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Can we estimate the number of rooms
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Can we estimate the size of a possibly
huge network using random walks?
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PROBLEM SETTING

Let G = (V, E) be a finite connected graph.
n=\V| m = |E|

We start at a given x € V.
ESTIMATING WITH RANDOM WALKS

» X X)) K independent Rws of length ¢, all started at z.

» we observe the label and the degree of visited vertices.

Goal: design an estimator 7, = 1, (X, ..., X(®)) such that for all
G = (V, E) connected, for all z € V' for all t > t(¢,G) and K > K(e,G),

Pf(m—1‘>;)§s,

ng
with K (g, G) x t(e, G) as small as possible.

Other parameters of interest: number of edges, mixing time...
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X = (X4)i>0 lazy RW on G with transition matrix P:
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CONVERGENCE OF RANDOM WALKS

X = (X4)i>0 lazy RW on G with transition matrix P:

deg(y)
2 t _
V(1'7y) € V 9 P (1.73/) {00 7r(y) - 2m

Reversibility:
m(2)P(z,y) = n(y)P(y,z).

Speed of convergence measured by uniform mixing time:
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tunit = inf {t >0, max
z,yeVvV
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where A2 = max{\ € Sp(P), A # 1}

Or by relaxation time:
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REDUCING TO I1.I.D. SAMPLES

e Consider K lazy Rws started from x € V', with length ¢ > t,n¢.
e The sample (Xtm, . ,Xt(K)) is (almost) 1.I.D. with law 7.

ON REGULAR GRAPHS (7 =1/n)
Count the number of collisions:
Cg = Z ]1{X§i):Xt(j)} .
1<J
Birthday paradox: K = /mn = Time complexity O (tuniry/n)-

ON NON-REGULAR GRAPHS
Katzir, Liberty, Somekh, Cosma (2014); Kanade, Mallmann-Trenn, Verdugo (2017)

K =+/n+ ™ — Time complexity O (tunif (\/ﬁ + m))
n n
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If one is willing to use more info on the graph: K =< (Z 7r(u)2)

» Can we do better using the whole trajectories of walks?
» Is the factor tu,ir necessary?
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REGULAR GRAPHS

Let X and Y be two indep. lazy Rws started at x € V.

t—1t—-1

2
It = Z Z ]l{Xi:Yj} (]Eﬂ',ﬂ']t - i

) 3 n
1=0 j=0
Peres, Sauerwald, Sousi, Stauffer (2017)

t—1

12 5 .

b — E E j

- < Eg,olt P (z,u) P’ (z,u)

i,j=0 ueV

t—1
= Z ZPi(x,u)Pj(u, x)

i,j=0u€V

t—1
= Z Piti(z, z)

i,j=0

o $2
< Y, PH@a)+—

i+j <tunif

).



REGULAR GRAPHS

ESTIMATE ON RETURN PROBABILITIES

Pl(z,z) < = +

S|

Sl e

Aldous and Fill



REGULAR GRAPHS

ESTIMATE ON RETURN PROBABILITIES

1
P'(z,7) < ~F Aldous and Fill

5
Vi
BOUND ON FIRST MOMENT

t2 12
- S Ea:,:rlt S_, t3/2 -
n n

12
E,ly < — for t2t
n



REGULAR GRAPHS
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REGULAR GRAPHS

Consider K pairs of rws {(X®), Y(k))}fj:l and the estimator
- ¢

= K (k)
2 1

THEOREM (B., OLIVEIRA AND PERES)
For all G = (V, E) connected regular, for all x € V,

Ve /n (‘ 1‘>;):0<;{> .
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Bound tfe/f\/ﬁ is achieved by the cycle.
LOWER BOUND FOR EACH POSSIBLE MIXING TIME

1. Start with a 3-regular expander & of size k;

2. Replace each edge of & by a path of length ¢ > 1;

3. Make the graph 3-regular by adding short edges.
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LOWER BOUND

Bound tfe/f\/ﬁ is achieved by the cycle.
LOWER BOUND FOR EACH POSSIBLE MIXING TIME

1. Start with a 3-regular expander & of size k;

2. Replace each edge of & by a path of length ¢ > 1;

3. Make the graph 3-regular by adding short edges.

e

L

X

No rw is able to distinguish G, o and Gay ¢ before time
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NON-REGULAR GRAPHS

Let X and Y be two indep. lazy Rws started at =z € V.

t—1 tunift+t—1

I, = ———1rx.—y. = [
' Zdeg()@-) vy S ) deg(X

K2

4,7 =tunif

L=y



NON-REGULAR GRAPHS

Let X and Y be two indep. lazy Rws started at =z € V.
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NON-REGULAR GRAPHS

Let X and Y be two indep. lazy Rws started at =z € V.

=1 tunit+t—1
I = ——1rx.—y, = —1rx.—v,
t Z deg(X;) {X:=Y;} T 4 Z deg(X;) {X:=Y;}
1,7=0 &, j=tunif
FIRST MOMENT ) 1 i
t Pz, x)
]E7r 7TI - - Em :cI - S~
T om o z‘;o deg(z)
BOUND ON RETURN PROBABILITIES
4d
Pl(z,x) < m(z) + 4deg(z) Lyons, 2005
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BOUND ON THE SUM
: 13n .
Z Pz, x) t1/3 Lyons and Oveis Gharan, 2017
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NON-REGULAR GRAPHS

Consider K pairs of rRws {(X® Y(k))} , and the estimator

t2

M= oK
2 i I

THEOREM (B., OLIVEIRA AND PERES)
For all G = (V, E) connected, for all z € V,

z 1 1
Vi> S n, B, (’Z—1‘>2>:0<K>.

Alternatively: t > 2‘3/4\F.
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Bound ¢
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Bound ¢ n attained by the barbell.

LOWER BOUND FOR EACH POSSIBLE MIXING TIME
1. Start with a 3-regular expander & of size k;
2. Replace each node of & by a clique Ky of size g;
3. Replace each edge of & by a path of length q.
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LOWER BOUND

fe/lﬁ n attained by the barbell.

LOWER BOUND FOR EACH POSSIBLE MIXING TIME

Bound ¢

1. Start with a 3-regular expander & of size k;
2. Replace each node of & by a clique Ky of size g;
3. Replace each edge of & by a path of length q.
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No Rw is able to distinguish Gk q and Gay, 4 before time
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FROM EDGES TO VERTICES

Time ti{l?f n is not enough to estimate the number of vertices.

1. Take a complete graph of size k;
2. Add paths of length g to each vertex, with ¢ << k.
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FROM EDGES TO VERTICES

Time ¢ 5/6 LirV/T is not enough to estimate the number of vertices.

1. Take a complete graph of size k;
2. Add paths of length g to each vertex, with ¢ << k.

n < kq m = k2 tunif < ¢2
T(n) = gk > t2/6

unif

v/n for g small enough.

However, once a good estimate for m is available, it suffices to estimate
the mean degree, which can be done in

m
0 (tunif *>
n

By previous example, this is sharp: 7'(n) = gk = e’

All in all, the number of vertices can be estimated in time

6
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A SELF-STOPPING ALGORITHM FOR THE NUMBER OF EDGES

Assume that an upper bound T on ¢, is available.

For all £ > 0, one may design a self-stopping algorithm such that

o~

e with probability 1 — ¢, the returned value m satisfies | 7> — 1‘ < %;

e the expected running time is O (\/ET?’/4 loglogm).
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A SELF-STOPPING ALGORITHM FOR THE MIXING TIME

Assume that m is known (or that we have a good approximation).

We want to estimate ¢, () = inf {t > 0, d,(t) < 0}, where

) = () (2L 1)2.

” m(y)

CONNECTION WITH INTERSECTIONS ,
=1 =1 it
1 dy (52)" +1
HT,= 5 - Qg yy, thnE,Z, = S 22l2) T2
t ijzzo deg(X;) Yol T et 2

£ 2m
i,j=0

One can design a self-stopping algorithm such that

e with probability 1 — &, the returned value ¢, () satisfies

L0) < §,(5) < t.(5/4).

e the expected running time is O (@tr (6/4)3/*loglogt, (6/4))



