New results from NASA's lunar gravity mapping mission GRAIL

Mark Wieczorek Institut de Physique du Globe de Paris, France Maria Zuber Massachusetts Institute of Technology, USA

Lots of data have been collected, but most of these only tell us about the surface

Global spectral mapping (M3; Chandrayaan-1)

Global compositional mapping (Lunar Prospector)

Global imaging of the surface (Lunar Reconnaissance Orbiter)

382 kg of samples from Apollo and Luna

Geophysical data are required to see below the surface.

Talk Overview

1. The GRAIL mission and initial mapping results

2. Characterization of impact basins

3. Is the mantle exposed on the surface?

Lunar Prospector gravity field (LP150Q)

Trajectory Correction View of GRIAL's trajectory Maneuver looking down at Earth-moon system Trajectory Correction Moon's orbit Maneuver Close Trajectory Correction Earth Maneuver Earth Open Libration Point 1 Trajectory Correction Moon To Sun Lunar Orbit Insertion

The NASA mission Gravity Recovery and Interior Laboratory (GRAIL)

- Discovery class proposal selected in 2007: <450 million USD, with 36 months from selection to launch.
- Launch on Sept. 10, 2011.
- 3 month cruise to the Moon
- Orbit insertion Dec. 31/Jan. 1
- 3 month circularization of orbit
- March 7 May 29 2012 primary science mission
- Aug. 8 Dec. 17 extended mission

Lunar Prospector field (LP150Q) centered over the farside hemisphere

GRAIL primary mission field (420a)

Minimum altitude of mapping at the end of the extended mission

The spatial resolution of the gravity field is approximately equal to the spacecraft altitude.

LOLA topography & GRAIL gravity (Centered over nearside)

Topography

Free-air gravity

LOLA topography & GRAIL gravity (Centered over farside)

Topography

Free-air gravity

O Spatial resolution (240 km)

GRAIL Porosity

O Spatial resolution (240 km)

Porosity (%)

Bouguer gravity anomaly

GRAIL Crustal Thickness

Subsurface linear density anomalies from GRAIL horizontal gravity gradients

Giant linear subsurface dikes

Impact basins

Lorentz and the highly degraded Bartels-Voskresensky basins

Discovery of the previously undetected basin Asperitatis

Topography

Bouguer gravity

There are more large impact basins on the nearside than the farside

Miljkovic et al. (2013)

The nearside of the Moon is hotter than the farside

Laneuville et al. (2013)

Abundance of radioactive elements as measured by the Lunar Prospector gamma-ray spectrometer

Simulated thermal evolution of the Moon

Impact onto a hot thin crust on the nearside of the Moon.

Impact onto a cold thick crust on the farside of the Moon.

Hydrocode simulations show that basins can be twice as big when they form in a weak hot target.

When the sizes of nearside basins are corrected for temperature effects, the nearside and farside look the same.

Is the mantle exposed on the surface?

GRAIL Crustal Thickness

Exposures of olivine-rich (mantle?) materials (Yamamoto et al., 2010)

Mantle excavation by impact basins

Numerical impact simulation into basalt crust overlaying dunite mantle by a 60 km impactor at 17 km/s vertical impact.

"Moscoviense"

(Cold and thick farside crust)

Approximate location of Kaguya olivine-rich exposures

"Crisium"

(Hot and thin nearside crust)

Approximate location of Kaguya olivine-rich exposures

"Crisium"

(Hot and thin nearside crust)

Approximate location of Kaguya olivine-rich exposures

Conclusions

GRAIL MoonKam flyover of Orientale

NASA's GRAIL mission took this flyover video above the Mare Orientale basin of Earth's moon. It was collected by the MoonKAM aboard GRAIL's Ebb spacecraft on April 7 and 8, 2012.