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Clustering

Flat Clustering

I Often data can be grouped together into subsets that are coherent, called clusters
I Data in the same cluster is typically more similar that data across different

clusters

1



Clustering

Flat Clustering

I Often data can be grouped together into subsets that are coherent, called clusters
I Data in the same cluster is typically more similar that data across different

clusters

Cluster the following news headlines in 3 categories

Will AI take over?
Black holes swallow stars whole according to new study
Wenger signs new two year deal
England will attack during Champions trophy

Example credit: Avrim Blum

1



Clustering

Flat Clustering

I Often data can be grouped together into subsets that are coherent, called clusters
I Data in the same cluster is typically more similar that data across different

clusters

Cluster the following news headlines in 3 categories

CS Will AI take over?
Physics Black holes swallow stars whole according to new study
Sports Wenger signs new two year deal
Sports England will attack during Champions trophy

Example credit: Avrim Blum

1



Clustering

Flat Clustering

I Often data can be grouped together into subsets that are coherent, called clusters
I Data in the same cluster is typically more similar that data across different

clusters

Cluster the following news headlines in 3 categories

Science Will AI take over?
Science Black holes swallow stars whole according to new study
Football Wenger signs new two year deal
Cricket England will attack during Champions trophy

Example credit: Avrim Blum

1



(Flat) Clustering
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(Flat) Clustering: Objectives and Algorithms

Data lies in some metric space x1, . . . ,xN ∈ RD

Find k points µ1, . . . , µk that minimize, e.g.

1. k-median objective
N∑
i=1

(
min
j∈[k]

d(xi, µj)

)
2. k-means objective

N∑
i=1

(
min
j∈[k]

d(xi, µj)

)2
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(Flat) Clustering: Objectives and Algorithms

1. k-medians objective
N∑
i=1

(
min
j∈[k]

d(xi, µj)

)

2. k-means objective
N∑
i=1

(
min
j∈[k]

d(xi, µj)

)2

I Minimizing these objective functions is NP-hard

I Approximation algorithms are known
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Clustering: Input as (Dis)-Similarity Graph
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I Edge weights represent similarities

I Graph partitioning algorithms, e.g., mincut, sparsest cut, multi-way cut

I Many of these problems are NP-complete

I Approximation algorithms are widely studied

I Spectral partitioning algorithms can be highly efficient
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Hierarchical Clustering
I Recursive partitioning of data at an increasingly finer granularity represented as

a tree
I The leaves of the hierarchical cluster tree represent data.

News

Sci Sports

CS Phy Cric Foot
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Hierarchical Clustering
I Recursive partitioning of data at an increasingly finer granularity represented as

a tree
I The leaves of the hierarchical cluster tree represent data.

News

Sci Sports

CS Phy Cric Foot

CS Will AI take over?
CS Someone finally figured out why neural nets work
Physics Black holes swallow stars whole according to new study
Football Neymar breaks his leg and stops football
Cricket Someone finally figured out the rules of cricket
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Hierarchical Clustering in Practice: Linkage Algorithms

I We are given pairwise similarities between (some) pairs of datapoints

I Initially each data point is its own clusters

I Repeatedly merge most similar clusters

I Builds up cluster tree bottom-up

Single
Linkage

A

B C

D1

5
2 3 Similarity: 5

Average
Linkage

A

B C

D1

5
2 3 Similiarity: 2.75

Complete
Linkage

A

B C

D1

5
2 3 Similiarity: 1
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Hierarchical Clustering: Divisive Heuristics
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I Find a partition of the input similarity graph (or set of points)

I Split using bisection k-means

I Split using sparsest cut

I Recurse on each part

I Builds cluster-tree top-down
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What are these algorithms actually doing?
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What quantity are these algorithms optimizing?

I For flat clustering, algorithms designed to optimize some objective function
I We can decide quantitatively which one is the best

I For hierarchical clustering, algorithms have been studied procedurally
I Thus, comparisons between hierarchical clustering algorithms are only

qualitative

I [Dasgupta ’16]

“The lack of an objective function has prevented a theoretical
understanding”

I Dasgupta introduced an objective function to model the hierarchical clustering
problem
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Dasgupta’s Cost Function

Input: a weighted similarity graph G

I Edge weights represent similarities

Output: T a tree with leaves labelled by nodes of G

Cost of the output: Sum of the costs of the nodes of T
Cost of a node N of the tree:
A = {u | u is leaf of subtree rooted at NL}
B = {v | v is leaf of subtree rooted at NR}

cost(N) = (|A|+ |B|) ·
∑
u∈A
v∈B

similarity(u, v)

Intuition: Better to cut a high similarity edge at a lower
level

10 9
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a b c d e f

... ...

N

NL Nr

... ...

Cost of N = (3 + 3) · (1 + 2 + 2 + 3)
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Dasgupta’s Cost Function

Some Desirable Properties

I Using binary trees can always reduce cost

n1 n2 n3 n4

cost = (n1 + · · · + n4)·
(w(A1, A2) + · · · + w(A3, A4)) n1 n2

n3

n4

cost = (n1 + n2)w(A1, A2) + · · ·+
+ (n1 + n2 + n3 + n4)w(A1 ∪ A2 ∪ A3, A4)

I Disconnected components must be separated first

I For unit-weight cliques, all binary trees have the same cost

I For planted partition random graphs, the optimal tree first separates according to
the partition

12



Dasgupta’s Cost Function

Some Desirable Properties

I Using binary trees can always reduce cost

n1 n2 n3 n4

cost = (n1 + · · · + n4)·
(w(A1, A2) + · · · + w(A3, A4)) n1 n2

n3

n4

cost = (n1 + n2)w(A1, A2) + · · ·+
+ (n1 + n2 + n3 + n4)w(A1 ∪ A2 ∪ A3, A4)

I Disconnected components must be separated first

I For unit-weight cliques, all binary trees have the same cost

I For planted partition random graphs, the optimal tree first separates according to
the partition

12



Dasgupta’s Cost Function

Some Desirable Properties

I Using binary trees can always reduce cost

n1 n2 n3 n4

cost = (n1 + · · · + n4)·
(w(A1, A2) + · · · + w(A3, A4)) n1 n2

n3

n4

cost = (n1 + n2)w(A1, A2) + · · ·+
+ (n1 + n2 + n3 + n4)w(A1 ∪ A2 ∪ A3, A4)

I Disconnected components must be separated first

I For unit-weight cliques, all binary trees have the same cost

I For planted partition random graphs, the optimal tree first separates according to
the partition

12



Cost Functions: An Axiomatic Approach

I Are there other suitable cost functions?

I What properties should cost functions satisfy?

Admissible Cost Function

If the input has an underlying “ground-truth” hierarchical clustering tree,

then any tree should be optimal with respect to the cost function if and only if
it is a “ground-truth” tree.
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Inputs with an Underlying “Ground-Truth” Hierarchical Clustering
There exists a hierarchical clustering of the input,

a b c d e f h g

CS
Math

Physics
Cricket

Football

Economy

such that:
I similarity(a, b) > similarity(a, c) > similarity(b, f ),
I similarity(a, c) = similarity(b, c).

We want

If the input graph has such an underlying structure then the above tree
is the optimal one w.r.t. the cost function.
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Inputs with an Underlying “Ground-Truth” Hierarchical Clustering

Ultrametrics to generate ground-truth inputs:

Assume that the data elements x1, . . . , xn lie in some ultrametric:

d(xi, xj) ≤ max(d(xi, x`), d(xj , x`)) ∀i, j, `

can be represented as a weighted tree: a b c d 

...

A weighted graph G is a ground-truth input if there exists an ultrametric and
a non-increasing function f such that similarity(u, v) = f(d(xu, xv)),∀u, v.

The tree represents the ground-truth hierarchical clustering.

Theorem: All the algorithms used in practice output the ground-truth hierarchical
clustering on a ground-truth input.
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Admissible Cost Functions

Ground-Truth Input

A weighted graph G is a ground-truth input if there exists an ultrametric and
a non-increasing function f such that similarity(u, v) = f(d(xu, xv)), ∀u, v.

Admissible Costs Functions

For any ground-truth input, a tree is optimal if and only if it is a ground-truth
tree (i.e.: the ultrametric tree).
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Theorem

A cost function of the form
∑

N∈T (Cut NL, NR ) ·g(NL, NR) is admissible
if and only if

(i) g is symmetric, i.e., g(|A|, |B|) = g(|B|, |A|)
(ii) g is increasing, i.e., g(|A|+ 1, |B|) ≥ g(|A|, |B|)

(iii) Every binary tree has same cost when the input is a unit weight clique

I Dasgupta’s cost function is admissible

g(|A|, |B|) = |A|+ |B|

I There is an entire family of cost functions that are admissible

I In some sense, Dasgupta’s function is the most “natural”

I Rest of Talk: Focus on Dasgupta’s cost function
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Algorithms
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Algorithms
In the worst case, most of the practical algorithms
have bad approximation guarantees

Dasgupta showed his objective function is NP-hard

Charikar and Chatziafratis and Roy and Pokutta
showed that we cannot have constant
approximation under the Small Set Expansion
Hypothesis

Solution 1: Find approximation algorithms
Solution 2: Beyond worst-case analysis
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Hope: Recursive Sparsest Cut

Algorithm: Recursive Sparsest Cut

Input: Weighted graph G = (V,E,w)

{A, V \A} ← cut with sparsity ≤ φ · min
S⊆V

w(S, V \ S)

|S| · |V \ S|
Recurse on subgraphs G[A], G[V \A] to obtain trees TA, TV \A

Output: Return tree whose root has subtrees TA, TV \A

I For Dasgupta’s cost function, O(logn · φ)-approximation [Dasgupta ’16]

I Current best known value for φ is O(
√

logn) [ARV ’09]

I We show O(φ)-approximation (also independently [CC ’17])
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Proof Sketch

Tree T output by the algorithm

ρ

A ∪ C B ∪D

Optimal Tree T ∗

· · ·

γ

A ∪B
C ∪D

w(A ∪ C,B ∪D)

|A ∪ C| · |B ∪D| ≤ φ
w(A ∪B,C ∪D)

|A ∪B| · |C ∪D| = Θ(φ · w(A ∪B,C ∪D)

n2
)

cost(ρ) = (|A|+ |B|+ |C|+ |D|) · w(A ∪ C,B ∪D) = n · w(A ∪ C,B ∪D)

cost(γ and ancestors) ≥ (|A|+ |B|) · w(A ∪B,C ∪D) ≥ n/3 · w(A ∪B,C ∪D)

Charge the cost of ρ to the edges of (A ∪B,C ∪D)
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Proof Sketch

Lemma

The total charge (due to all nodes of T ) for any edge (u, v) is at most
9
2
φmin{ 3

2
|V (LCAT∗(u, v))|, n}

Proof by induction.

Lemma [Dasgupta ’16]

For a tree T ∗, cost(T ∗) =
∑

(u,v)∈E

w((u, v)) · |V (LCAT∗(u, v))|

Combining the two lemmas shows that the recursive sparsest cut gives an
O(φ)-approximation
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I For worst case inputs, Recursive Sparsest Cut gives O(φ)-approximation
I Assuming the “Small Set Expansion Hypothesis”, no polytime O(1)-approx.

Real-world graphs are often not worst-case
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Hierarchical Clustering: Random Graph Models

What is a reasonable model for real-world inputs?

In real world, inputs have some underlying, noisy ground-truth.

Generate graphs using ultrametrics:
Take an ultrametric,

a b c d 

...

Generate an unweighted edge u, v with probability f(dist(u, v)) for some
non-increasing function f : R+ 7→ [0, 1].
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A generalization of the random graphs model for flat clustering

Flat Clustering

I Planted partition/block models
I Higher probability of edge between

same part
I Lower probability of edge across

different parts
I Adjacency matrix for graphs with 2

parts

Hierarchical Clustering

I Planted hierarchy
I Higher probability of edge between

nodes with deeper common ancestor
I Adjacency matrix for graphs with

planted hierarchy
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Hierarchical Clustering: Random Graph Models

I Random graphs with k-bottom level clusters (k can be function of n)

I Each bottom level cluster is sufficiently large

I Hidden (planted) hierarchical structure over the k bottom-level clusters

Can we identify a hierarchical cluster-tree that is an O(1) or (1 + ε)-
approximation w.r.t. Dasgupta’s cost function for such randomly generated
graphs?
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Spectral Algorithm for Planted (Flat) Clusters

Probability Matrix


0.6 0.6 0.6 0.3 0.3 0.3
0.6 0.6 0.6 0.3 0.3 0.3
0.6 0.6 0.6 0.3 0.3 0.3
0.3 0.3 0.3 0.6 0.6 0.6
0.3 0.3 0.3 0.6 0.6 0.6
0.3 0.3 0.3 0.6 0.6 0.6



Adjacency Matrix


0 1 1 0 1 0
1 0 1 0 0 1
1 1 0 0 1 0
0 0 0 0 1 1
1 0 1 1 0 1
0 1 0 1 1 0



I Probability matrix is low rank; adjacency matrix (realized graph) may be full rank

I Projecting adjacency matrix onto top k (e.g., 2) singular vectors reveals planted
partition

27



Spectral Algorithm: Random Hierarchical Graphs

Algorithm: Linkage++

Input: Graph G = (V,E)

- Project adjacency matrixA ofG to top k- singular vectors to obtain xi ∈ Rk

for every i ∈ V
- Perform single linkage on {x1,x2, . . . ,xn} using Euclidean distances in
Rk until k clusters are obtained

- Perform single linkage on the k-clusters using edge density in G between
these clusters

Output: Resulting hierarchical tree

28



Spectral Algorithm: Random Hierarchical Graphs

Theorem. Linkage++ Performance

Provided the following conditions hold:
I The smallest bottom-level cluster has Ω̃(

√
n)-nodes

I Each probability is ω(
√

logn/n)

Then the Linkage++ outputs a tree with cost at most (1 + ε)OPT with respect
to the Dasgupta cost function with probability at least 1− o(1).

I Proof involves results from McSherry (2001) combined with analysis of linkage
algorithms

I Different algorithm using semi-definite programming extends to wider ranges of
semi-random graph models
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Back to practice

Evaluation of algorithms on synthetic (planted hierarchical random graphs) and a
few UCI datasets

Report Dasgupta cost and classification error for various algorithms

I Linkage++

I PCA+ (perform PCA and then average linkage)

I Sngl (Single linkage directly on graph)

I Cmpl (Complete linkage directly on graph)

I Dnsty (Average linkage directly on graph)
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Experimental Results: UCI Datasets
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Experimental Results: Synthetic Data
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Conclusion

I Hierarchical clustering is a fundamental problem in data analysis that has
mainly been studied through procedures rather than as an optimization problem

I Axiomatic study of admissible cost functions, provides a way to analyse
quantitatively the performance of algorithms

I Efficient approximation algorithm for Dasgupta’s cost function based on
recursive sparsest-cut. Cannot get constant factor assuming SSEH.

I Beyond worst-case analyis:
I Random graphs with planted hierarchies
I Linkage++ (Spectral methods + linkage algorithms) gives

(1 + ε)-approximation with high probability and efficient in practice
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Open Questions

I Open Question: Improve the definition of real-world inputs for hierarchical
clustering (maybe based on the stability conditions for flat clustering)

I Open Question: (semi-)streaming algorithms for real-world inputs
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