Optimisation et apprentissage.

Alexandre d'Aspremont, CNRS & École Polytechnique.

Complexity.

In the course. . .

- Randomness helps. Getting a solution with a small probability of failure is often much easier than solving the problem exactly.
- Random instances of some optimization problems are easier to solve.

Today. . .

- Focus on convexity and its impact on complexity.
- Convex approximations, duality.
- Applications in learning.

In optimization.

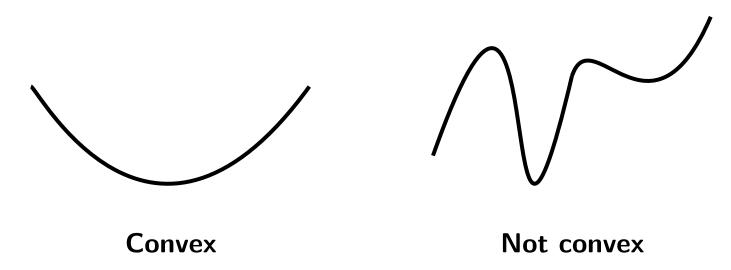
Twenty years ago. . .

- Solve realistic large-scale problems using naive algorithms.
- Solve small, naive problems using serious algorithms.

Twenty years later. . .

- Solve realistic problems in e.g. statistics, signal processing, using efficient algorithms with explicit complexity bounds.
- Statisticians have started to care about complexity.
- Optimizers have started to care about statistics.

Convexity.



Key message from complexity theory: as the problem dimension gets large

- all convex problems are easy,
- most nonconvex problems are hard.

Convex problem.

minimize
$$f_0(x)$$

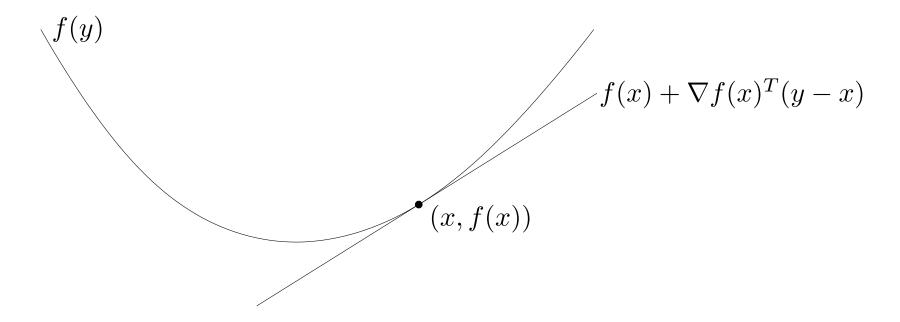
subject to $f_i(x) \leq 0, \quad i = 1, \dots, m$
 $a_i^T x = b_i, \quad i = 1, \dots, p$

 f_0, f_1, \ldots, f_m are convex functions, the equality constraints are all affine.

- Strong assumption, yet surprisingly expressive.
- Good convex approximations of nonconvex problems.

First-order condition. Differentiable f with convex domain is convex iff

$$f(y) \ge f(x) + \nabla f(x)^T (y - x)$$
 for all $x, y \in \operatorname{dom} f$



First-order approximation of f is global underestimator

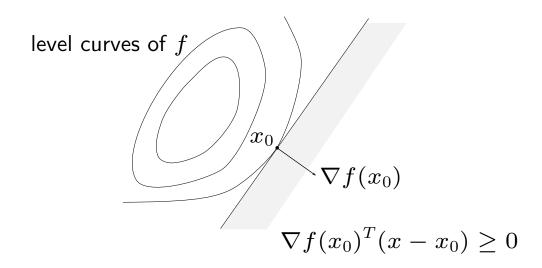
Ellipsoid method

Ellipsoid method. Developed in 70s by Shor, Nemirovski and Yudin.

■ Function $f: \mathbb{R}^n \to \mathbb{R}$ convex (and for now, differentiable)

problem: minimize f

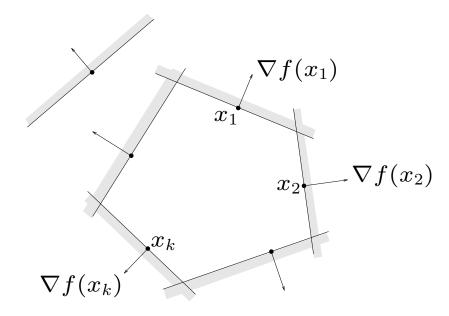
• oracle model: for any x we can evaluate f and $\nabla f(x)$ (at some cost)



By evaluating ∇f we rule out a halfspace in our search for x^* .

Ellipsoid method

Suppose we have evaluated $\nabla f(x_1), \dots, \nabla f(x_k)$,

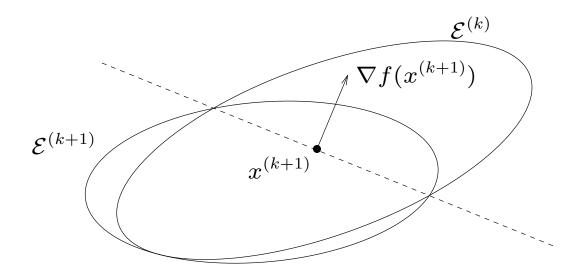


on the basis of $\nabla f(x_1), \dots, \nabla f(x_k)$, we have **localized** x^* to a polyhedron.

Question: what is a 'good' point x_{k+1} at which to evaluate ∇f ?

Ellipsoid algorithm

Idea: localize x^* in an **ellipsoid** instead of a polyhedron.



Compared to cutting-plane method:

- localization set doesn't grow more complicated
- easy to compute query point
- but, we add unnecessary points in step 4

Ellipsoid Method

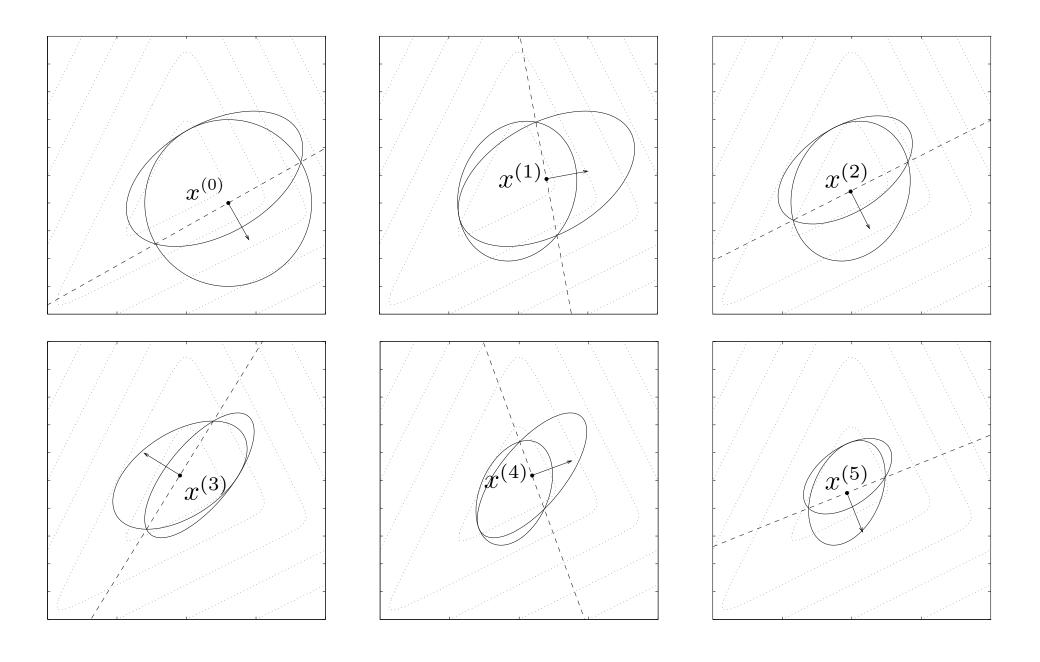
Challenges in cutting-plane methods:

- can be difficult to compute appropriate next query point
- localization polyhedron grows in complexity as algorithm progresses

Ellipsoid method:

- lacksquare Simple formula for $\mathcal{E}^{(k+1)}$ given $\mathcal{E}^{(k)}$
- $\mathbf{vol}(\mathcal{E}^{(k+1)}) < e^{-\frac{1}{2n}} \mathbf{vol}(\mathcal{E}^{(k)})$

Ellipsoid Method: example



Duality

A linear program (LP) is written

where $x \geq 0$ means that the coefficients of the vector x are nonnegative.

- Starts with Dantzig's simplex algorithm in the late 40s.
- First proofs of polynomial complexity by Nemirovskii and Yudin [1979] and Khachiyan [1979] using the ellipsoid method.
- First efficient algorithm with polynomial complexity derived by Karmarkar [1984], using interior point methods.

Duality

Duality. The two linear programs

minimize
$$c^Tx$$
 maximize y^Tb subject to $Ax=b$ subject to $c-A^Ty\geq 0$ $x\geq 0$

have the same optimal values.

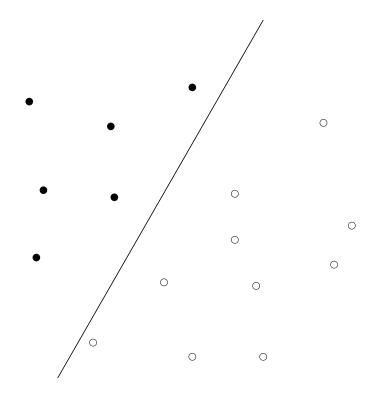
- Similar results hold for most convex problems.
- Usually both primal and dual have a natural interpretation.
- Many algorithms solve both problems simultaneously.

Support Vector Machines

Support Vector Machines

Simplest version. . .

- Input: A set of points (in 2D here) and labels (black & white).
- **Output**: A linear classifier separating the two groups.

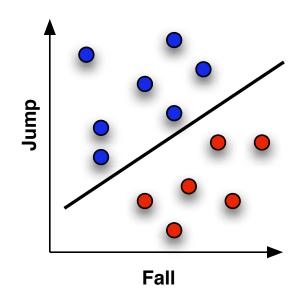


Text Classification

Example: word frequencies.

■ In **blue**: good news

In red: bad news.



Improving these results. . .

- Are we restricted to linear classifiers?
- What happens when the two classes are not perfectly separable?

Linear Classification

The **linear separation** problem.

Inputs:

- Data points $x_j \in \mathbb{R}^n$, j = 1, ..., m.
- Binary Labels $y_j \in \{-1, 1\}, \quad j = 1, ..., m$.

Problem:

find
$$w\in\mathbb{R}^n$$
 such that $\langle w,x_j\rangle\geq 1$ for all j such that $y_j=1$ $\langle w,x_j\rangle\leq -1$ for all j such that $y_j=-1$

Output:

 \blacksquare The classifier vector w.

Linear Classification

Nonlinear classification.

The problem:

find
$$w$$
 such that $\langle w, x_j \rangle \geq 1$ for all j such that $y_j = 1$
$$\langle w, x_j \rangle \leq -1$$
 for all j such that $y_j = -1$

is linear in the variable w. Solving it amounts to solving a linear program.

 \blacksquare Suppose we want to add quadratic terms in x:

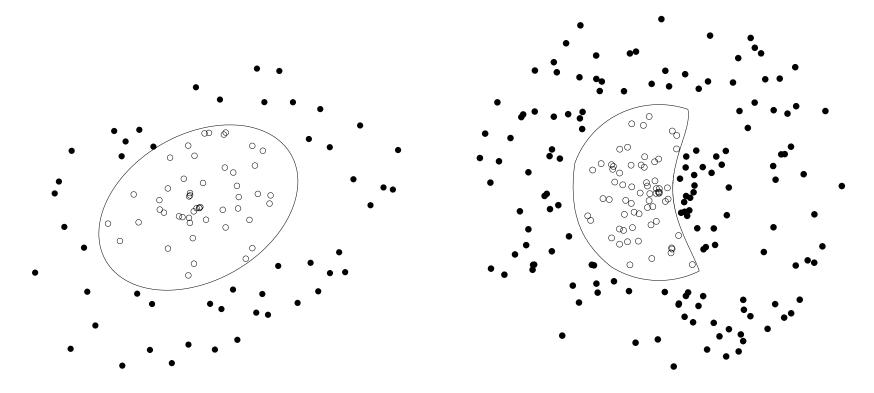
find
$$w$$
 such that $\langle w, (x_j, x_j^2) \rangle \geq 1$ for all j such that $y_j = 1$
$$\langle w, (x_j, x_j^2) \rangle \leq -1$$
 for all j such that $y_j = -1$

this is still a (larger) linear program in the variable w.

Nonlinear classification is as easy as linear classification.

Classification

This trick means that we are not limited to linear classifiers:



Separation by ellipsoid

Separation by 4th degree polynomial

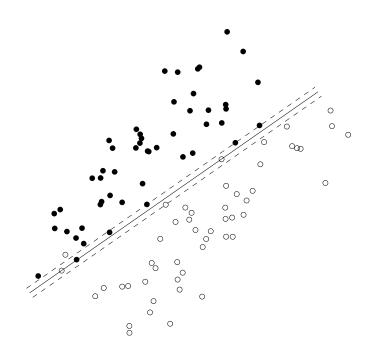
Both are equivalent to linear classification. . . just increase the dimension.

Classification: margin

Suppose the two sets are not **separable**. We solve instead

minimize
$$\mathbf{1}^T u + \mathbf{1}^T v$$
 subject to $\langle w, x_j \rangle \geq 1 - u_j$ for all j such that $y_j = 1$
$$\langle w, x_j \rangle < -(1 - v_j)$$
 for all j such that $y_j = -1$
$$u \geq 0, \quad v \geq 0$$

Can be interpreted as a heuristic for minimizing the number of misclassified points.



Robust linear discrimination

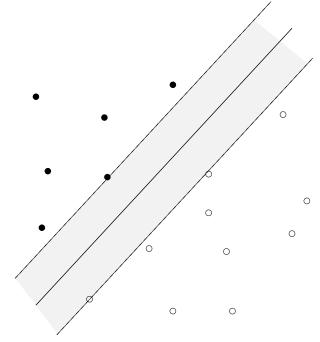
Suppose instead that the two data sets are well separated.

(Euclidean) distance between hyperplanes

$$\mathcal{H}_1 = \{z \mid a^T z + b = 1\}$$

 $\mathcal{H}_2 = \{z \mid a^T z + b = -1\}$

is
$$\mathbf{dist}(\mathcal{H}_1, \mathcal{H}_2) = 2/\|a\|_2$$



to separate two sets of points by maximum margin,

minimize
$$(1/2)\|a\|_2$$
 subject to $a^Tx_i+b\geq 1,\quad i=1,\ldots,N$
$$a^Ty_i+b\leq -1,\quad i=1,\ldots,M$$
 (1)

(after squaring objective) a QP in a, b

Classification

In practice. . .

- The data has very high dimension.
- The classifier is highly nonlinear.
- Overfitting is a problem: in high dimensional spaces it is always possible to find a classifier, but the classifier itself can become somewhat meaningless.
 - Maximizing the margin helps.
 - Determine the tradeoff between error and margin by **cross-validation**.

Support Vector Machines: Duality

Given m data points $x_i \in \mathbb{R}^n$ with labels $y_i \in \{-1, 1\}$.

The maximum margin classification problem can be written

minimize
$$\frac{1}{2}\|w\|_2^2 + C\mathbf{1}^Tz$$
 subject to
$$y_i(w^Tx_i) \geq 1-z_i, \quad i=1,\dots,m$$

$$z \geq 0$$

in the variables $w, z \in \mathbb{R}^n$, with parameter C > 0.

The Lagrangian is written

$$L(w, z, \alpha) = \frac{1}{2} ||w||_2^2 + C\mathbf{1}^T z + \sum_{i=1}^m \alpha_i (1 - z_i - y_i w^T x_i)$$

with dual variable $\alpha \in \mathbb{R}_+^m$.

Support Vector Machines: Duality

The Lagrangian can be rewritten

$$L(w, z, \alpha) = \frac{1}{2} \left(\left\| w - \sum_{i=1}^{m} \alpha_i y_i x_i \right\|_2^2 - \left\| \sum_{i=1}^{m} \alpha_i y_i x_i \right\|_2^2 \right) + (C\mathbf{1} - \alpha)^T z + \mathbf{1}^T \alpha$$

with dual variable $\alpha \in \mathbb{R}^n_+$.

lacktriangle Minimizing in (w,z) we form the dual problem

maximize
$$-\frac{1}{2} \left\| \sum_{i=1}^{m} \alpha_i y_i x_i \right\|_2^2 + \mathbf{1}^T \alpha$$
 subject to
$$0 \le \alpha \le C$$

At the optimum, we must have

$$w = \sum_{i=1}^{m} \alpha_i y_i x_i$$
 and $\alpha_i = C$ if $z_i > 0$

(this is the representer theorem).

Support Vector Machines: the kernel trick

If we write X the data matrix with columns x_i , the dual can be rewritten

$$\begin{array}{ll} \text{maximize} & -\frac{1}{2}\alpha^T\operatorname{\mathbf{diag}}(y)X^TX\operatorname{\mathbf{diag}}(y)\alpha+\mathbf{1}^T\alpha\\ \text{subject to} & 0\leq\alpha\leq C \end{array}$$

■ This means that the data only appears in the dual through the gram matrix

$$K = X^T X$$

which is called the kernel matrix.

- \blacksquare In particular, the original dimension n does not appear in the dual.
- SVM complexity only grows with **the number of samples**, typically $O(m^{1.5})$.
- For linear classifiers: the magnitude of w_i gives a hint on the importance of variable i (for text: important words).

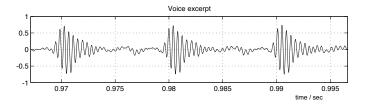
Support Vector Machines: the kernel trick

Kernels.

- All matrices written $K = X^T X$ can be kernel matrices.
- Easy to construct from highly diverse data types.

Examples. . .

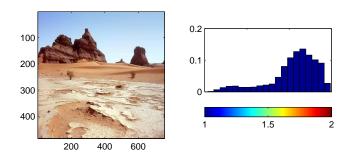
Kernels for voice recognition



Kernels for gene sequence alignment

Support Vector Machines: the kernel trick

Kernels for images



Kernels for text classification

Ryanair Q3 profit up 30%, stronger than expected. (From Reuters.)
DUBLIN, Feb 5 (Reuters) - Ryanair (RYA.I: Quote, Profile, Research)
posted a 30 pct jump in third-quarter net profit on Monday, confounding
analyst expectations for a fall, and ramped up its full-year profit goal
while predicting big fuel-cost savings for the following year (...).

profit	loss	up	down	jump	fall	below	expectations	ramped up
3	0	2	0	1	1	0	1	1

Consider the following underdetermined linear system



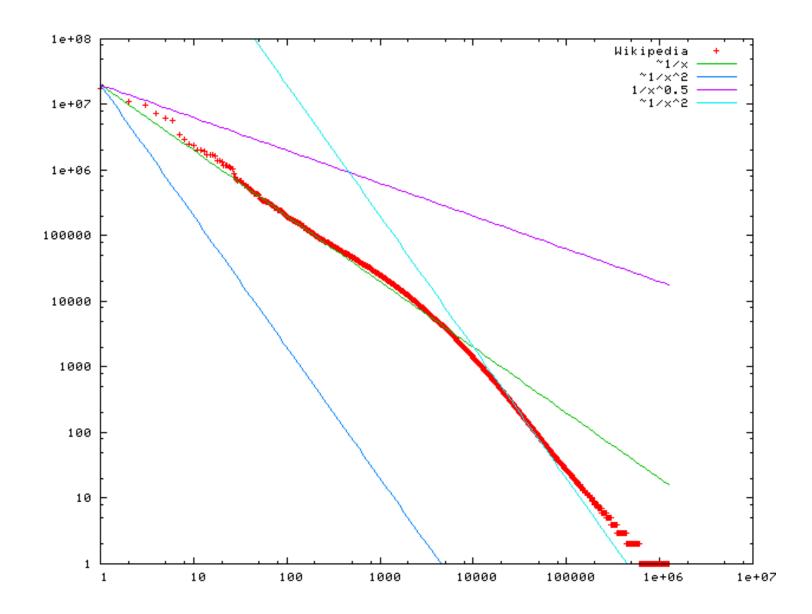
where $A \in \mathbb{R}^{m \times n}$, with $n \gg m$.

Can we find the **sparsest** solution?

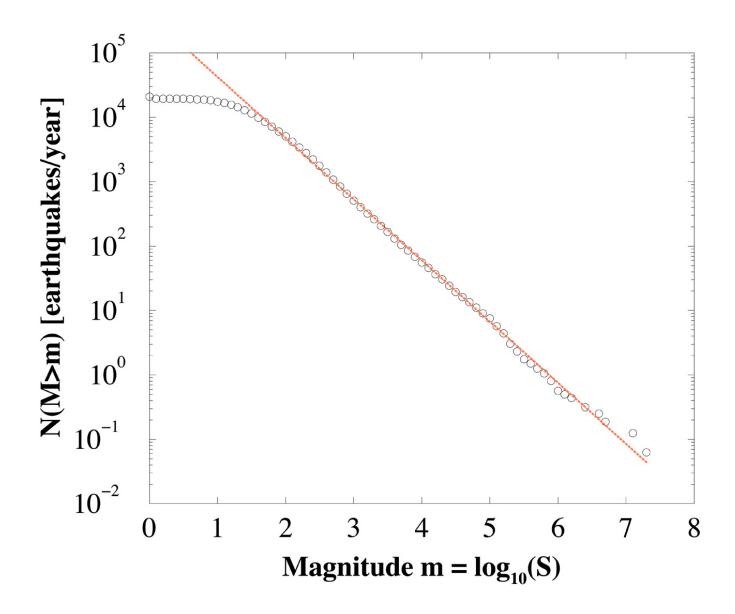
- **Signal processing:** We make a few measurements of a high dimensional signal, which admits a sparse representation in a well chosen basis (e.g. Fourier, wavelet). Can we reconstruct the signal exactly?
- **Coding:** Suppose we transmit a message which is corrupted by a few errors. How many errors does it take to start losing the signal?
- **Statistics:** Variable selection in regression (LASSO, etc).

Why **sparsity**?

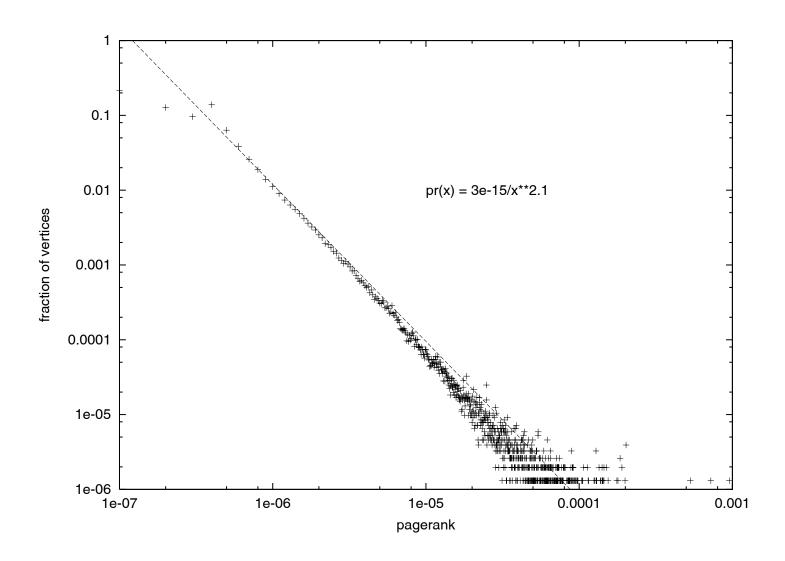
- Sparsity is a proxy for power laws. Most results stated here on sparse vectors apply to vectors with a power law decay in coefficient magnitude.
- Power laws appear everywhere. . .
 - Zipf law: word frequencies in natural language follow a power law.
 - Ranking: pagerank coefficients follow a power law.
 - \circ Signal processing: 1/f signals
 - Social networks: node degrees follow a power law.
 - Earthquakes: Gutenberg-Richter power laws
 - River systems, cities, net worth, etc.



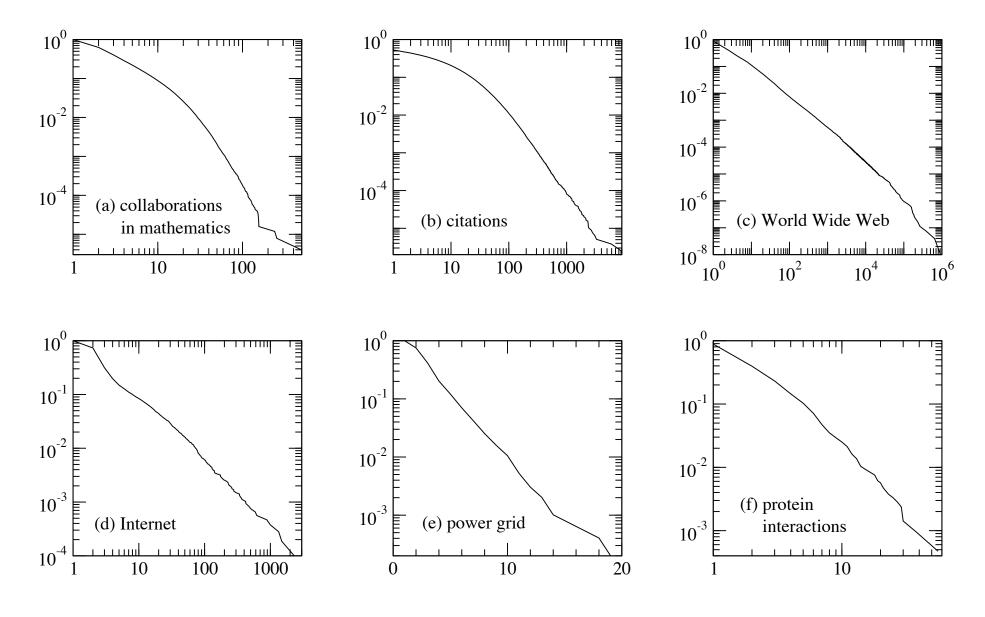
Frequency vs. word in Wikipedia (from Wikipedia).



Frequency vs. magnitude for earthquakes worldwide. [Christensen et al., 2002]



Pages vs. Pagerank on web sample. [Pandurangan et al., 2006]



Cumulative degree distribution in networks. [Newman, 2003]

Getting the sparsest solution means solving:

minimize
$$Card(x)$$
 subject to $Ax = b$

which is a (hard) **combinatorial** problem in $x \in \mathbb{R}^n$.

A classic heuristic is to solve instead:

minimize
$$||x||_1$$
 subject to $Ax = b$

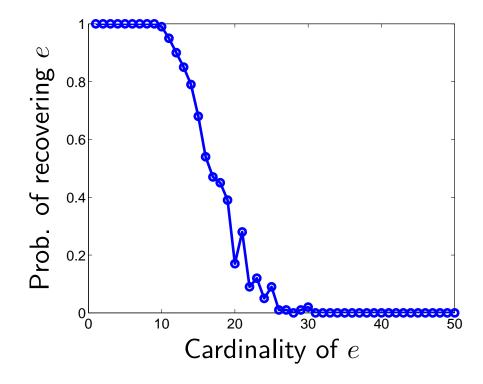
which is equivalent to an (easy) linear program.

Compressed Sensing

Example: we fix A, we draw many **sparse** signals e and plot the probability of perfectly recovering e by solving

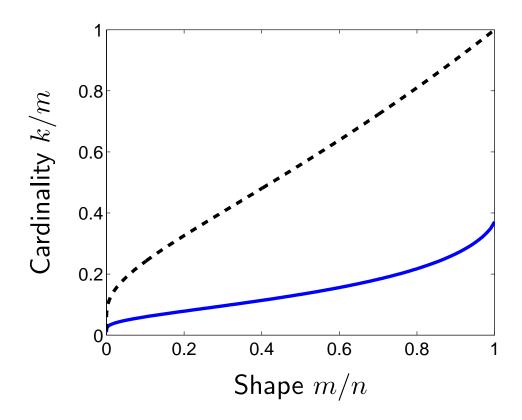
minimize
$$||x||_1$$
 subject to $Ax = Ae$

in $x \in \mathbb{R}^n$, with n = 50 and m = 30.



Compressed Sensing

- For some matrices A, when the solution e is sparse enough, the solution of the **linear program** problem is also the **sparsest** solution to Ax = Ae. [Donoho and Tanner, 2005, Candès and Tao, 2005]
- Let $k = \mathbf{Card}(e)$, this happens even when $\mathbf{k} = \mathbf{O}(\mathbf{m})$ asymptotically, which is provably optimal.



A **linear program** (LP) is written

$$\begin{array}{ll} \text{minimize} & c^T x \\ \\ \text{subject to} & Ax = b \\ \\ & x \geq 0 \end{array}$$

where $x \ge 0$ means that the coefficients of the vector x are nonnegative.

A semidefinite program (SDP) is written

minimize
$$\mathbf{Tr}(CX)$$
 subject to $\mathbf{Tr}(A_iX) = b_i, \quad i = 1, \dots, m$ $X \succeq 0$

where $X \succeq 0$ means that the matrix variable $X \in \mathbf{S}_n$ is **positive semidefinite**.

- Nesterov and Nemirovskii [1994] showed that the interior point algorithms used for linear programs could be extended to semidefinite programs.
- Key result: self-concordance analysis of Newton's method (affine invariant smoothness bounds on the Hessian).

Modeling

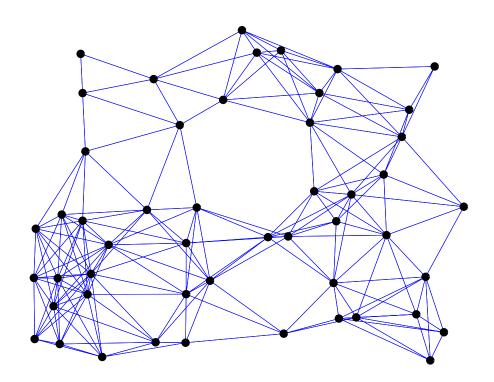
- Linear programming started as a toy problem in the 40s, many applications followed.
- Semidefinite programming has much stronger expressive power, many new applications being investigated today (cf. this talk).
- Similar conic duality theory.

Algorithms

- Robust solvers for solving large-scale linear programs are available today (e.g. MOSEK, CPLEX, GLPK).
- Not (yet) true for semidefinite programs. Very active work now on first-order methods, motivated by applications in statistical learning (matrix completion, NETFLIX, structured MLE, . . .).

Mixing rates for Markov chains & maximum variance unfolding

- Let G = (V, E) be an **undirected graph** with n vertices and m edges.
- We define a **Markov chain** on this graph, and let $w_{ij} \ge 0$ be the transition rate for edge $(i,j) \in V$.



Let $\pi(t)$ be the state distribution at time t, its evolution is governed by the heat equation

$$d\pi(t) = -L\pi(t)dt$$

with

$$L_{ij} = \begin{cases} -w_{ij} & \text{if } i \neq j, \ (i,j) \in V \\ 0 & \text{if } (i,j) \notin V \\ \sum_{(i,k)\in V} w_{ik} & \text{if } i = j \end{cases}$$

the graph Laplacian matrix, which means

$$\pi(t) = e^{-Lt}\pi(0).$$

[Sun, Boyd, Xiao, and Diaconis, 2006]

Maximizing the mixing rate of the Markov chain means solving

maximize
$$t$$
 subject to
$$L(w) \succeq t(\mathbf{I} - (1/n)\mathbf{1}\mathbf{1}^T)$$

$$\sum_{(i,j)\in V} d_{ij}^2 w_{ij} \leq 1$$

$$w \geq 0$$

in the variable $w \in \mathbb{R}^m$, with (normalization) parameters $d_{ij}^2 \geq 0$.

■ Since L(w) is an affine function of the variable $w \in \mathbb{R}^m$, this is a **semidefinite** program in $w \in \mathbb{R}^m$.

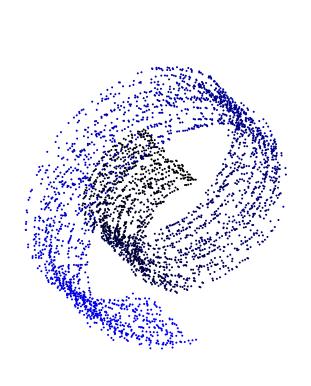
[Weinberger and Saul, 2006, Sun et al., 2006]

■ The **dual** means solving

maximize
$$\mathbf{Tr}(X(\mathbf{I}-(1/n)\mathbf{1}\mathbf{1}^T))$$
 subject to $X_{ii}-2X_{ij}+X_{jj}\leq d_{ij}^2, \quad (i,j)\in V$ $X\succeq 0,$

in the variable $X \in \mathbf{S}_n$.

■ This is a maximum variance unfolding problem.



From [Sun et al., 2006]: we are given pairwise 3D distances for k-nearest neighbors in the point set on the right. We plot the maximum variance point set satisfying these pairwise distance bounds on the right.

The NETFLIX challenge

NETFLIX

- Video On Demand and DVD by mail service in the United States, Canada, Latin America, the Caribbean, United Kingdom, Ireland, Sweden, Denmark, Norway, Finland.
- About 25 million users and 60,000 films.
- Unlimited streaming, DVD mailing, cheaper than CANAL+ :)
- Online movie recommendation engine.

Users assign ratings to a certain number of movies:

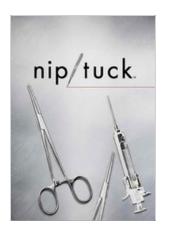
	2												
		2		1			4				5		
Users		2 5		4				?		1		3	
			3		5			?					
	4			?			5		3		?		
			4		1	3		9		5	3		
				2				1	?			4	
		1					5		?		4		
			2		?	5		?		4			
		3		3		1		5		2		1	
		3	8			1			2		3		
		4			5	1			2				
			3				3	?			5		
	2	?		1	(S)	1							
			5			2	?		4		4	-	
		1		3		1	5		4		5		
	1		2			4				5	?		
	Movies												

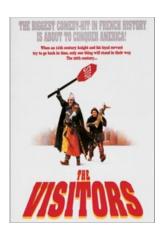
Objective: make recommendations for other movies. . .

NETFLIX

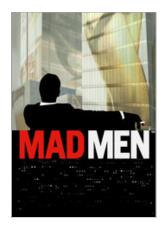
Just for Kids Instant Queue Taste Profile Police Profile Taste Movies, TV shows, actors, directors, genres

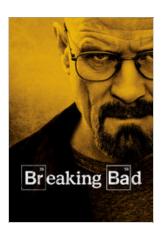
Top 10 for alexandre

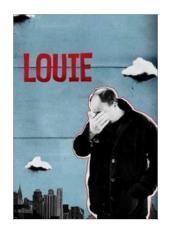




Popular on Netflix







Infer user preferences and movie features from user ratings.

A linear prediction model

$$rating_{ij} = u_i^T v_j$$

where u_i represents user characteristics and v_j movie features.

■ This makes collaborative prediction a **matrix factorization** problem, We look for a linear model by factorizing $M \in \mathbb{R}^{n \times m}$ as:

$$M = U^T V$$

where $U \in \mathbb{R}^{n \times k}$ represents user characteristics and $V \in \mathbb{R}^{k \times m}$ movie features.

• Overcomplete representation. . . We want k to be as small as possible, i.e. we seek a **low rank** approximation of M.

We would like to solve

minimize
$$\operatorname{\mathbf{Rank}}(X) + c \sum_{(i,j) \in S} \max(0, 1 - X_{ij}M_{ij})$$

non-convex and numerically hard. . .

Relaxation result in Fazel et al. [2001]: replace $\mathbf{Rank}(X)$ by its convex envelope on the spectahedron to solve:

minimize
$$||X||_* + c \sum_{(i,j) \in S} \max(0, 1 - X_{ij}M_{ij})$$

where $||X||_*$ is the **nuclear norm**, *i.e.* sum of the singular values of X.

lacktriangle This is a convex **semidefinite program** in X.

NETFLIX challenge.

- NETFLIX offered \$1 million to the team who could improve the quality of its ratings by 10%, and \$50.000 to the first team to improve them by 1%.
- It took two weeks to beat the 1% mark, and three years to reach 10%.
- Very large number of scientists, students, postdocs, etc. working on this.
- The story could end here. But all this work had surprising outcomes. . .

Molecular imaging



(from [Candes et al., 2011b])

- CCD sensors only record the magnitude of diffracted rays, and loose the phase
- Fraunhofer diffraction: phase is required to invert the 2D Fourier transform

Focus on the phase retrieval problem, i.e.

find
$$x$$
 such that $|\langle a_i, x \rangle|^2 = b_i^2, \quad i = 1, \dots, n$

in the variable $x \in \mathbf{C}^p$.

[Shor, 1987, Lovász and Schrijver, 1991] write

$$|\langle a_i, x \rangle|^2 = b_i^2 \iff \mathbf{Tr}(a_i a_i^* x x^*) = b_i^2$$

 [Chai et al., 2011] and [Candes et al., 2011a] formulate phase recovery as a matrix completion problem

Minimize
$$\mathbf{Rank}(X)$$
 such that $\mathbf{Tr}(a_ia_i^*X)=b_i^2, \quad i=1,\dots,n$ $X\succeq 0$

[Recht et al., 2007, Candes and Recht, 2008, Candes and Tao, 2010] show that under certain conditions on A and x_0 , it suffices to solve

Minimize
$$\mathbf{Tr}(X)$$
 such that $\mathbf{Tr}(a_ia_i^*X)=b_i^2, \quad i=1,\dots,n$ $X\succeq 0$

which is a (convex) semidefinite program in $X \in \mathbf{H}_p$.

- Solving the convex semidefinite program yields a solution to the combinatorial, hard reconstruction problem.
- Apply results from collaborative filtering (NETFLIX) to molecular imaging.

Merci!

References

- O. Bunk, A. Diaz, F. Pfeiffer, C. David, B. Schmitt, D.K. Satapathy, and JF Veen. Diffractive imaging for periodic samples: retrieving one-dimensional concentration profiles across microfluidic channels. *Acta Crystallographica Section A: Foundations of Crystallography*, 63 (4):306–314, 2007.
- E. J. Candès and T. Tao. Decoding by linear programming. *IEEE Transactions on Information Theory*, 51(12):4203–4215, 2005.
- E. J. Candes, T. Strohmer, and V. Voroninski. Phaselift: exact and stable signal recovery from magnitude measurements via convex programming. *To appear in Communications in Pure and Applied Mathematics*, 2011a.
- E.J. Candes and B. Recht. Exact matrix completion via convex optimization. preprint, 2008.
- E.J. Candes and T. Tao. The power of convex relaxation: Near-optimal matrix completion. *Information Theory, IEEE Transactions on*, 56(5): 2053–2080, 2010.
- E.J. Candes, Y. Eldar, T. Strohmer, and V. Voroninski. Phase retrieval via matrix completion. Arxiv preprint arXiv:1109.0573, 2011b.
- A. Chai, M. Moscoso, and G. Papanicolaou. Array imaging using intensity-only measurements. *Inverse Problems*, 27:015005, 2011.
- K. Christensen, L. Danon, T. Scanlon, and P. Bak. Unified scaling law for earthquakes, 2002.
- D. L. Donoho and J. Tanner. Sparse nonnegative solutions of underdetermined linear equations by linear programming. *Proc. of the National Academy of Sciences*, 102(27):9446–9451, 2005.
- M. Fazel, H. Hindi, and S. Boyd. A rank minimization heuristic with application to minimum order system approximation. *Proceedings American Control Conference*, 6:4734–4739, 2001.
- J.R. Fienup. Phase retrieval algorithms: a comparison. Applied Optics, 21(15):2758–2769, 1982.
- R. Gerchberg and W. Saxton. A practical algorithm for the determination of phase from image and diffraction plane pictures. *Optik*, 35: 237–246, 1972.
- D. Griffin and J. Lim. Signal estimation from modified short-time fourier transform. *Acoustics, Speech and Signal Processing, IEEE Transactions on*, 32(2):236–243, 1984.
- R.W. Harrison. Phase problem in crystallography. JOSA A, 10(5):1046–1055, 1993.
- N. K. Karmarkar. A new polynomial-time algorithm for linear programming. Combinatorica, 4:373-395, 1984.
- L. G. Khachiyan. A polynomial algorithm in linear programming (in Russian). Doklady Akademiia Nauk SSSR, 224:1093-1096, 1979.
- L. Lovász and A. Schrijver. Cones of matrices and set-functions and 0-1 optimization. SIAM Journal on Optimization, 1(2):166–190, 1991.
- J. Miao, T. Ishikawa, Q. Shen, and T. Earnest. Extending x-ray crystallography to allow the imaging of noncrystalline materials, cells, and single protein complexes. *Annu. Rev. Phys. Chem.*, 59:387–410, 2008.

- A. Nemirovskii and D. Yudin. Problem complexity and method efficiency in optimization. *Nauka (published in English by John Wiley, Chichester, 1983)*, 1979.
- Y. Nesterov and A. Nemirovskii. *Interior-point polynomial algorithms in convex programming*. Society for Industrial and Applied Mathematics, Philadelphia, 1994.
- MEJ Newman. The structure and function of complex networks. Arxiv preprint cond-mat/0303516, 2003.
- G. Pandurangan, P. Raghavan, and E. Upfal. Using pagerank to characterize web structure. *Internet Mathematics*, 3(1):1–20, 2006.
- B. Recht, M. Fazel, and P.A. Parrilo. Guaranteed Minimum-Rank Solutions of Linear Matrix Equations via Nuclear Norm Minimization. *Arxiv* preprint arXiv:0706.4138, 2007.
- H. Sahinoglou and S.D. Cabrera. On phase retrieval of finite-length sequences using the initial time sample. *Circuits and Systems, IEEE Transactions on*, 38(8):954–958, 1991.
- N.Z. Shor. Quadratic optimization problems. Soviet Journal of Computer and Systems Sciences, 25:1–11, 1987.
- N. Srebro. Learning with Matrix Factorization. PhD thesis, Massachusetts Institute of Technology, 2004.
- J. Sun, S. Boyd, L. Xiao, and P. Diaconis. The fastest mixing Markov process on a graph and a connection to a maximum variance unfolding problem. *SIAM Review*, 48(4):681–699, 2006.
- K.Q. Weinberger and L.K. Saul. Unsupervised Learning of Image Manifolds by Semidefinite Programming. *International Journal of Computer Vision*, 70(1):77–90, 2006.