Streaming Algorithms for the Set Cover Problem

Adi Rosén

CNRS

Collège de France, June 2018

• Huge data sets:

• Huge data sets:

meteorology, genomics, social networks,...

• IBM, 2012: 2.5 exabytes (2.5×10^{18}) of data created every day

Huge data sets:

- IBM, 2012: 2.5 exabytes (2.5×10^{18}) of data created every day
- World's per-capita capacity to store information doubles every 40 months since the 1987 [Hilbert, López 2011]

Huge data sets:

- IBM, 2012: 2.5 exabytes (2.5×10^{18}) of data created every day
- World's per-capita capacity to store information doubles every 40 months since the 1987 [Hilbert, López 2011]
- Algorithmic challenges: storage, communication, analysis

• Huge data sets:

- IBM, 2012: 2.5 exabytes (2.5×10^{18}) of data created every day
- World's per-capita capacity to store information doubles every 40 months since the 1987 [Hilbert, López 2011]
- Algorithmic challenges: storage, communication, analysis
- The distributed approach: many servers, massively parallel algorithms
 - Storing the whole available data

• Huge data sets:

- IBM, 2012: 2.5 exabytes (2.5×10^{18}) of data created every day
- World's per-capita capacity to store information doubles every 40 months since the 1987 [Hilbert, López 2011]
- Algorithmic challenges: storage, communication, analysis
- The distributed approach: many servers, massively parallel algorithms
 - Storing the whole available data
- Today: algorithms that store a small fraction of the available data

- 2 The set-cover problem
- (some of the) Results

4 (some of the) Techniques

- Single pass, semi-streaming algorithm (unweighted case)
- Matching lower bound(s)

5 Conclusions and open problems

- Input presented piece-by-piece as a sequence (aka stream) of items
 - adversarial order

- Input presented piece-by-piece as a sequence (aka stream) of items
 - adversarial order
- $\bullet\,$ Algorithms with memory size $\ll\,$ input size
 - can store only a small fraction of the input
 - memory size typically independent of length of stream

- Input presented piece-by-piece as a sequence (aka stream) of items
 - adversarial order
- $\bullet\,$ Algorithms with memory size $\ll\,$ input size
 - can store only a small fraction of the input
 - memory size typically independent of length of stream
- Algorithm required to return, at the end of the stream, "good" output

- Input presented piece-by-piece as a sequence (aka stream) of items
 - adversarial order
- $\bullet\,$ Algorithms with memory size $\ll\,$ input size
 - can store only a small fraction of the input
 - memory size typically independent of length of stream
- Algorithm required to return, at the end of the stream, "good" output
- Questions:
 - Interplay between the quality of the output and the memory size.

- Input presented piece-by-piece as a sequence (aka stream) of items
 - adversarial order
- $\bullet\,$ Algorithms with memory size $\ll\,$ input size
 - can store only a small fraction of the input
 - memory size typically independent of length of stream
- Algorithm required to return, at the end of the stream, "good" output
- Questions:
 - Interplay between the quality of the output and the memory size.
 - What is the run-time complexity per input item? In total (amortized) ?

- Input presented piece-by-piece as a sequence (aka stream) of items
 - adversarial order
- $\bullet\,$ Algorithms with memory size $\ll\,$ input size
 - can store only a small fraction of the input
 - memory size typically independent of length of stream
- Algorithm required to return, at the end of the stream, "good" output
- Questions:
 - Interplay between the quality of the output and the memory size.
 - What is the run-time complexity per input item? In total (amortized) ?
 - Interplay between the quality of the output and the number of passes.

- Input presented piece-by-piece as a sequence (aka stream) of items
 - adversarial order
- $\bullet\,$ Algorithms with memory size $\ll\,$ input size
 - can store only a small fraction of the input
 - memory size typically independent of length of stream
- Algorithm required to return, at the end of the stream, "good" output
- Questions:
 - Interplay between the quality of the output and the memory size.
 - What is the run-time complexity per input item? In total (amortized) ?
 - Interplay between the quality of the output and the number of passes.
- Problems:
 - Selection of k^{th} largest element [Munro, Paterson 1980]
 - Estimating frequency moments [Alon, Matias, Szegedy 1996]
 - Finding heavy hitters [Karp, Papadimitriou, Shenker 2003]
 - Counting distinct elements [Kane, Nelson, Woodruff 2010]
 - Checking balanced parentheses [Magniez, Mathieu, Nayak 2010]

• Input:
$$G = (V, E), n = |V|, m = |E|$$

• Input:
$$G = (V, E)$$
, $n = |V|$, $m = |E|$

• Input order:

- edges vs. nodes
- adversarial vs. random

- Input: G = (V, E), n = |V|, m = |E|
- Input order:
 - edges vs. nodes
 - adversarial vs. random

- Input: G = (V, E), n = |V|, m = |E|
- Input order:
 - edges vs. nodes
 - adversarial vs. random

- Input: G = (V, E), n = |V|, m = |E|
- Input order:
 - edges vs. nodes
 - adversarial vs. random

- Input: G = (V, E), n = |V|, m = |E|
- Input order:
 - edges vs. nodes
 - adversarial vs. random

- Input: G = (V, E), n = |V|, m = |E|
- Input order:
 - edges vs. nodes
 - adversarial vs. random

- Input: G = (V, E), n = |V|, m = |E|
- Input order:
 - edges vs. nodes
 - adversarial vs. random

- Input: G = (V, E), n = |V|, m = |E|
- Input order:
 - edges vs. nodes
 - adversarial vs. random

- Input: G = (V, E), n = |V|, m = |E|
- Input order:
 - edges vs. nodes
 - adversarial vs. random
- output size often depends on input size

- Input: G = (V, E), n = |V|, m = |E|
- Input order:
 - edges vs. nodes
 - adversarial vs. random
- output size often depends on input size
- Memory size
 - o(|G|) bits (sublinear)
 - $n \log^{O(1)} m$ bits (a.k.a. semi-streaming)

- Input: G = (V, E), n = |V|, m = |E|
- Input order:
 - edges vs. nodes
 - adversarial vs. random
- output size often depends on input size
- Memory size
 - o(|G|) bits (sublinear)
 - $n \log^{O(1)} m$ bits (a.k.a. semi-streaming)
- Problems (semi-streaming setting):

- Input: G = (V, E), n = |V|, m = |E|
- Input order:
 - edges vs. nodes
 - adversarial vs. random
- output size often depends on input size
- Memory size
 - o(|G|) bits (sublinear)
 - $n \log^{O(1)} m$ bits (a.k.a. semi-streaming)
- Problems (semi-streaming setting):
 - Distances and diameter [Feigenbaum, Kannan, McGregor, Suri, Zhang 2005]
 - Constructing spanners and shortest path trees [Feigenbaum, Kannan, McGregor, Suri, Zhang 2008]
 - Maximum matching [McGregor 2005; Epstein,Levin,Mestre,Segev 2010; Crouch,Stubbs 2014]
 - Constructing spectral sparsifiers [Ahn, Guha 2009; Kelner, Levin 2013]
 - Maximum Independent Set
 - [Halldórsson, Halldórsson, Losievskaja, Szegedy 2010]

Adi Rosén (CNRS)

4 / 23

- 2 The set-cover problem
- 3 (some of the) Results
- ④ (some of the) Techniques
 - Single pass, semi-streaming algorithm (unweighted case)
 - Matching lower bound(s)
- 5 Conclusions and open problems

- Universe \mathcal{U} of *items*; $|\mathcal{U}| = n$
- Collection S of subsets $S \subseteq I$; |S| = m.

- Universe \mathcal{U} of *items*; $|\mathcal{U}| = n$
- Collection S of subsets $S \subseteq I$; |S| = m.
- Output:
 - Subcollection $\mathcal{C} \subseteq \mathcal{S}$ that covers $\mathcal{U}: \cup_{c \in \mathcal{C}} \mathcal{C} = \mathcal{U}$
 - $\bullet \mbox{ minimize } |\mathcal{C}|$

- Universe \mathcal{U} of *items*; $|\mathcal{U}| = n$
- Collection S of subsets $S \subseteq I$; |S| = m.
- Output:
 - Subcollection $\mathcal{C} \subseteq \mathcal{S}$ that covers $\mathcal{U}: \cup_{c \in \mathcal{C}} \mathcal{C} = \mathcal{U}$
 - $\bullet \mbox{ minimize } |\mathcal{C}|$
- NP-hard [Karp 1972]
- Approximable within $1 + \ln n$ [Johnson 1974]
- Not approximable within $(1 \epsilon) \ln n$ for any $\epsilon > 0$ [Feige 1998]

- Universe \mathcal{U} of *items*; $|\mathcal{U}| = n$
- Collection S of subsets $S \subseteq I$; |S| = m.
- Output:
 - Subcollection $\mathcal{C}\subseteq\mathcal{S}$ that covers $\mathcal{U}\colon \cup_{c\in\mathcal{C}}\mathcal{C}=\mathcal{U}$
 - $\bullet \mbox{ minimize } |\mathcal{C}|$
- NP-hard [Karp 1972]
- Approximable within $1 + \ln n$ [Johnson 1974]
- Not approximable within $(1 \epsilon) \ln n$ for any $\epsilon > 0$ [Feige 1998]
- "...a problem whose study has led to the development of fundamental techniques for the entire field of approximation algorithms" [Vazirani 2001]

Minimum set-cover as a (hyper)graph problem

- Input: hypergraph G = (V, E)
 - V = set of *n* nodes
 - $E = \text{set of } m \text{ hyperedges } e \subseteq V$

Minimum set-cover as a (hyper)graph problem

- Input: hypergraph G = (V, E)
 - V = set of *n* nodes
 - $E = \text{set of } m \text{ hyperedges } e \subseteq V$
- Output: edge subset $F \subseteq E$ that covers V, i.e., $\bigcup_{e \in F} e = V$
- Input: hypergraph G = (V, E)
 - V = set of *n* nodes
 - $E = \text{set of } m \text{ hyperedges } e \subseteq V$
- Output: edge subset $F \subseteq E$ that covers V, i.e., $\bigcup_{e \in F} e = V$
- minimize |F|

- Input: hypergraph G = (V, E)
 - V = set of *n* nodes
 - $E = \text{set of } m \text{ hyperedges } e \subseteq V$
- Output: edge subset $F \subseteq E$ that covers V, i.e., $\bigcup_{e \in F} e = V$
- minimize |*F*|
- Streaming model:
 - G is presented as a stream e_1, \ldots, e_m , each e_t given with its nodes.
 - Edge e_t identified by $O(\log m)$ bit $ID(e_t)$ (e.g., t)

- Input: hypergraph G = (V, E)
 - V = set of *n* nodes
 - $E = \text{set of } m \text{ hyperedges } e \subseteq V$
- Output: edge subset $F \subseteq E$ that covers V, i.e., $\bigcup_{e \in F} e = V$
- minimize |F|
- Streaming model:
 - G is presented as a stream e_1, \ldots, e_m , each e_t given with its nodes.
 - Edge e_t identified by $O(\log m)$ bit $ID(e_t)$ (e.g., t)

- Input: hypergraph G = (V, E)
 - V = set of *n* nodes
 - $E = \text{set of } m \text{ hyperedges } e \subseteq V$
- Output: edge subset $F \subseteq E$ that covers V, i.e., $\bigcup_{e \in F} e = V$
- minimize |F|
- Streaming model:
 - G is presented as a stream e_1, \ldots, e_m , each e_t given with its nodes.
 - Edge e_t identified by $O(\log m)$ bit $ID(e_t)$ (e.g., t)

- Input: hypergraph G = (V, E)
 - V = set of *n* nodes
 - $E = \text{set of } m \text{ hyperedges } e \subseteq V$
- Output: edge subset $F \subseteq E$ that covers V, i.e., $\bigcup_{e \in F} e = V$
- minimize |F|
- Streaming model:
 - G is presented as a stream e_1, \ldots, e_m , each e_t given with its nodes.
 - Edge e_t identified by $O(\log m)$ bit $ID(e_t)$ (e.g., t)

- Input: hypergraph G = (V, E)
 - V = set of *n* nodes
 - $E = \text{set of } m \text{ hyperedges } e \subseteq V$
- Output: edge subset $F \subseteq E$ that covers V, i.e., $\bigcup_{e \in F} e = V$
- minimize |F|
- Streaming model:
 - G is presented as a stream e_1, \ldots, e_m , each e_t given with its nodes.
 - Edge e_t identified by $O(\log m)$ bit $ID(e_t)$ (e.g., t)

- Input: hypergraph G = (V, E)
 - V = set of *n* nodes
 - $E = \text{set of } m \text{ hyperedges } e \subseteq V$
- Output: edge subset $F \subseteq E$ that covers V, i.e., $\bigcup_{e \in F} e = V$
- minimize |F|
- Streaming model:
 - G is presented as a stream e_1, \ldots, e_m , each e_t given with its nodes.
 - Edge e_t identified by $O(\log m)$ bit $ID(e_t)$ (e.g., t)

- Input: hypergraph G = (V, E)
 - V = set of *n* nodes
 - $E = \text{set of } m \text{ hyperedges } e \subseteq V$
- Output: edge subset $F \subseteq E$ that covers V, i.e., $\bigcup_{e \in F} e = V$
- minimize |F|
- Streaming model:
 - G is presented as a stream e_1, \ldots, e_m , each e_t given with its nodes.
 - Edge e_t identified by $O(\log m)$ bit $ID(e_t)$ (e.g., t)

- Input: hypergraph G = (V, E)
 - V = set of *n* nodes
 - $E = \text{set of } m \text{ hyperedges } e \subseteq V$
- Output: edge subset $F \subseteq E$ that covers V, i.e., $\bigcup_{e \in F} e = V$
- minimize |F|
- Streaming model:
 - G is presented as a stream e_1, \ldots, e_m , each e_t given with its nodes.
 - Edge e_t identified by $O(\log m)$ bit $ID(e_t)$ (e.g., t)

Definition

For G = (V, E), and $0 < \delta \le 1$, $F \subseteq E$ is an edge δ -cover of V if $|\{v \in V : \exists f \in F, v \in f\}| \ge \delta \cdot |V|$.

Definition

For G = (V, E), and $0 < \delta \le 1$, $F \subseteq E$ is an edge δ -cover of V if $|\{v \in V : \exists f \in F, v \in f\}| \ge \delta \cdot |V|.$

• edge *cover* = edge 1-cover

Definition

For G = (V, E), and $0 < \delta \le 1$, $F \subseteq E$ is an edge δ -cover of V if $|\{v \in V : \exists f \in F, v \in f\}| \ge \delta \cdot |V|$.

- edge *cover* = edge 1-cover
- Generalization of the set cover problem
 - $\bullet~{\rm Given}~{\cal G}~{\rm and}~\delta$
 - Find an $F \subseteq E$ that is an edge δ -cover for V, and minimizes |F|.

• Recall: Each edge (set) *e* is associated with ID(*e*).

- Recall: Each edge (set) e is associated with ID(e).
- "regular" setting:
 - Given $\{ID(e) : e \in F\}$ easy to check for given $v \in V$ if v covered by F.

- Recall: Each edge (set) e is associated with ID(e).
- "regular" setting:

• Given $\{ID(e) : e \in F\}$ easy to check for given $v \in V$ if v covered by F.

- Streaming setting:
 - This cannot be checked given only $\{ID(e) : e \in F\}$.

- Recall: Each edge (set) e is associated with ID(e).
- "regular" setting:
 - Given $\{ID(e) : e \in F\}$ easy to check for given $v \in V$ if v covered by F.
- Streaming setting:
 - This cannot be checked given only $\{ID(e) : e \in F\}$.
- (some) streaming algorithm output a δ-cover certificate χ: partial function from V to ID(E) that satisfies

- Recall: Each edge (set) e is associated with ID(e).
- "regular" setting:
 - Given $\{ID(e) : e \in F\}$ easy to check for given $v \in V$ if v covered by F.
- Streaming setting:
 - This cannot be checked given only $\{ID(e) : e \in F\}$.
- (some) streaming algorithm output a δ-cover certificate χ: partial function from V to ID(E) that satisfies
 - if $\chi(v) = ID(e)$, then $v \in e$ (soundness)
 - $|\text{Dom}(\chi)| \ge \delta n \ (\delta \text{-coverage})$

- Recall: Each edge (set) e is associated with ID(e).
- "regular" setting:

• Given $\{ID(e) : e \in F\}$ easy to check for given $v \in V$ if v covered by F.

- Streaming setting:
 - This cannot be checked given only $\{ID(e) : e \in F\}$.
- (some) streaming algorithm output a δ-cover certificate χ: partial function from V to ID(E) that satisfies
 - if $\chi(v) = ID(e)$, then $v \in e$ (soundness)
 - $|\text{Dom}(\chi)| \ge \delta n \ (\delta \text{-coverage})$

- Recall: Each edge (set) e is associated with ID(e).
- "regular" setting:

• Given $\{ID(e) : e \in F\}$ easy to check for given $v \in V$ if v covered by F.

- Streaming setting:
 - This cannot be checked given only $\{ID(e) : e \in F\}$.
- (some) streaming algorithm output a δ-cover certificate χ: partial function from V to ID(E) that satisfies
 - if $\chi(v) = ID(e)$, then $v \in e$ (soundness)
 - $|\text{Dom}(\chi)| \ge \delta n \ (\delta \text{-coverage})$
 - objective: minimize $|Im(\chi)|$

$\chi(v)$	7	3	\perp	3	4	\perp	3	3	7	4
V	v_1	<i>v</i> ₂	V ₃	<i>V</i> 4	<i>V</i> 5	V ₆	V7	<i>V</i> 8	V9	<i>v</i> ₁₀

The streaming model

2 The set-cover problem

(some of the) Results

(some of the) Techniques

- Single pass, semi-streaming algorithm (unweighted case)
- Matching lower bound(s)

5 Conclusions and open problems

There is a semi-streaming algorithm that on an input hypergraph G = (V, E) uses $O(n \log n)$ space, and for every $0 \le \epsilon < 1$ produces a $(1 - \epsilon)$ -cover certificate χ_{ϵ} for G such that

$$|\text{Im}(\chi_{\epsilon})| = O\left(\min\left\{1/\epsilon, \sqrt{n}\right\}\right) \cdot |OPT| \;,$$

There is a semi-streaming algorithm that on an input hypergraph G = (V, E) uses $O(n \log n)$ space, and for every $0 \le \epsilon < 1$ produces a $(1 - \epsilon)$ -cover certificate χ_{ϵ} for G such that

$$|\text{Im}(\chi_{\epsilon})| = O\left(\min\left\{1/\epsilon, \sqrt{n}\right\}\right) \cdot |OPT| \;,$$

where OPT is the optimal edge cover for G.

• this statement assuming $m = n^{O(1)}$

There is a semi-streaming algorithm that on an input hypergraph G = (V, E) uses $O(n \log n)$ space, and for every $0 \le \epsilon < 1$ produces a $(1 - \epsilon)$ -cover certificate χ_{ϵ} for G such that

$$|\text{Im}(\chi_{\epsilon})| = O\left(\min\left\{1/\epsilon, \sqrt{n}\right\}\right) \cdot |OPT| \;,$$

- this statement assuming $m = n^{O(1)}$
- extends to the weighted case: benefit for nodes; costs for sets

There is a semi-streaming algorithm that on an input hypergraph G = (V, E) uses $O(n \log n)$ space, and for every $0 \le \epsilon < 1$ produces a $(1 - \epsilon)$ -cover certificate χ_{ϵ} for G such that

$$|\text{Im}(\chi_{\epsilon})| = O\left(\min\left\{1/\epsilon, \sqrt{n}\right\}\right) \cdot |OPT| \;,$$

- this statement assuming $m = n^{O(1)}$
- extends to the weighted case: benefit for nodes; costs for sets
- run-time per edge $e_t \in E$ is $O(|e_t| \log |e_t|)$

There is a semi-streaming algorithm that on an input hypergraph G = (V, E) uses $O(n \log n)$ space, and for every $0 \le \epsilon < 1$ produces a $(1 - \epsilon)$ -cover certificate χ_{ϵ} for G such that

$$|\mathrm{Im}(\chi_\epsilon)| = O\left(\min\left\{1/\epsilon,\sqrt{n}
ight\}
ight) \cdot |\mathcal{OPT}| \;,$$

If a randomized streaming algorithm uses memory of size $o(n^{3/2})$, and for every $\epsilon \ge 1/\sqrt{n}$, guarantees to output a $(1 - \epsilon)$ -cover certificate χ with $\mathbb{E}[|\operatorname{Im}(\chi)|] = \rho_{\epsilon} \cdot |\operatorname{Opt}|$, then $\rho_{\epsilon} = \Omega(1/\epsilon)$.

If a randomized streaming algorithm uses memory of size $o(n^{3/2})$, and for every $\epsilon \geq 1/\sqrt{n}$, guarantees to output a $(1 - \epsilon)$ -cover certificate χ with $\mathbb{E}[|\mathrm{Im}(\chi)|] = \rho_{\epsilon} \cdot |\mathrm{Opt}|$, then $\rho_{\epsilon} = \Omega(1/\epsilon)$.

If a randomized streaming algorithm uses memory of size $o(n^{3/2})$, and for every $\epsilon \ge 1/\sqrt{n}$, guarantees to output a $(1 - \epsilon)$ -cover certificate χ with $\mathbb{E}[|\mathrm{Im}(\chi)|] = \rho_{\epsilon} \cdot |\mathrm{Opt}|$, then $\rho_{\epsilon} = \Omega(1/\epsilon)$.

If a randomized streaming algorithm uses memory of size $o(n^{3/2})$, and for an $\epsilon \ge 1/\sqrt{n}$ guarantees to output a $(1 - \epsilon)$ -cover <u>certificate</u> χ with $\mathbb{E}[|\mathrm{Im}(\chi)|] = \rho_{\epsilon} \cdot |\mathrm{Opt}|$, then $\rho_{\epsilon} = \Omega(1/\epsilon)$.

Theorem

Fix some constant real $\alpha > 0$.

If a randomized streaming algorithm uses memory of size $o(n^{1+\alpha})$, and for an $\epsilon \ge n^{-1/2+\alpha}$ guarantees to output a $(1-\epsilon)$ -cover F with $\mathbb{E}[|F|] = \rho_{\epsilon} \cdot |\mathsf{Opt}|$, then $\rho_{\epsilon} = \Omega(\frac{\log \log n}{\log n} \cdot \frac{1}{\epsilon})$.

For any $\alpha = o(\sqrt{n}/\log n)$, and m = poly(n), any randomized single-pass streaming algorithm that α -approximates the set cover problem with probability at least 2/3 requires $\Omega(mn/\alpha)$ bits of space.

For any $\alpha = o(\sqrt{n}/\log n)$, and m = poly(n), any randomized single-pass streaming algorithm that α -approximates the set cover problem with probability at least 2/3 requires $\Omega(mn/\alpha)$ bits of space.

Theorem

For any $\alpha = o(\sqrt{n/\log n})$, and m = poly(n), any randomized single-pass streaming algorithm that α -approximates the size of the optimal set cover with probability at least 0.9 requires $\Omega(mn/\alpha^2)$ bits of space.

For any $\alpha = o(\sqrt{n}/\log n)$, and m = poly(n), any randomized single-pass streaming algorithm that α -approximates the set cover problem with probability at least 2/3 requires $\Omega(mn/\alpha)$ bits of space.

Theorem

For any $\alpha = o(\sqrt{n/\log n})$, and m = poly(n), any randomized single-pass streaming algorithm that α -approximates the size of the optimal set cover with probability at least 0.9 requires $\Omega(mn/\alpha^2)$ bits of space.

- Matching deterministic upper bound of set cover
- Matching <u>randomized</u> upper bound for estimating the size

For any $\alpha = o(\sqrt{n}/\log n)$, and m = poly(n), any randomized single-pass streaming algorithm that α -approximates the set cover problem with probability at least 2/3 requires $\Omega(mn/\alpha)$ bits of space.

Theorem

For any $\alpha = o(\sqrt{n/\log n})$, and m = poly(n), any randomized single-pass streaming algorithm that α -approximates the size of the optimal set cover with probability at least 0.9 requires $\Omega(mn/\alpha^2)$ bits of space.

- Matching <u>deterministic</u> upper bound of set cover
- Matching <u>randomized</u> upper bound for estimating the size
- These results only for 1-covers

For every $p \ge 1$, there is a p-pass semi-streaming deterministic algorithm for weighted $(1 - \epsilon)$ set-cover that returns a cover certificate that approximates the 1-cover up to $O(p \cdot \min\{n^{1/(p+1)}, \epsilon^{-1/p}\})$.

Theorem

Let c > 0 be a constant. If A is a randomized p-pass streaming algorithm for $(1 - \epsilon)$ set cover, 0 < epsilon < 1/2, that for all large enough n and m, returns an α -approximation, $\alpha < \frac{1}{8c(p+1)^2} \cdot \min\{n^{1/(p+1)}, \epsilon^{-1/p}\}$, then A uses $\Omega(n^c/p^3)$ space.

For every $p \ge 1$, there is a p-pass semi-streaming deterministic algorithm for weighted $(1 - \epsilon)$ set-cover that returns a cover certificate that approximates the 1-cover up to $O(p \cdot \min\{n^{1/(p+1)}, \epsilon^{-1/p}\})$.

Theorem

Let c > 0 be a constant. If A is a randomized p-pass streaming algorithm for $(1 - \epsilon)$ set cover, 0 < epsilon < 1/2, that for all large enough n and m, returns an α -approximation, $\alpha < \frac{1}{8c(p+1)^2} \cdot \min\{n^{1/(p+1)}, \epsilon^{-1/p}\}$, then A uses $\Omega(n^c/p^3)$ space.

lower bound on decision problem
Theorem (HIMV)

For every $p \ge 1$, there is a p-pass randomized algorithm for the set-cover problem that uses $\tilde{O}(mn^{1/p})$ space, and with high probability returns an O(p) approximation.

Theorem (HIMV)

For every $p \ge 1$, there is a p-pass randomized algorithm for the set-cover problem that uses $\tilde{O}(mn^{1/p})$ space, and with high probability returns an O(p) approximation.

• Approximation factor degrades with passes (space improves)

Theorem (HIMV)

For every $p \ge 1$, there is a p-pass randomized algorithm for the set-cover problem that uses $\tilde{O}(mn^{1/p})$ space, and with high probability returns an O(p) approximation.

Theorem (A)

For every $p \ge 1$, $\alpha = o(\log n / \log \log n)$, any algorithm that makes p passes, and returns with constant probability an α approximation, uses $\tilde{\Omega}(mn^{1/\alpha}/p)$ space.

Theorem (HIMV)

For every $p \ge 1$, there is a p-pass randomized algorithm for the set-cover problem that uses $\tilde{O}(mn^{1/p})$ space, and with high probability returns an O(p) approximation.

Theorem (A)

For every $p \ge 1$, $\alpha = o(\log n / \log \log n)$, any algorithm that makes p passes, and returns with constant probability an α approximation, uses $\tilde{\Omega}(mn^{1/\alpha}/p)$ space.

• Lower bound applies to estimating the size.

(some of the) Results

(some of the) Techniques

- Single pass, semi-streaming algorithm (unweighted case)
- Matching lower bound(s)

The streaming model

2) The set-cover problem

(some of the) Results

(some of the) Techniques

- Single pass, semi-streaming algorithm (unweighted case)
- Matching lower bound(s)

5 Conclusions and open problems

• Hypergraph $G = (V, E = \{e_1, ..., e_m\})$

- Hypergraph $G = (V, E = \{e_1, \dots, e_m\})$
- streaming stage: $\operatorname{Alg}_{\operatorname{streaming}}(e_1,\ldots,e_m) \longrightarrow$ data structure $\mathcal D$

- Hypergraph $G = (V, E = \{e_1, \dots, e_m\})$
- streaming stage: $\operatorname{Alg}_{\operatorname{streaming}}(e_1,\ldots,e_m) \longrightarrow$ data structure $\mathcal D$
 - space used O(n log n)
 - run-time per edge $e_t \in E$ is $O(|e_t| \log |e_t|)$

- Hypergraph $G = (V, E = \{e_1, ..., e_m\})$
- streaming stage: $\operatorname{Alg}_{\operatorname{streaming}}(e_1,\ldots,e_m) \longrightarrow$ data structure $\mathcal D$
 - space used O(n log n)
 - run-time per edge $e_t \in E$ is $O(|e_t| \log |e_t|)$
- output stage: Alg_{RAM} $(\mathcal{D}, 0 \le \epsilon < 1) \longrightarrow (1 \epsilon)$ -cover certificate χ_{ϵ}

- Hypergraph $G = (V, E = \{e_1, ..., e_m\})$
- streaming stage: $\operatorname{Alg}_{\operatorname{streaming}}(e_1,\ldots,e_m) \longrightarrow$ data structure $\mathcal D$
 - space used O(n log n)
 - run-time per edge $e_t \in E$ is $O(|e_t| \log |e_t|)$
- output stage: Alg_{RAM} $(\mathcal{D}, 0 \leq \epsilon < 1) \longrightarrow (1 \epsilon)$ -cover certificate χ_{ϵ}
 - no additional memory
 - running time $O(n \log n)$.

• Maintains 2 variables for each $v \in V$

- Maintains 2 variables for each $v \in V$
 - $\operatorname{eid}(v) = \operatorname{ID}(e)$ for some $e \in E$ s.t. $v \in e$
 - qlt(v) = integer capturing the quality of e in covering v

- Maintains 2 variables for each $v \in V$
 - $\operatorname{eid}(v) = \operatorname{ID}(e)$ for some $e \in E$ s.t. $v \in e$
 - qlt(v) = integer capturing the quality of *e* in covering *v*
- Initially: $\operatorname{eid}(v) \leftarrow \bot$, $\operatorname{qlt}(v) \leftarrow 0$ for every $v \in V$

- Maintains 2 variables for each $v \in V$
 - $\operatorname{eid}(v) = \operatorname{ID}(e)$ for some $e \in E$ s.t. $v \in e$
 - qlt(v) = integer capturing the quality of e in covering v
- Initially: $\operatorname{eid}(v) \leftarrow \bot$, $\operatorname{qlt}(v) \leftarrow 0$ for every $v \in V$

Definition

 $X \subseteq e_t \text{ is good at time } t \text{ if } \lceil \lg |X| \rceil > \operatorname{qlt}(v) \text{ for every } v \in X.$

- Maintains 2 variables for each $v \in V$
 - $\operatorname{eid}(v) = \operatorname{ID}(e)$ for some $e \in E$ s.t. $v \in e$
 - qlt(v) = integer capturing the quality of e in covering v
- Initially: $\operatorname{eid}(v) \leftarrow \bot$, $\operatorname{qlt}(v) \leftarrow 0$ for every $v \in V$

Definition

 $X \subseteq e_t$ is good at time t if $\lceil \lg |X| \rceil > \operatorname{qlt}(v)$ for every $v \in X$.

Intuitively: the larger X is, "better" is the coverage by $X \subseteq e_t$

- Maintains 2 variables for each $v \in V$
 - $\operatorname{eid}(v) = \operatorname{ID}(e)$ for some $e \in E$ s.t. $v \in e$
 - qlt(v) = integer capturing the quality of e in covering v
- Initially: $\operatorname{eid}(v) \leftarrow \bot$, $\operatorname{qlt}(v) \leftarrow 0$ for every $v \in V$

Definition

 $X \subseteq e_t ext{ is good at time } t ext{ if } \lceil \lg |X| \rceil > \operatorname{qlt}(v) ext{ for every } v \in X.$

Intuitively: the larger X is, "better" is the coverage by $X \subseteq e_t$

- Update rule: upon arrival of edge e_t
 - $X^* \leftarrow \text{largest}$ good subset of e_t

- Maintains 2 variables for each $v \in V$
 - $\operatorname{eid}(v) = \operatorname{ID}(e)$ for some $e \in E$ s.t. $v \in e$
 - qlt(v) = integer capturing the quality of e in covering v
- Initially: $\operatorname{eid}(v) \leftarrow \bot$, $\operatorname{qlt}(v) \leftarrow 0$ for every $v \in V$

Definition

 $X \subseteq e_t ext{ is good at time } t ext{ if } \lceil \lg |X| \rceil > \operatorname{qlt}(v) ext{ for every } v \in X.$

Intuitively: the larger X is, "better" is the coverage by $X \subseteq e_t$

- Update rule: upon arrival of edge et
 - $X^* \leftarrow \text{largest}$ good subset of e_t
 - For every $v \in X^*$: eid $(v) \leftarrow ID(e_t)$; $qlt(v) \leftarrow \lceil \lg |X^*| \rceil$

•
$$e_t = \{v_1, \ldots, v_{12}\}$$

•
$$e_t = \{v_1, \ldots, v_{12}\}$$

$\operatorname{eid}_t(v)$	\perp	\perp	3	1	9	8	6	7	6	24	19	26
$\operatorname{qlt}_t(v)$	0	0	1	2	2	3	5	5	5	7	8	8
$v \in e_t$	<i>v</i> ₁	<i>v</i> ₂	V3	<i>V</i> 4	<i>V</i> 5	V ₆	V7	<i>V</i> 8	V9	<i>v</i> ₁₀	<i>v</i> ₁₁	<i>v</i> ₁₂

•
$$e_t = \{v_1, \ldots, v_{12}\}$$

 X^*

•
$$e_t = \{v_1, \ldots, v_{12}\}$$

- $\operatorname{qlt}_{\infty}(v) = \operatorname{qlt}(v)$ upon termination
- $\operatorname{eid}_{\infty}(v) = \operatorname{eid}(v)$ upon termination

- $\operatorname{qlt}_\infty(\nu) = \operatorname{qlt}(\nu)$ upon termination
- $\operatorname{eid}_{\infty}(v) = \operatorname{eid}(v)$ upon termination
- S(r) = {e ∈ E | ∃v ∈ V s.t. eid_∞(v) = ID(e) and qlt_∞(v) > r}
 i.e., all edges that give high-quality (> r) coverage to at least one node

- $\operatorname{qlt}_\infty(\nu) = \operatorname{qlt}(\nu)$ upon termination
- $\operatorname{eid}_{\infty}(\nu) = \operatorname{eid}(\nu)$ upon termination
- S(r) = {e ∈ E | ∃v ∈ V s.t. eid_∞(v) = ID(e) and qlt_∞(v) > r}
 i.e., all edges that give high-quality (> r) coverage to at least one node
- $l(r) = \{v \in V \mid qlt_{\infty}(v) \le r\}$ i.e., all nodes that have poor $(\le r)$ quality for their coverage

- $S(r) = \{e \in E \mid \exists v \in V \text{ s.t. } \operatorname{eid}_{\infty}(v) = \operatorname{ID}(e) \text{ and } \operatorname{qlt}_{\infty}(v) > r\}$
 - i.e., all edges that give high-quality (> r) coverage to at least one node
- $l(r) = \{v \in V \mid \operatorname{qlt}_{\infty}(v) \leq r\}$
 - i.e., all nodes that have poor $(\leq r)$ quality for their coverage

- $S(r) = \{e \in E \mid \exists v \in V \text{ s.t. } \operatorname{eid}_{\infty}(v) = \operatorname{ID}(e) \text{ and } \operatorname{qlt}_{\infty}(v) > r\}$
 - i.e., all edges that give high-quality (> r) coverage to at least one node

•
$$l(r) = \{v \in V \mid \operatorname{qlt}_{\infty}(v) \leq r\}$$

• i.e., all nodes that have poor $(\leq r)$ quality for their coverage

Given $0 \le \epsilon < 1$:

- $S(r) = \{e \in E \mid \exists v \in V \text{ s.t. } \operatorname{eid}_{\infty}(v) = \operatorname{ID}(e) \text{ and } \operatorname{qlt}_{\infty}(v) > r\}$
 - i.e., all edges that give high-quality (> r) coverage to at least one node

•
$$l(r) = \{v \in V \mid \operatorname{qlt}_{\infty}(v) \leq r\}$$

• i.e., all nodes that have poor $(\leq r)$ quality for their coverage

Given $0 \le \epsilon < 1$:

- If $\epsilon \geq 1/\sqrt{n}$
 - Pick largest integer r^* s.t. $|I(r^*)| \le \epsilon \cdot n$
 - Return $\chi: V \to \operatorname{eid}(E)$ that maps every $v \in V I(r^*)$ to $\operatorname{eid}_{\infty}(v)$.

- $S(r) = \{e \in E \mid \exists v \in V \text{ s.t. } \operatorname{eid}_{\infty}(v) = \operatorname{ID}(e) \text{ and } \operatorname{qlt}_{\infty}(v) > r\}$
 - i.e., all edges that give high-quality (> r) coverage to at least one node

•
$$l(r) = \{v \in V \mid \operatorname{qlt}_{\infty}(v) \leq r\}$$

• i.e., all nodes that have poor $(\leq r)$ quality for their coverage

Given $0 \le \epsilon < 1$:

- If $\epsilon \geq 1/\sqrt{n}$
 - Pick largest integer r^* s.t. $|I(r^*)| \le \epsilon \cdot n$
 - Return $\chi: V \to \operatorname{eid}(E)$ that maps every $v \in V I(r^*)$ to $\operatorname{eid}_{\infty}(v)$.
- If $\epsilon < 1/\sqrt{n}$
 - Return $\chi: V \to \operatorname{eid}(E)$ that maps every $v \in V$ to $\operatorname{eid}_{\infty}(v)$.

•
$$S(r) = \{e \in E \mid \exists v \in V \text{ s.t. } eid_{\infty}(v) = ID(e) \text{ and } qlt_{\infty}(v) > r\}$$

• $l(r) = \{v \in V \mid qlt_{\infty}(v) \le r\}$

Lemma

For every
$$r \in \mathbb{Z}_{\geq 0}$$
, $|I(r)| < 2^{r+1} \cdot |\mathsf{Opt}|$.

Lemma

For every $r \in \mathbb{Z}_{\geq 0}$, $|S(r)| < n/2^{r-1}$.

•
$$S(r) = \{e \in E \mid \exists v \in V \text{ s.t. } eid_{\infty}(v) = ID(e) \text{ and } qlt_{\infty}(v) > r\}$$

• $l(r) = \{v \in V \mid qlt_{\infty}(v) \le r\}$

Lemma

For every
$$r \in \mathbb{Z}_{\geq 0}$$
, $|I(r)| < 2^{r+1} \cdot |\texttt{Opt}|$.

Lemma

For every
$$r \in \mathbb{Z}_{\geq 0}$$
, $|S(r)| < n/2^{r-1}$.

Idea of proof of approximation factor:

•
$$S(r^*) < n/2^{r^*-1} \le \frac{1}{\epsilon} \cdot |I(r^*)| \cdot \frac{1}{2^{r^*-1}} < \frac{4}{\epsilon} \cdot |\mathsf{Opt}|.$$

The streaming model

2) The set-cover problem

(some of the) Results

- Single pass, semi-streaming algorithm (unweighted case)
- Matching lower bound(s)

5 Conclusions and open problems

Theorem (1-coverage)

If a randomized streaming algorithm uses memory of size $o(n^{3/2})$, and guarantees to output a (1)-cover certificate χ with $\mathbb{E}[|\mathrm{Im}(\chi)|] = \rho \cdot |\mathrm{Opt}|$, then $\rho = \Omega(\sqrt{n})$.

Theorem (1-coverage)

If a randomized streaming algorithm uses memory of size $o(n^{3/2})$, and guarantees to output a (1)-cover certificate χ with $\mathbb{E}[|\mathrm{Im}(\chi)|] = \rho \cdot |\mathrm{Opt}|$, then $\rho = \Omega(\sqrt{n})$.

Distribution G over *n*-node hypergraphs (based on affine planes)

Theorem (1-coverage)

If a randomized streaming algorithm uses memory of size $o(n^{3/2})$, and guarantees to output a (1)-cover certificate χ with $\mathbb{E}[|\mathrm{Im}(\chi)|] = \rho \cdot |\mathrm{Opt}|$, then $\rho = \Omega(\sqrt{n})$.

Distribution \mathcal{G} over *n*-node hypergraphs (based on affine planes) • $Opt(\mathcal{G}) = O(1)$ for every $\mathcal{G} \in \mathcal{G}$
Theorem (1-coverage)

If a randomized streaming algorithm uses memory of size $o(n^{3/2})$, and guarantees to output a (1)-cover certificate χ with $\mathbb{E}[|\mathrm{Im}(\chi)|] = \rho \cdot |\mathrm{Opt}|$, then $\rho = \Omega(\sqrt{n})$.

Distribution \mathcal{G} over *n*-node hypergraphs (based on affine planes)

- $\texttt{Opt}({\sf G})={\it O}(1)$ for every ${\it G}\in {\cal G}$
- Every deterministic streaming algorithm with memory o(n^{3/2}) that outputs 1-cover certificate χ has E_G[|Im(χ)|] = Ω(√n).

The streaming model

- 2) The set-cover problem
- (some of the) Results

(some of the) Techniques

- Single pass, semi-streaming algorithm (unweighted case)
- Matching lower bound(s)

5 Conclusions and open problems

Our results [Emek, Rosén 2014]:

Our results [Emek, Rosén 2014]:

Tight results on approximation factor in 1-pass semi-streaming (O(n) space) of (1 - ε) cover certificates.

Our results [Emek, Rosén 2014]:

- Tight results on approximation factor in 1-pass semi-streaming (Õ(n) space) of (1 ε) cover certificates.
- Almost tight results on approximation factor in 1-pass semi-streaming of (1ϵ) covers.

Our results [Emek, Rosén 2014]:

- Tight results on approximation factor in 1-pass semi-streaming (Õ(n) space) of (1 ε) cover certificates.
- Almost tight results on approximation factor in 1-pass semi-streaming of (1ϵ) covers.
- Producing in a streaming setting a data structure, then, for given ϵ , extracting output.

Our results [Emek, Rosén 2014]:

- Tight results on approximation factor in 1-pass semi-streaming (Õ(n) space) of (1 ε) cover certificates.
- Almost tight results on approximation factor in 1-pass semi-streaming of (1ϵ) covers.
- Producing in a streaming setting a data structure, then, for given ϵ , extracting output.

Subsequent work:

• Tight tradeoffs in single pass between sub-linear (o(mn)) space and approximation of 1-covers [Assadi, Khanna, Li 2016].

Our results [Emek, Rosén 2014]:

- Tight results on approximation factor in 1-pass semi-streaming (Õ(n) space) of (1 ε) cover certificates.
- Almost tight results on approximation factor in 1-pass semi-streaming of (1ϵ) covers.
- Producing in a streaming setting a data structure, then, for given ϵ , extracting output.

- Tight tradeoffs in single pass between sub-linear (o(mn)) space and approximation of 1-covers [Assadi, Khanna, Li 2016].
- (Almost) tight tradeoffs between number of passes and approximation in semi-streaming (1ϵ) -covers [Charkrabarti, Wirth 2016]

Our results [Emek, Rosén 2014]:

- Tight results on approximation factor in 1-pass semi-streaming (Õ(n) space) of (1 ε) cover certificates.
- Almost tight results on approximation factor in 1-pass semi-streaming of (1ϵ) covers.
- Producing in a streaming setting a data structure, then, for given ϵ , extracting output.

- Tight tradeoffs in single pass between sub-linear (o(mn)) space and approximation of 1-covers [Assadi, Khanna, Li 2016].
- (Almost) tight tradeoffs between number of passes and approximation in semi-streaming (1ϵ) -covers [Charkrabarti, Wirth 2016]
- (Almost) tight tradeoffs between number of passes and approximation in sub-linear (o(mn)) space 1-cover. [Har-Peleg, Indyk, Mahabadi, Vakilian 2016; Assadi 2017]

• Extend results for sublinear space to $(1 - \epsilon)$ covers.

• Can we approximate the optimal $(1-\epsilon)$ cover ?

Thank You