Community Detection

fundamental limits & efficient algorithms



Community Detection

« From graph of node-to-node interactions, identify groups of similar
nodes

Example: Graph of US political blogs’ citations [Adamic & Glance 2005]



Application 1: contact recommendation in
online social networks

Data: “friendship” graph

facebook &' [EEEE IR
e |
I ssssssss hot”popularity”invite“pauseanimaﬁonsl E erecommend members Of
00 06 ©® “egn® | user’s implicit community
; 0009 |
s 3 rec Y © |
“ 99 ok @ ‘LW@@@‘ & :
@ « @g 8%, e ) |
¢ %D 0 @ @ 0"*@@ |
o o= L |
r") \K/ °0 @ Q 6 % . :
5) L e 5 @ |
€0.°% - © g |

Varlauuil. DA > LU-U avele I ng aITII'IIe”: Spot groups of suspect persons
meeting regularly in unusual places



Application 2: item recommendation to
users

Data: {user-item} matrix
Example: Netflix prize dataset—> {user-movie} ratings
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Application 3: categorizing chemical
reactives in biology

Data: sets of chemicals
and reactions involving them
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Jeong, H., et al., Lethality and centrality in protein networks. Nature, 2001 4'11'(6’§ﬂ33):‘_|37.'41‘-2.
Rual, J.F., et al., Towards a proteome-scale map of the human protein-protein interaction
network. Nature, 2005. 437(7062): p. 1173-8.

More generally: Knowledge graph as generic representation of data
A1 has with B1 interaction of type C1
A2 has with B2 interaction of type C2


http://europepmc.org/abstract/MED/11333967
http://europepmc.org/abstract/MED/16189514
http://europepmc.org/abstract/MED/16189514

End goal: Algorithms with good accuracy at low computation cost

Outline:
— An algorithm
— Its performance when signal is strong

— Fundamental limits and better algorithms when signal is weak



Typical algorithm for community detection:
first embed, then cluster

Embedding
space (here
2D)




How to cluster

K-means clustering [Lloyd 1957]

Initialization: start with K centers placed at random

1) Cluster points according to their nearest center

2) Update center position to center of mass of associated
points
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[llustration in dimension 2 on Netflix
dataset
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How to embed:
The basic recipe for dimension reduction

oarl Pearson’s Principal Components Analysis (PCA) 3
“On Lines and Planes of Closest Fit to Systems of Points in Space", 1901,

! Best 1D-fit “ pest 2D-it

Qv

Data vectors z;, ..., Z, | imensional space

Linear Algebra ahead! Data matrix: Z = [z, |z5] ... |2, ]

D-dz""qensional subspace that best approximates data vectors:

Obtained from eigenvectors x4, ..., xp, of ZZ" correspondingto its D largest
eigenvalues



Spectral Embedding

eo° Data representation by adjacency matrix A of graph:
1 0

0 ‘ Column: Data of
\ &) |1 0 ¢ corresponding node
0O 1 0
1

1
- Encodes paths in graph: Af,, = number of paths of length ¢ from u to v

0

42 — 1 1 1
O 2 1 1
@/@ 11 20
1 1 0 2
* (eigenvector,eigenvalue) (x, \) pair of A verifiesfor all ¢ :

Lx, = 2, x, X number of paths of length t from u to v



Spectral Embedding

e Principal Components Analysis”:

From matrix A, extract D normed eigenvectors x4, ..., xp correspondingto D largest
eigenvalues || = - = |Lp|

—>Vectors Z,, in D-dimensional space closest to column vectors of A :
Zy = X1 (WAx1 + -+ xp(WApxp

- Spectral embedding: form D-dimensional node representatives
Yu = {xiW)}iz1.p



[llustration in dimension 2 on Netflix
dataset
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- How good is this method?
- Should we replace adjacency by other matrix?

- How do amount & quality of data affect achievable
accuracy?



The need for generative models of data

Empirical comparison of algorithms on specific datasets: necessary, but
— provides only limited understanding of their merits

The problem of ground truth: W :
Where are the true Democrats? . =3

Analysis of algorithms on data from generative model:

— enables to quantify quality of algorithms
— reveals fundamental limits on feasibility of community detection

— guides design of new algorithms



The Stochastic Block Model
[Holland-Laskey-Leinhardt’83]

e Nodes in block 1

Nodes in
block 2

odes in
block 3

* n nodes, partitioned into blocks
Edge between nodes u, v present at random with probability
depending only on their blocks k(u), k(v)

e n>1



Schematic view of community detection

Signal: node blocks k(u) i A/Slgnal matrix

Alternatively, block matrix of edge probabilities {

‘ @/\

&
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Observation: adjacency matrix A . /> A= |[JM[]| +noise
OCOm

[ P [

Extraction of signal: estimators k(1) of node blocks,
Accuracy: fraction of correctly classified nodes

= A high-dimensional statistical inference problem
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Efficiency of spectral approach
in a strong-signal regime
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One word on random matrices

oStudy initiated by Eugene Wigner (1955)

Wigner’s semi-circle law [Wigner’55]:

Spectrum of symmetric n X n matrix with random Gaussian entries with zero
2

mean and variance % is supported in [—20, 20, with asymptotic distribution

dFSidx
S e B




Efficiency of spectral approach
in a strong-signal regime

. . . . d
oNoise matrix in our observations: elements of variance O —):

- eigenvalues of order O(\/H) when d = Q(Inn); [Feige-Ofek 2005]
(a result expected in view of Wigner’s semi-circle law)

Spectrum of signal matrix E E H : eigenvalues of order d
O0OMm

2For d = Q(Inn), spectrum of noise negligible compared to spectrum of
signal

—Spectral method correctly clusters all but a vanishing fraction of nodes
(by results on perturbation of eigenvalues and eigenvectors)



Efficiency of spectral approach
in a strong-signal regime
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Weaker signal: useful information, if any remains,
is no longer concentrated in a few eigenvectors



Fundamental limits to community detection:
Low signhal regime, d = O(1)

el he insight from statistical physics:
[Decelle-Krzakala-Moore-Zdeborova 2011] Conjecture

* There is a phase where the observations contais no information, and no
estimators k(1) can do better than random guess:

Community Detection is information-theoreticallyimpossible

 There is a phase where better-than-random detection can be achieved in
polynomial-time

Community Detection is feasible from both informational and
computational viewpoints



Fundamental limits to community detection:
Low sighal regime, d = O(1)

a/n m/2

[
lllustration in a symmetric two-communities scenario:

a/n Ln/2

—b)? _ -
;(zaﬂ)?) < 1, no estimator k can do better than random guess

(1/2 of nodes misclassified)

* Fort:=

= Below this threshold, CD is information-theoretically impossible

e Fort > 1, better-than-random detection can be achieved in polynomial-
time

— Above this threshold, CD is feasible from both informational and
computational viewpoints



The argument for feasibility:
fixing the spectral method

o
* First approach (LM’13]: consider instead matrix S where S,,,, : number of
self-avoiding walks of length ¢ in graph connecting u to v

o> Y

- “Nice” spectrum for suitable t : eigenvectors enable better-than-random
(a—b)?
2(a+b)

node classification whenever 7: =

- Polynomial-time, but counting self-avoiding paths is cumbersome



Alternative: “Spectral Redemption”
[Krzakala-Moore-Mossel-Neeman-Sly-Zdeborova-Zhang 2013]

eNon-backtracking matrix B:

Defined on oriented edges uv for (u, V)€E : By xy = Ly=ylyzy

oo

- Asymmetric, such that Bé‘f = number of non-backtracking paths
on G of length k+1 starting at e and ending at f

e

Method: obtain leading eigenvectors of B and project them into
node-indexed vectors to perform embedding

o0——0—0




Spectrum of non-backtracking matrix,

stochastic block model
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Non-backtracking spectra of stochastic
block models [Bordenave-Lelarge-LM, 2015]

4| |ty | EEIE
o Uy, sy, |l == |u,| : eigenvalues of signal matrix
' ' OO

-2 If ul-z > 1, then B has eigenvalue A close to ; and corresponding
eigenvector is correlated with underlying blocks

The rest of B’s spectrum lies in the disk {|Z|2 < M1}

Implies better-than-random detection feasible in polynomial time whenever
there exists i > 1 such that uiz >, as predicted in [KMMNSZZ’13]

— The so-called Kesten-Stigum condition, which generalizes condition 7 >
1 to more than two communities



Spectrum of non-backtracking matrix,
political blogs




Conjectured phase diagram for community

detection at low signal
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Conclusions

d Community Detection motivates search for new algorithms

- Led to spectral methods with self-avoiding & non-backtracking path
counts, but others are yet to be invented

d Community Detection in Stochastic Block Model: rich playground for
analysis of computational complexity with methods of statistical
physics and probability theory

- What can be said about the hard phase???



BACKUP



Spectrum of non-backtracking matrix
Erdés-Renyi graph (1 community)
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The argument for impossibility
[Mossel-Neeman-Sly 2012]

eAn easier problem: predicting the block k(1) of some node, if one were given
the blocks & (v) of nodes v at some large graph distance

e— Typical node ¢

”
”

=l=Y=
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S - OO0 O © O Nodes at large distance

from node u

— This corresponds to so-called tree reconstruction problem: predict trait of
ancestor from observed traits of far-away descendants

- Phase transition on feasibility of tree reconstruction characterizedin
[Evans-Kenyon-Peres-Schulman’00]



Ramanujan graphs
[Lubotzky-Phillips-Sarnak’88]



Corollary:
Erdds-Renyi graphs are nearly Ramanujan



Open questions for detection in SBM’s
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