Experimental investigation of dehydration weakening and embrittlement of hydrous minerals

Keishi Okazaki

Kochi Institute for Core Sample Research

Japan Agency for Marine-Earth Science and Technology (JAMSTEC)

+ Eric Burdette and Greg Hirth (Brown University)

figure from Junichi Nakajima (titech)

Intra-slab seismicity: cold vs hot

Cold subduction zone (Tsuji et al., 2008)

Cold subduction zones: (e.g., Tohoku, NE Japan) Double seismic zone <u>crustal earthquake</u> <u>no deep slow earthquake</u>

Hot subduction zones:
(e.g., Nankai, SW Japan)
Single seismic zone
few crustal earthquake
slow earthquake

Intra-slab seismicity: Dehydration embrittlement?

while some alternative ideas are proposed, Kelemen & Hirth, 2007, Ohuchi et al., 2017, etc.

Lawsonite $(CaAl_2Si_2O_7(OH)_2 \cdot H_2O)$: major water carrier in the crust Antigorite $(Mg_3Si_2O_5(OH)_4)$: major water carrier in the mantle

Can dehydration reactions really trigger earthquake?

"Temperature ramping" experiments of lawsonite, **antigorite** and Al metal samples Experimental conditions:

- Confining pressure: 1 (+0.2) GPa
- Strain rate: $10^{-5} 10^{-7} 1/s$ (v ~600 6 cm/yr)
- Temperature: 300°C => 600°C for lawsonite, 400°C => 700°C for antigorite.
- Temperature ramping rate: 0.5°C, 0.05°C/s
- AEs were recorded with f = 2.5 MHz, and then high pass filtered f > 100 kHz.

Mechanical data: Weakening during temperature ramping

Lawsonite: Unstable fault slip

(Okazaki & Hirth, 2016, Nature)

Antigorite serpentine: Stable fault slip

(Chernak & Hirth, 2011, Geology; Proctor & Hirth, 2015, JGR; Gasc et al., 2017, EPSL)

Unloading slopes: consistent with unstable slip

Unloading slope for lawsonite: nearly constant and similar to the effective unloading stiffness of the apparatus.

Scale to natural conditions: Temp. ramp rate/strain rate

Stiffness of the apparatus: K = 8.8 GPa/mm

Stiffness of natural fault zones: $K_f \sim 2 \text{ MPa/mm}$

 $K_f = G/2/(1-v)/L$ (Scholz, 2002) G: the shear modulus: 30 GPa, v: the Poisson's ratio: 0.25 L: the length of the slipping region \approx 10 m for a M1 earthquake

Unstable when $K < K_c$

Unstable slip in lawsonite will occur even more easily in natural subduction zones.

Lawsonite (*a-b*<0): Unstable fault slip can happen in natural time scale. Antigorite (*a-b*>0): Reaction-controlled stable slip. Slow earthquakes?

Temp. ramp experiment with K ~1/35K_{std} ~250 MPa/mm

Antigorite (*a-b*>0): Reaction-controlled stable slip.

Partially serpentinized peridotite, not pure serpentine (Ferrand et al., 2017; Gasc et al., 2017)?

- smaller stress drop)
- \square 600°C-650°C: violent stick slip

Okazaki et al., in prep. Okazaki & Katayama, 2015 Takahashi et al., 2013

Dehydration-kinetics-controlled critical stiffness

Unstable slip happens when:

for antigorite from Sawai et al., 2013 and Chollet et al., 2009

(simplified from Brantut and Sulem, 2013)

K: stiffness, MPa/mm x: slip, m v: sliding speed, m/s Ss: specific storage, Pa⁻¹ k: permeability, m² μ : viscosity of the fluid, Pa s φ : porosity α_{f} : coeff. of thermal expansion, °C⁻¹ Q_{deh} : fluid release rate, m_{fluid}³ m_{rock}⁻³s⁻¹ C_{H2O} : water content in the mineral ~ 0.13 ρ_{m} : density of the mineral, kg m⁻³ ρ_{f} : density of the fluid, kg m⁻³ t: half life-time of mineral, s

Ss, k, φ values are taken from Wibberly &
Shimamoto, 2006 and Okazaki et al.,
2013 for lowP, from Katayama et al.,
2013 for highP.

Okazaki et al., in prep.

fault stiffness K vs critical stiffness K_c^{deh}

Okazaki et al., in prep.

Summary & further questions

- Lawsonite dehydration can nucleate EQs at conditions within cold subducting oceanic crusts. (dehydration weakening & a-b <0)
- Antigorite dehydration could give us a variety of slip behavior (stable to seismic slip) depending on the PT condition. →regional characteristics of intraslab seismicity?
- High pressure rock deformation apparatus could be too stiff to nucleate an unstable slip in the lab.
- How much & how deep are subducting plates hydrated? →Outer-rise?
- How deep does the effective pressure law work?

Crust Crustal EQs Moho Mantle wedge Partial melting Nantle upwelling Nantle up

from Junichi Nakajima (titech)