A $(5 / 3+\epsilon)$-Approximation for Unsplittable Flow on a Path: Placing Small Tasks into Boxes

Fabrizio Grandoni ${ }^{1}$ Tobias Mömke ${ }^{2}$ Andreas Wiese ${ }^{3}$ Hang Zhou ${ }^{4}$
${ }^{1}$ IDSIA, Switzerland
${ }^{2}$ Saarland University and University of Bremen, Germany
${ }^{3}$ University of Chile, Chile
${ }^{4}$ École Polytechnique, France

Symposium on Theory of Computing (STOC), 2018

Unsplittable Flow on a Path (UFP)

A task: subpath, demand, weight

Polynomial time:

- $O(\log n)$ [Bansal, Friggstad, Khandekar, Salavatipour, SODA 2009]
- $7+\epsilon$ [Bonsma, Schulz, Wiese, FOCS 2011]
- $2+\epsilon$ [Anagnostopoulos, Grandoni, Leonardi, Wiese, SODA 2014]

Polynomial time:

- $O(\log n)$ [Bansal, Friggstad, Khandekar, Salavatipour, SODA 2009]
- $7+\epsilon$ [Bonsma, Schulz, Wiese, FOCS 2011]
- $2+\epsilon$ [Anagnostopoulos, Grandoni, Leonardi, Wiese, SODA 2014]
- $1+\epsilon$ when weight/demand is bounded [Batra, Garg, Kumar, Mömke, Wiese, SODA 2015]
- $1+\epsilon$ when all tasks share a common edge [Grandoni, Mömke, Wiese, Zhou, SODA 2017]

Polynomial time:

- $O(\log n)$ [Bansal, Friggstad, Khandekar, Salavatipour, SODA 2009]
- $7+\epsilon$ [Bonsma, Schulz, Wiese, FOCS 2011]
- $2+\epsilon$ [Anagnostopoulos, Grandoni, Leonardi, Wiese, SODA 2014]
- $1+\epsilon$ when weight/demand is bounded [Batra, Garg, Kumar, Mömke, Wiese, SODA 2015]
- $1+\epsilon$ when all tasks share a common edge [Grandoni, Mömke, Wiese, Zhou, SODA 2017]

Quasi-polynomial time:

- $1+\epsilon\left(^{*}\right)$ [Bansal, Chakrabarti, Epstein, Schieber, STOC 2006]
- $1+\epsilon$ [Batra, Garg, Kumar, Mömke, Wiese, SODA 2015]

Polynomial time:

- $O(\log n)$ [Bansal, Friggstad, Khandekar, Salavatipour, SODA 2009]
- $7+\epsilon$ [Bonsma, Schulz, Wiese, FOCS 2011]
- $2+\epsilon$ [Anagnostopoulos, Grandoni, Leonardi, Wiese, SODA 2014]
- $1+\epsilon$ when weight/demand is bounded [Batra, Garg, Kumar, Mömke, Wiese, SODA 2015]
- $1+\epsilon$ when all tasks share a common edge [Grandoni, Mömke, Wiese, Zhou, SODA 2017]

Quasi-polynomial time:

- $1+\epsilon\left(^{*}\right)$ [Bansal, Chakrabarti, Epstein, Schieber, STOC 2006]
- $1+\epsilon$ [Batra, Garg, Kumar, Mömke, Wiese, SODA 2015]

Open Question

Is there a polynomial-time approximation scheme for UFP?

Our Result

Polynomial-time ($5 / 3+\epsilon$)-approximation for UFP

Idea: combine large tasks and small tasks together

Previous techniques:

1 Dynamic programming: large tasks
2 Linear programming: small tasks

$$
\boldsymbol{1}+\boldsymbol{2} \quad \Longrightarrow \quad(2+\epsilon) \text {-approximation }
$$

How to achieve better-than-2 approximation?

Previous techniques:
1 Dynamic programming: large tasks
2 Linear programming: small tasks

$$
\mathbf{1}+\boldsymbol{2} \quad \Longrightarrow \quad(2+\epsilon) \text {-approximation }
$$

Q: How to achieve better-than-2 approximation?
A: Dynamic programming with boxes: large tasks $+1 / 3$ of small tasks
Combined with $\boldsymbol{2} \Longrightarrow(5 / 3+\epsilon)$-approximation

Difficulty: Unknown separation between space for large tasks and

 space for small tasks in the optimal solution

Preprocessing: Round down the separation profile to powers of $1+\epsilon$

Main idea: Decompose the space for small tasks into boxes

Q: What factor of small tasks do we lose by introducing boxes?
A: At most 2.

Horizontal slicing lemma

We are given a set of tasks such that, on each edge e, the total demand of the tasks using e is at most half of the capacity on the edge e. We are allowed to slice each task horizontally into pieces of unit height. Then we can pack all the resulting slices geometrically within the capacity profile.

Algorithm to compute small tasks within boxes

- Guess boxes bottom-up using dynamic programming
- Fill each box with small tasks using linear programming

Algorithm to compute small tasks within boxes

- Guess boxes bottom-up using dynamic programming
- Fill each box with small tasks using linear programming

Algorithm to compute small tasks within boxes

- Guess boxes bottom-up using dynamic programming
- Fill each box with small tasks using linear programming

Algorithm to compute small tasks within boxes

- Guess boxes bottom-up using dynamic programming
- Fill each box with small tasks using linear programming

Algorithm to compute small tasks within boxes

- Guess boxes bottom-up using dynamic programming
- Fill each box with small tasks using linear programming

Algorithm to compute small tasks within boxes

- Guess boxes bottom-up using dynamic programming
- Fill each box with small tasks using linear programming

Algorithm to compute small tasks within boxes

- Guess boxes bottom-up using dynamic programming
- Fill each box with small tasks using linear programming

Algorithm to compute small tasks within boxes

- Guess boxes bottom-up using dynamic programming
- Fill each box with small tasks using linear programming

Q: How to avoid a small task being selected several times?

Q: How to avoid a small task being selected several times?
A: As soon as a small task is selected in some box, it is no longer allowed in upper boxes.

Q: What factor of small tasks do we lose by filling boxes bottom-up?
A: At most 2.

Loss of small tasks:

- factor of 2 by introducing boxes
- factor of 2 by filling boxes bottom up

Q: Do we have to lose altogether a factor of 4 of small tasks?

Loss of small tasks:

- factor of 2 by introducing boxes
- factor of 2 by filling boxes bottom up

Q: Do we have to lose altogether a factor of 4 of small tasks?
A: No. Both factors of 2 cannot happen simultaneously.

Main technical contribution

Our algorithm loses at most a factor of 3 of small tasks.

Selecting large tasks: we guess large tasks during the dynamic program. Observation: All profit from large tasks achieved when guessed correctly.

Summary

- Dynamic programming to guess large tasks and boxes
- Linear programming to select small tasks inside each box

Total profit: large tasks $+1 / 3$ of small tasks

Thank you!

Our Result

Polynomial-time (5/3+ $\boldsymbol{\epsilon}$)-approximation for UFP

