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Can we estimate the number of rooms
in a house by randomly walking
through adjacent rooms?

Can we estimate the size of a possibly
huge network using random walks?
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Problem setting

Let G = (V,E) be a finite connected graph.

n = |V | m = |E|

We start at a given x ∈ V .

Estimating with random walks

I X(1), . . . , X(K): K independent rws of length t, all started at x.
I we observe the label and the degree of visited vertices.

Goal: design an estimator n̂t = n̂t(X(1), . . . , X(K)) such that for all
G = (V,E) connected, for all x ∈ V , for all t ≥ t(ε,G) and K ≥ K(ε,G),

PGx
(∣∣∣ n̂t
nG
− 1
∣∣∣ > 1

2

)
≤ ε ,

with K(ε,G)× t(ε,G) as small as possible.
Other parameters of interest: number of edges, mixing time...
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Convergence of random walks

X = (Xt)t≥0 lazy rw on G with transition matrix P :

∀ (x, y) ∈ V 2 , P t(x, y) −→
t→∞

π(y) = deg(y)
2m

Reversibility:
π(x)P (x, y) = π(y)P (y, x) .

Speed of convergence measured by uniform mixing time:

tunif = inf
{
t ≥ 0, max

x,y∈V

∣∣∣∣P t(x, y)
π(y) − 1

∣∣∣∣ ≤ 1
4

}
Or by relaxation time:

trel = 1
1− λ2

where λ2 = max{λ ∈ Sp(P ), λ 6= 1}

4 / 15



Convergence of random walks

X = (Xt)t≥0 lazy rw on G with transition matrix P :

∀ (x, y) ∈ V 2 , P t(x, y) −→
t→∞

π(y) = deg(y)
2m

Reversibility:
π(x)P (x, y) = π(y)P (y, x) .

Speed of convergence measured by uniform mixing time:

tunif = inf
{
t ≥ 0, max

x,y∈V

∣∣∣∣P t(x, y)
π(y) − 1

∣∣∣∣ ≤ 1
4

}
Or by relaxation time:

trel = 1
1− λ2

where λ2 = max{λ ∈ Sp(P ), λ 6= 1}

4 / 15



Convergence of random walks

X = (Xt)t≥0 lazy rw on G with transition matrix P :

∀ (x, y) ∈ V 2 , P t(x, y) −→
t→∞

π(y) = deg(y)
2m

Reversibility:
π(x)P (x, y) = π(y)P (y, x) .

Speed of convergence measured by uniform mixing time:

tunif = inf
{
t ≥ 0, max

x,y∈V

∣∣∣∣P t(x, y)
π(y) − 1

∣∣∣∣ ≤ 1
4

}

Or by relaxation time:

trel = 1
1− λ2

where λ2 = max{λ ∈ Sp(P ), λ 6= 1}

4 / 15



Convergence of random walks

X = (Xt)t≥0 lazy rw on G with transition matrix P :

∀ (x, y) ∈ V 2 , P t(x, y) −→
t→∞

π(y) = deg(y)
2m

Reversibility:
π(x)P (x, y) = π(y)P (y, x) .

Speed of convergence measured by uniform mixing time:

tunif = inf
{
t ≥ 0, max

x,y∈V

∣∣∣∣P t(x, y)
π(y) − 1

∣∣∣∣ ≤ 1
4

}
Or by relaxation time:

trel = 1
1− λ2

where λ2 = max{λ ∈ Sp(P ), λ 6= 1}

4 / 15



Reducing to i.i.d. samples

• Consider K lazy rws started from x ∈ V , with length t ≥ tunif .
• The sample (X(1)

t , . . . , X
(K)
t ) is (almost) i.i.d. with law π.

On regular graphs (π = 1/n)
Count the number of collisions:

CK =
∑
i<j

1{X(i)
t =X(j)

t }
.

Birthday paradox: K �
√
n =⇒ Time complexity O (tunif

√
n).

On non-regular graphs
Katzir, Liberty, Somekh, Cosma (2014); Kanade, Mallmann-Trenn, Verdugo (2017)

K �
√
n+ m

n
=⇒ Time complexity O

(
tunif

(√
n+ m

n

))

If one is willing to use more info on the graph: K �
(∑

π(u)2
)−1/2

+ m
n
.

I Can we do better using the whole trajectories of walks?
I Is the factor tunif necessary?
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Regular graphs

Let X and Y be two indep. lazy rws started at x ∈ V .

It =
t−1∑
i=0

t−1∑
j=0

1{Xi=Yj}

(
Eπ,πIt = t2

n

)
.

Peres, Sauerwald, Sousi, Stauffer (2017)

t2

n
≤ Ex,xIt =

t−1∑
i,j=0

∑
u∈V

P i(x, u)P j(x, u)

=
t−1∑

i,j=0

∑
u∈V

P i(x, u)P j(u, x)

=
t−1∑

i,j=0

P i+j(x, x)

.
∑

i+j<tunif

P i+j(x, x) +
t2

n
·

6 / 15



Regular graphs

Let X and Y be two indep. lazy rws started at x ∈ V .

It =
t−1∑
i=0

t−1∑
j=0

1{Xi=Yj}

(
Eπ,πIt = t2

n

)
.

Peres, Sauerwald, Sousi, Stauffer (2017)

t2

n
≤ Ex,xIt =

t−1∑
i,j=0

∑
u∈V

P i(x, u)P j(x, u)

=
t−1∑

i,j=0

∑
u∈V

P i(x, u)P j(u, x)

=
t−1∑

i,j=0

P i+j(x, x)

.
∑

i+j<tunif

P i+j(x, x) +
t2

n
·

6 / 15



Regular graphs

Estimate on return probabilities

P t(x, x) ≤ 1
n

+ 5√
t

Aldous and Fill

Bound on first moment

t2

n
≤ Ex,xIt . t

3/2
unif + t2

n
,

Ex,xIt �
t2

n
for t & t

3/4
unif
√
n·

Bound on second moment

Ex,x
[
I2
t

]
. Ex,x[It] max

u∈V
Eu,u[It] .
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Regular graphs

Consider K pairs of rws
{

(X(k), Y (k))
}K
k=1 and the estimator

n̂t = t2

1
K

∑K
k=1 I

(k)
t

.

Theorem (B., Oliveira and Peres)
For all G = (V,E) connected regular, for all x ∈ V ,

∀ t & t
3/4
rel
√
n , Px

(∣∣∣ n̂t
n
− 1
∣∣∣ > 1

2

)
= O

(
1
K

)
.
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Lower bound

Bound t3/4
rel
√
n is achieved by the cycle.

Lower bound for each possible mixing time
1. Start with a 3-regular expander Ek of size k;
2. Replace each edge of Ek by a path of length ` ≥ 1;
3. Make the graph 3-regular by adding short edges.

n � k`

trel � `2

No rw is able to distinguish Gk,` and G2k,` before time

`2
√
k & t

3/4
rel
√
n

9 / 15
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Non-regular graphs
Let X and Y be two indep. lazy rws started at x ∈ V .

It =
t−1∑
i,j=0

1
deg(Xi)

1{Xi=Yj} Jt =
tunif+t−1∑
i,j=tunif

1
deg(Xi)

1{Xi=Yj}

First moment

Eπ,πIt = t2

2m Ex,xIt =
t−1∑
i,j=0

P i+j(x, x)
deg(x)

Bound on return probabilities

P t(x, x) ≤ π(x) + 4 deg(x)√
t

Lyons, 2005

Bound on the sum∑
x∈V

P t(x, x) ≤ 1 + 13n
t1/3 Lyons and Oveis Gharan, 2017

10 / 15



Non-regular graphs
Let X and Y be two indep. lazy rws started at x ∈ V .

It =
t−1∑
i,j=0

1
deg(Xi)

1{Xi=Yj} Jt =
tunif+t−1∑
i,j=tunif

1
deg(Xi)

1{Xi=Yj}

First moment

Eπ,πIt = t2

2m Ex,xIt =
t−1∑
i,j=0

P i+j(x, x)
deg(x)

Bound on return probabilities

P t(x, x) ≤ π(x) + 4 deg(x)√
t

Lyons, 2005

Bound on the sum∑
x∈V

P t(x, x) ≤ 1 + 13n
t1/3 Lyons and Oveis Gharan, 2017

10 / 15



Non-regular graphs
Let X and Y be two indep. lazy rws started at x ∈ V .

It =
t−1∑
i,j=0

1
deg(Xi)

1{Xi=Yj} Jt =
tunif+t−1∑
i,j=tunif

1
deg(Xi)

1{Xi=Yj}

First moment

Eπ,πIt = t2

2m Ex,xIt =
t−1∑
i,j=0

P i+j(x, x)
deg(x)

Bound on return probabilities

P t(x, x) ≤ π(x) + 4 deg(x)√
t

Lyons, 2005

Bound on the sum∑
x∈V

P t(x, x) ≤ 1 + 13n
t1/3 Lyons and Oveis Gharan, 2017

10 / 15



Non-regular graphs
Let X and Y be two indep. lazy rws started at x ∈ V .

It =
t−1∑
i,j=0

1
deg(Xi)

1{Xi=Yj} Jt =
tunif+t−1∑
i,j=tunif

1
deg(Xi)

1{Xi=Yj}

First moment

Eπ,πIt = t2

2m Ex,xIt =
t−1∑
i,j=0

P i+j(x, x)
deg(x)

Bound on return probabilities

P t(x, x) ≤ π(x) + 4 deg(x)√
t

Lyons, 2005

Bound on the sum∑
x∈V

P t(x, x) ≤ 1 + 13n
t1/3 Lyons and Oveis Gharan, 2017

10 / 15



Non-regular graphs

Consider K pairs of rws
{

(X(k), Y (k))
}K
k=1 and the estimator

m̂t = t2

2
K

∑K
k=1 I

(k)
t

,

Theorem (B., Oliveira and Peres)
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√
n , Px

(∣∣∣m̂t

m
− 1
∣∣∣ > 1

2
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= O

(
1
K

)
.

Alternatively: t ≥ t3/4
rel
√
m.

11 / 15



Non-regular graphs

Consider K pairs of rws
{

(X(k), Y (k))
}K
k=1 and the estimator

m̂t = t2

2
K

∑K
k=1 I

(k)
t

,

Theorem (B., Oliveira and Peres)
For all G = (V,E) connected, for all x ∈ V ,

∀ t ≥ t5/6
rel
√
n , Px

(∣∣∣m̂t

m
− 1
∣∣∣ > 1

2

)
= O

(
1
K

)
.

Alternatively: t ≥ t3/4
rel
√
m.

11 / 15



Lower bound

Bound t5/6
rel
√
n attained by the barbell. Kn Kn

Lower bound for each possible mixing time
1. Start with a 3-regular expander Ek of size k;
2. Replace each node of Ek by a clique Kq of size q;
3. Replace each edge of Ek by a path of length q.

Kq

Kq

Kq

Kq

Kq Kq

Kq

Kq

n � kq

trel � q3

No rw is able to distinguish Gk,q and G2k,q before time

q3
√
k & t

5/6
rel
√
n
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From edges to vertices

Time t5/6
unif
√
n is not enough to estimate the number of vertices.

Kk

1. Take a complete graph of size k;
2. Add paths of length q to each vertex, with q << k.

n � kq m � k2 tunif � q2

T (n) � qk � t
5/6
unif
√
n for q small enough.

However, once a good estimate for m is available, it suffices to estimate
the mean degree, which can be done in

O
(
tunif

m

n

)
By previous example, this is sharp: T (n) � qk � tunif

m
n .

All in all, the number of vertices can be estimated in time

t
5/6
rel
√
n+ tunif

m

n
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T (n) � qk � t
5/6
unif
√
n for q small enough.

However, once a good estimate for m is available, it suffices to estimate
the mean degree, which can be done in

O
(
tunif

m

n

)
By previous example, this is sharp: T (n) � qk � tunif

m
n .
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A self-stopping algorithm for the number of edges

Assume that an upper bound T on tunif is available.

For all ε > 0, one may design a self-stopping algorithm such that

• with probability 1− ε, the returned value m̂ satisfies
∣∣∣ m̂m − 1

∣∣∣ ≤ 1
2 ;

• the expected running time is O
(√
mT 3/4 log logm

)
.
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A self-stopping algorithm for the mixing time

Assume that m is known (or that we have a good approximation).

We want to estimate tx(δ) = inf {t ≥ 0, dx(t) ≤ δ}, where

dx(t) =
∑
y

π(y)
(
P t(x, y)
π(y) − 1

)2

.

Connection with intersections

If It =
t−1∑
i,j=0

1
deg(Xi)

1{Xi=Yj}, then ExIt =
t−1∑
i,j=0

dx
(
i+j

2
)2 + 1

2m .

One can design a self-stopping algorithm such that
• with probability 1− ε, the returned value t̂x(δ) satisfies

tx(δ)
2 ≤ t̂x(δ) ≤ tx(δ/4).

• the expected running time is O
(√

m
δ tx(δ/4)3/4 log log tx(δ/4)

)
.
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