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Introduction

Complexity.
In the course. . .

m Randomness helps. Getting a solution with a small probability of failure is
often much easier than solving the problem exactly.

m Random instances of some optimization problems are easier to solve.

Today. . .

m Focus on convexity and its impact on complexity.
m Convex approximations, duality.

m Applications in learning.
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Introduction

In optimization.

Twenty years ago. . .

m Solve realistic large-scale problems using naive algorithms.

m Solve small, naive problems using serious algorithms.

Twenty years later. . .

m Solve realistic problems in e.g. statistics, signal processing, using efficient
algorithms with explicit complexity bounds.

m Statisticians have started to care about complexity.

m Optimizers have started to care about statistics.
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Introduction

Convexity.

Convex Not convex

Key message from complexity theory: as the problem dimension gets large

m all convex problems are easy,

m most nonconvex problems are hard.
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Introduction

Convex problem.

minimize  fo(x)
subject to  f;(x) < i=1,....,m
? :bi, izl,...,p
fo, f1. ..., fm are convex functions, the equality constraints are all affine.

m Strong assumption, yet surprisingly expressive.

m Good convex approximations of nonconvex problems.
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Introduction

First-order condition. Differentiable f with convex domain is convex iff

fly) > f(x) +Vflx)'(y—xz) forall z,y € dom f

f(@)+ Vf(x) (y —z)

(z, f(z))

First-order approximation of f is global underestimator
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Ellipsoid method

Ellipsoid method. Developed in 70s by Shor, Nemirovski and Yudin.

= Function f: R™ — R convex (and for now, differentiable)
s problem: minimize f

= oracle model: for any x we can evaluate f and Vf(x) (at some cost)

level curves of f

L0

V f (o)

Vf(xo)T(x —x9) >0

By evaluating V f we rule out a halfspace in our search for x*.
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Ellipsoid method

Suppose we have evaluated Vf(x1),...,Vf(zr),

Vf(x1)

V f(x2)

V f(xk)

on the basis of Vf(x1),...,Vf(xr), we have localized x* to a polyhedron.

Question: what is a ‘good’ point x1 at which to evaluate V f7?
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Ellipsoid algorithm

Idea: localize ™ in an ellipsoid instead of a polyhedron.

k)

Compared to cutting-plane method:

m localization set doesn’'t grow more complicated
m easy to compute query point

m but, we add unnecessary points in step 4
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Ellipsoid Method

Challenges in cutting-plane methods:

m can be difficult to compute appropriate next query point

m localization polyhedron grows in complexity as algorithm progresses

Ellipsoid method:

= Simple formula for £&+1 given £F)

s vol(EkHD)) < e~ 7n vol(£R)
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Ellipsoid Method: example
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Duality

A linear program (LP) is written

minimize clx

subject to Az =1b
x>0

where x > 0 means that the coefficients of the vector x are nonnegative.

m Starts with Dantzig's simplex algorithm in the late 40s.

m First proofs of polynomial complexity by Nemirovskii and Yudin [1979] and
Khachiyan [1979] using the ellipsoid method.

m First efficient algorithm with polynomial complexity derived by Karmarkar
[1984], using interior point methods.
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Duality

Duality. The two linear programs

minimize ¢’z maximize y'b
subject to Ax =1b subject to ¢ — ATy >0
x>0

have the same optimal values.

m Similar results hold for most convex problems.
m Usually both primal and dual have a natural interpretation.

m Many algorithms solve both problems simultaneously.
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Support Vector Machines
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Support Vector Machines

Simplest version. . .

= Input: A set of points (in 2D here) and labels (black & white).

m Qutput: A linear classifier separating the two groups.
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Text Classification

Example: word frequencies.

= In blue: good news

Jump

m In red: bad news.

Improving these results. . .

m Are we restricted to linear classifiers?

m What happens when the two classes are not perfectly separable?
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Linear Classification

The linear separation problem.

Inputs:

m Data points z; ¢ R", j=1,...,m.
= Binary Labels y; € {—1,1}, j=1,...,m.

Problem:
find w e R"”
such that (w,z;) > 1 for all j such that y; =1
(w,z;) < —=1 forall j such that y; = —1
Output:

m [ he classifier vector w.
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Linear Classification

Nonlinear classification.

m The problem:

find w
such that (w,z;) > 1 for all j such that y; =1
(w,zj) < =1 forall j such that y; = —1

is linear in the variable w. Solving it amounts to solving a linear program.

m Suppose we want to add quadratic terms in x:

find w

such that (w, (z;,25)) > 1 for all j such that y; = 1

(w, (zj,25)) < =1 forall j such that y; = —1

this is still a (larger) linear program in the variable w.

Nonlinear classification is as easy as linear classification.
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Classification

This trick means that we are not limited to linear classifiers:

Separation by ellipsoid Separation by 4th degree polynomial

Both are equivalent to linear classification. . . just increase the dimension.
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Classification: margin

Suppose the two sets are not separable. We solve instead
minimize 17w+ 170
subject to  (w,z;) > 1 —wu; forall j such that y; =1
(w,zj) < —(1 —w;) forall jsuch that y; = —1
u=0, v>=0

Can be interpreted as a heuristic for minimizing the number of misclassified points.
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Robust linear discrimination

Suppose instead that the two data sets are well separated.

(Euclidean) distance between hyperplanes

Hi = {z]|a'z+b=1}
Hy = {z|alz+b=-1}

is dist(H1, H2) = 2/||al|2

to separate two sets of points by maximum margin,

minimize  (1/2)|al|2
subjectto alz; +b>1, i=1,...,N (1)
aly, +b< -1, i=1,....M

(after squaring objective) a QP in a, b
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Classification

In practice. . .

m The data has very high dimension.

m T he classifier is highly nonlinear.

m Overfitting is a problem: in high dimensional spaces it is always possible to
find a classifier, but the classifier itself can become somewhat meaningless.

o Maximizing the margin helps.

o Determine the tradeoff between error and margin by cross-validation.
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Support Vector Machines: Duality

Given m data points x; € R™ with labels y; € {—1,1}.
m The maximum margin classification problem can be written

minimize  3||w||3 + C172
subject to  y;(wla,) >1—2;, i=1,....m

z>0

in the variables w, z € R™, with parameter C' > 0.

m The Lagrangian is written

1 m
L(w, z,a) = 5”10”3 +C112 + Z ;i (1 — 2z — ysw? x;)
i=1

with dual variable a € RT.
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Support Vector Machines: Duality

m The Lagrangian can be rewritten

2 2
1 m ™m
L(w, z,a) = 5 | v Z YTl — Z QG Yi T +(C1—-a)z+1%a
=1 2 1=1 2
with dual variable o € R}..
= Minimizing in (w, z) we form the dual problem
maximize —3[|>°1", ozzy@a:zH; + 17

subjectto 0<a<C

m At the optimum, we must have

w = Zoziyixi and o; =Cif z; >0
i=1

(this is the representer theorem).
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Support Vector Machines: the kernel trick

m If we write X the data matrix with columns z;, the dual can be rewritten

maximize —zal diag(y)XTX diag(y)a + 17«

subjectto 0<a<C

m This means that the data only appears in the dual through the gram matrix
K=X'X
which is called the kernel matrix.
m In particular, the original dimension n does not appear in the dual.

= SVM complexity only grows with the number of samples, typically O(m!®).

m For linear classifiers: the magnitude of w; gives a hint on the importance of
variable i (for text: important words).
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Support Vector Machines: the kernel trick

Kernels.

m All matrices written K = X7 X can be kernel matrices.

m Easy to construct from highly diverse data types.

Examples. . .

m Kernels for voice recognition

T T T : T T T
05 o
0
-0.5 . . o

! ! ! ! ! !
0.97 0.975 0.98 0.985 0.99 0.995
C

m Kernels for gene sequence alignment
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AAB24881 0200 0------mm-m——mm—————— YECHQCGEAFAQHEELECHYRTHI GEEPYECHQCGEAFSE 40
AABZ24882 PEHLOYHERTHTGEEPYECHOCGOAFEECSLLORHERTHIGEEPYE -CHQUCGEAFAD - 116
AARZ4E81
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Support Vector Machines: the kernel trick

m Kernels for images

100
200 [

300} -

400F ¢ R Sy
2 o w,

m Kernels for text classification

200 400 600

Ryanair Q3 profit up 30%, stronger than expected. (From Reuters.)
DUBLIN, Feb 5 (Reuters) - Ryanair (RYA.I: Quote, Profile , Research)
posted a 30 pct jump in third-quarter net profit on Monday, confounding
analyst expectations for a fall, and ramped up its full-year profit goal
while predicting big fuel-cost savings for the following year (... ).
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Compressed Sensing
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Compressed Sensing

Consider the following underdetermined linear system

8 ]

A

where A € R™*™ with n > m.

Can we find the sparsest solution?
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Compressed Sensing

= Signal processing: We make a few measurements of a high dimensional
signal, which admits a sparse representation in a well chosen basis (e.g.
Fourier, wavelet). Can we reconstruct the signal exactly?

m Coding: Suppose we transmit a message which is corrupted by a few errors.
How many errors does it take to start losing the signal?

= Statistics: Variable selection in regression (LASSO, etc).
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Compressed Sensing

Why sparsity?

m Sparsity is a proxy for power laws. Most results stated here on sparse vectors
apply to vectors with a power law decay in coefficient magnitude.

m Power laws appear everywhere. . .

o Zipf law: word frequencies in natural language follow a power law.
o Ranking: pagerank coefficients follow a power law.

o Signal processing: 1/ f signals

o Social networks: node degrees follow a power law.

o Earthquakes: Gutenberg-Richter power laws

o River systems, cities, net worth, etc.
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Compressed Sensing
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Frequency vs. word in Wikipedia (from Wikipedia).
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Compressed Sensing
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Compressed Sensing
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Pages vs. Pagerank on web sample. [Pandurangan et al., 2006]
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Compressed Sensing
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Compressed Sensing

m Getting the sparsest solution means solving:

minimize  Card(x)

subject to Az =1b

which is a (hard) combinatorial problem in z € R™.

m A classic heuristic is to solve instead:

minimize ||z

subject to Ax =1b

which is equivalent to an (easy) linear program.
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Compressed Sensing

Example: we fix A, we draw many sparse signals e and plot the probability of
perfectly recovering e by solving

minimize ||z

subject to Ax = Ae

in x € R™, with n = 50 and m = 30.

o
o

0.6

0.4r

0.2

Prob. of recovering e

___________________________

0 10 20 " 30 40 50

Cardinality of e
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Compressed Sensing

m For some matrices A, when the solution e is sparse enough, the solution of the
linear program problem is also the sparsest solution to Az = Ae. [Donoho
and Tanner, 2005, Candés and Tao, 2005]

s Let £ = Card(e), this happens even when k = O(m) asymptotically, which is
provably optimal.

Cardinality k/m

0 0.2 0.4 0.6 0.8 1

Shape m/n
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Semidefinite Programming
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Semidefinite Programming

A linear program (LP) is written

minimize clzx

subject to Ax =1b
x>0

where x > 0 means that the coefficients of the vector x are nonnegative.
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Semidefinite Programming

A semidefinite program (SDP) is written

minimize Tr(CX)
subject to Tr(A;X)=10b;, i=1,...,m
X >0

where X > 0 means that the matrix variable X € S,, is positive semidefinite.

= Nesterov and Nemirovskii [1994] showed that the interior point algorithms
used for linear programs could be extended to semidefinite programs.

= Key result: self-concordance analysis of Newton's method (affine invariant
smoothness bounds on the Hessian).
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Semidefinite Programming

s Modeling

o Linear programming started as a toy problem in the 40s, many applications
followed.

o Semidefinite programming has much stronger expressive power, many new
applications being investigated today (cf. this talk).

o Similar conic duality theory.

m Algorithms

o Robust solvers for solving large-scale linear programs are available today
(e.g. MOSEK, CPLEX, GLPK).

o Not (yet) true for semidefinite programs. Very active work now on first-order

methods, motivated by applications in statistical learning (matrix
completion, NETFLIX, structured MLE, . . .).
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Mixing rates for Markov chains
& maximum variance unfolding
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Mixing rates for Markov chains & unfolding

s Let G = (V, F) be an undirected graph with n vertices and m edges.

m We define a Markov chain on this graph, and let w;; > 0 be the transition
rate for edge (i,j) € V.

S8
iSZ AN

)
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Mixing rates for Markov chains & unfolding

m Let 7(t) be the state distribution at time t, its evolution is governed by the

heat equation
drn(t) = —Lw(t)dt

with
Lij =4 0 if (i,7) ¢V
\ 2 imev Wik fi=]

the graph Laplacian matrix, which means

m(t) = e F'm(0).
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Mixing rates for Markov chains & unfolding

[Sun, Boyd, Xiao, and Diaconis, 2006]

s Maximizing the mixing rate of the Markov chain means solving

maximize ¢

subject to  L(w) = t(I— (1/n)11%)
> jyev dijwij < 1
w >0

in the variable w € R™, with (normalization) parameters d%j > 0.

m Since L(w) is an affine function of the variable w € R™, this is a semidefinite
program in w € R™,
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Mixing rates for Markov chains & unfolding

[Weinberger and Saul, 2006, Sun et al., 2006]

m The dual means solving

maximize Tr(X(I- (1/n)111))
subject to Xy — 2X;; + X;; < dF;, (i,j) eV
X =0,

in the variable X € S,,.

m This is a maximum variance unfolding problem.
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Mixing rates for Markov chains & unfolding
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From [Sun et al., 2006]: we are given pairwise 3D distances for k-nearest
neighbors in the point set on the right. We plot the maximum variance point set
satisfying these pairwise distance bounds on the right.
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The NETFLIX challenge
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NETFLIX

s Video On Demand and DVD by mail service in the United States, Canada,
Latin America, the Caribbean, United Kingdom, Ireland, Sweden, Denmark,
Norway, Finland.

m About 25 million users and 60,000 films.

= Unlimited streaming, DVD mailing, cheaper than CANAL+ :)

= Online movie recommendation engine.
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Collaborative prediction

m Users assign ratings to a certain number of movies:
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Movies

m Objective: make recommendations for other movies. . .
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NETFLIX

Just for Instant Taste
. : DVDs -
Kids Queue Profile Movies, TV shows, actors, directors, genres
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Breaking Bad
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Collaborative prediction

Infer user preferences and movie features from user ratings.

= A linear prediction model

. _ T,
rating;; = u; v;
where u; represents user characteristics and v; movie features.

m This makes collaborative prediction a matrix factorization problem, We look
for a linear model by factorizing M € R"*™ as:

M=U"V
where U € R™** represents user characteristics and V' € R¥*™ movie features.

m Overcomplete representation. . . We want k£ to be as small as possible, i.e. we
seek a low rank approximation of M.
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Collaborative prediction

m We would like to solve

minimize Rank(X) + ¢ Z max(0,1 — X;,; M,;;)
(¢,5)€S

non-convex and numerically hard. . .

= Relaxation result in Fazel et al. [2001]: replace Rank(X) by its convex
envelope on the spectahedron to solve:

minimize || X ||« 4 ¢ Z max (0,1 — X;;M;;)
(4,5)€S

where || X ||, is the nuclear norm, i.e. sum of the singular values of X.

m This is a convex semidefinite program in X.
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Collaborative prediction

NETFLIX challenge.

s NETFLIX offered $1 million to the team who could improve the quality of its
ratings by 10%, and $50.000 to the first team to improve them by 1%.

m |t took two weeks to beat the 1% mark, and three years to reach 10%.
m Very large number of scientists, students, postdocs, etc. working on this.

m The story could end here. But all this work had surprising outcomes. . .
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Phase Recovery

Molecular imaging

xray
sample source

*

diffraction
pattern

(from [Candes et al., 2011b])

m CCD sensors only record the magnitude of diffracted rays, and loose the phase

m Fraunhofer diffraction: phase is required to invert the 2D Fourier transform
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Phase Recovery

Focus on the phase retrieval problem, i.e.

find xT

such that |{(a;,z)|* =0b?, i=1,...,n
in the variable x € C”.
= [Shor, 1987, Lovasz and Schrijver, 1991] write

{ai, z)|* = b7 <= Tr(aazz™) = b

1

= [Chai et al., 2011] and [Candes et al., 2011a] formulate phase recovery as a
matrix completion problem

Minimize Rank(X)
such that Tr(a;a;X) =0? i=1,...,n
X >0
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Phase Recovery

[Recht et al., 2007, Candes and Recht, 2008, Candes and Tao, 2010] show that
under certain conditions on A and x, it suffices to solve

Minimize Tr(X)
such that Tr(a;a;X) =0? i=1,...,n
X >0

which is a (convex) semidefinite program in X € H,,.

m Solving the convex semidefinite program yields a solution to the combinatorial,
hard reconstruction problem.

= Apply results from collaborative filtering (NETFLIX) to molecular imaging.
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Phase Recovery

Merci!
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