle structure

Witek et al., GJI, 2021 (in review)

- Substantial smearing of anomalies, notably of slab's high Vs anomalies
- First-order anisotropy features are all resolved, but no details
- Small-scale structure is poorly resolve

Challenges

- Uncertainty and model appraisal quantification
- Quantitative seismo-geodynamics integration
- Data, data, data

Challenges

- Uncertainty and model appraisal quantification
- Quantitative seismo-geodynamics integration
- Data, data, data

Check out Federica Restelli's poster: Normal mode observability of seismic anisotropy

Data, data, data

UPFLOW: Upward mantle flow from novel seismic observables

Data, data, data

UPFLOW: Upward mantle flow from novel seismic observables

Large-scale ocean bottom seismometer expedition (mid-Atlantic)

Data, data, data

- 50 OBSs
- ~4 weeks at sea
- 5300.6 nautical miles (~9800 km)
- 15 scientists
- 17 ship crew
- 1 yr of recordings

https://upflow-eu.github.io/

Twitter, instagram: @upfloweu

+ SGLOBE-rani, a global radially anisotropic model:

- Signature of a deep plume-slab interaction between the Samoa plume and the Tonga slab.

- Fast SH anomalies in the ~660 km – 1200 km depth region beneath subduction zones consistent with a lower mantle deformation mechanism dominated by dislocation creep.

+ SGLOBE-rani, a global radially anisotropic model:

- Signature of a deep plume-slab interaction between the Samoa plume and the Tonga slab.

- Fast SH anomalies in the ~660 km – 1200 km depth region beneath subduction zones consistent with a lower mantle deformation mechanism dominated by dislocation creep.

+ SPacific-rani shows a E-W anisotropy asymmetry near the East Pacific rise and a reduction in anisotropy with increasing lithospheric age.

+ SGLOBE-rani, a global radially anisotropic model:

- Signature of a deep plume-slab interaction between the Samoa plume and the Tonga slab.

- Fast SH anomalies in the ~660 km – 1200 km depth region beneath subduction zones consistent with a lower mantle deformation mechanism dominated by dislocation creep.

+ SPacific-rani shows a E-W anisotropy asymmetry near the East Pacific rise and a reduction in anisotropy with increasing lithospheric age.

+ Initial tomographic inversions of waveforms propagated through geodynamic models suggest caution in interpretations, notably of Vs.

+ SGLOBE-rani, a global radially anisotropic model:

- Signature of a deep plume-slab interaction between the Samoa plume and the Tonga slab.

- Fast SH anomalies in the ~660 km – 1200 km depth region beneath subduction zones consistent with a lower mantle deformation mechanism dominated by dislocation creep.

+ SPacific-rani shows a E-W anisotropy asymmetry near the East Pacific rise and a reduction in anisotropy with increasing lithospheric age.

+ Initial tomographic inversions of waveforms propagated through geodynamic models suggest caution in interpretations, notably of Vs.

+ New data set on the way from the mid-Atlantic!

Thank you for your attention!

5.

-s°