
Space	&	Time	Efficient	Algorithms	for	
Lipschitz	Problems	

Barna	Saha	
University	of	Massachuse4s	Amherst	
	

Collec9on	of	Some	Basic	Polynomial	
Time	Problems	

•  Longest	Increasing	Subsequence	[Schensted,	
1961]	

•  String	Edit	Distance	Computa9on	
[Levenshtein,	1965]	

•  Context	Free	Grammar	Parsing	[Earley’s	
parser,	CYK,	1968-70]	

•  Language	Edit	Distance	[Aho	&	Peterson,	
1972]	

•  RNA	Folding	[Nussinov,	Jacobson,	1980]	
	

Dynamic	Programming	

1.	Longest	Increasing	Subsequence	[Schensted,	
1961]	

•  Given	a	sequence	of	integers	s[1],	s[2],..,s[n],	find	
a	subsequence	1≤	i1≤	i2≤….	≤	ik	≤	n	such	that																																										
s[i1]	<	s[i2]	<	…..<s[ik]	and	k	is	maximized.	

•  Example	

•  The	longest	increasing	subsequence	has	length	4	

12	3	8	1	9	5	11	10	

1.	Longest	Increasing	Subsequence	
[Schensted,	1961]	

•  Dynamic	Programming	
– LIS[1]=1	
– LIS[i]=maxj<l:s[j]<s[i]	LIS[j]+1	

12		3		8		1		9		5	11	10	
1	 1	 2	 1	

+1	

+1	

+1	

1.	Longest	Increasing	Subsequence	
[Schensted,	1961]	

•  Dynamic	Programming	
– LIS[1]=1	
– LIS[i]=maxj<l:s[j]<s[i]	LIS[j]+1	

12		3		8		1		9		5	11	10	
1	 1	 2	 1	

+1	

+1	

+1	

Time	Complexity=O(n2)	
Space	Complexity=O(n)	

3	

•  More	sophis9cated	dynamic	programming	with	9me	
complexity	O(n	log	n)	and	O(n)	space	exists.	

	

2.	String	Edit	Distance	[Levenshtein,	1965]	

•  Given	two	strings	s	and	t	what	is	the	minimum	
number	of	edits	(inserDon,	deleDon,	
subsDtuDon)	needed	to	transform	s	to	t?	

(reference	string)	

(input	string)	
T

Edit	distance	is	3	

C
delete	

subs9tute	 insert	

																								
•  Example	
																						s=ACCGGACGTT	
																						t=ATACGGACGT	

2.	String	Edit	Distance	[Levenshtein,	1965]	

•  Dynamic	Programming	
– Edit[0,i]=Edit[i,0]=i	
– Edit[i,j]=min[1+Edit(i-1,j),	1+Edit(i,j-1),	
cost(s[i],t[j])+Edit(i-1,j-1)]	

		0	 1	 2	 3	 4	 5	 6	 7	

1	 1	 2	 3	 4	 5	 6	 6	

2	 2	 2	 3	 4	 4	 5	 6	

3	 2	 2	

Time	Complexity=O(n2)	
Space	Complexity=O(n2)	

A			C				C			G			G			A			C			T	
A	
T	
A	
C	
G	
G	
A	
C	

2.	String	Edit	Distance	[Levenshtein,	1965]	

•  Dynamic	Programming	
– Edit[0,i]=Edit[i,0]=i	
– Edit[i,j]=min[1+Edit(i-1,j),	1+Edit(i,j-1),	
cost(s[i],t[j])+Edit(i-1,j-1)]	

		0	 1	 2	 3	 4	 5	 6	 7	

1	 1	 2	 3	 4	 5	 6	 6	

2	 2	 2	 3	 4	 4	 5	 6	

3	 2	 2	

Time	Complexity=O(n2)	
Space	Complexity=O(n)	

A			C				C			G			G			A			C			T	
A	
T	
A	
C	
G	
G	
A	
C	

•  Assuming	Strong	Exponen9al	Time	Hypothesis	no	truly	subquadra9c	
algorithm	exists	for	the	exact	computa9on	[Backurs,	Indyk,	STOC’15]	

•  Even	shaving	arbitrary	polylog	factor	is	seemingly	hard	[Abboud,	
Dueholm,	V	Williams,	Williams,	STOC’16]	

3.	Context	Free	Grammar	Parsing		
[Earley’s	parser,	CYK	1968-70]	

•  Given	a	grammar	G	and	a	string	s,	can	s	be	
parsed	according	to	rules	of	G?	

•  G:	
(Produc9on	rules)	
A	->	BC	
B->XX	
C->	AX	
X->a	
B->y	

0	 1	 1	

1	

1	

0	

1				2					3				4				5				6			7	
End	index	

Start	Index	
1	
2	
3	
4	
5	
6	
7	
	

							3.	Context	Free	Grammar	Parsing		
							[Earley’s	parser,	CYK	1968-70]	
•  Given	a	grammar	G	and	a	string	s,	can	s	be	
parsed	according	to	rules	of	G?	

•  G:	
(Produc9on	rules)	
A	->	BC	
B->XX	
C->	AX	
X->a	
B->y	

0	 1	 1	 1	
1	

1	
0	

1				2					3				4				5				6			7	
End	index	

Start	Index	
1	
2	
3	
4	
5	
6	
7	
	

Time	Complexity=O(n3)	
Space	Complexity=O(n2)	

•  Without	using	fast	matrix	mulFplicaFon,	no	truly	subcubic	
exact	algorithm	

•  Using	fast	matrix	mulFplicaFon	an	O(nω)	exact	algorithm	[L	
Valiant,	Ph.D.	Thesis,	1978]	

•  Valiant’s	algorithm	is	the	best	possible	[Abboud,	Backurs,	V.	
Williams,	FOCS’15,	Lee	2001]	

4.	Language	Edit	Distance	[Aho	&	Peterson,	
1972]	

•  Given	a	grammar	G	and	a	string	s,	find	the	minimum	
number	of	edits	required	in	s	to	be	able	to	parse	the	
edited	string	according	to	the	rules	of	G.	

•  G:	
(Produc9on	rules)	
A	->	BC	
B->XX	
C->	AX	
X->a	
B->y	

3	 2	 1	 2	
1	

3	

1	

1				2					3				4				5				6			7	
End	index	

Start	Index	
1	
2	
3	
4	
5	
6	
7	
	

Time	Complexity=O(n3)	
Space	Complexity=O(n2)	

•  When	only	inserFon	is	allowed,	LED	is	as	hard	as	weighted	All-
Pairs-Shortest	Paths	[Saha,	FOCS’15]	

•  For	all	possible	edits,	no	condi9onal	lower	bound	known	that	is	
stronger	than	parsing	

•  Using	fast	matrix	mulFplicaFon,	the	first	truly	subcubic	
algorithm	was	developed	last	year	[Bringmann,	Grandoni,	Saha,	
V.	Williams,	FOCS’16]	

5.	RNA	Folding	[Nussinov,	Jacobson,	1980]	
NucleoDdes	in	RNA	form	complementary	base	pairs	to	
form	the	RNA	secondary	structure:	C	pairs	with	G	and	A	
pairs	with	U.	Maximize	the	number	of	bases	that	can	be	
paired	in	a	well-formed	way.	

	
Example:	
	
	

	
	

GGCAGUACCGGUAAUAAGCUGCC	
	
GGCAGUACCGGUAAUAAGCUGCC	

5.	RNA	Folding	[Nussinov,	Jackobson,	1980]	
•  Dynamic	Programming	
– RNA[i,i]=0,	RNA[i,j]=0	if	j	<	i	
– RNA[i,j]=max(R[i,j],	maxi<=l<	j	RNA[i,l]+RNA[l+1,j])	

•  R(i,j)=0	if	s[i]	does	not	pair	with	s[j]	
•  R(i,j)=2+R(i+1,j-1)	if	s[i]	pairs	with	s[j]	

0	 2	 2	 2	
2	

0	

0	

1			2				3			4			5			6			7	
End	
index	

Start	
Index	 1	

2	
3	
4	
5	
6	
7	

Time	Complexity=O(n3)	
Space	Complexity=O(n2)	

•  Without	fast	matrix	mulFplicaFon,	no	truly	subcubic	exact	
algorithm	

•  Unlikely	to	have	an	algorithm	with	running	9me	be4er	than	boolean	
matrix	mu9plica9on	[Abboud,	Backurs,	V.	Williams,	FOCS’15]	

•  Using	fast	matrix	mulFplicaFon,	the	first	truly	subcubic	algorithm	
last	year	[Bringmann,	Grandoni,	Saha,	V.	Williams,	FOCS’16]	

What	is	common	among	these	
Dynamic	Programming	Problems?	

Longest	Increasing	Subsequence	

String	Edit	Distance	

Context	Free	Grammar	Parsing	
Language	Edit	Distance	

RNA	Folding	

What	is	common	among	these	
Dynamic	Programming	Problems?	

Longest	Increasing	Subsequence	
1	 1	 2	 2	 3	

0	 1	 2	 3	 4	 5	 6	 7	

1	 1	 2	 3	 4	 5	 6	 6	

2	 2	 2	 3	 4	 4	 5	 6	

3	 2	 2	

A			C				C			G			G			A			C			T	
A	
T	
A	
C	
G	
G	
A	
C	

String	Edit	Distance	

3	 2	 1	 2	
1	

3	

1	

Language	Edit	Distance	

0 2 2 2
2

0

0
RNA	Folding	

What	is	the	main	difference?	

Longest	Increasing		
Subsequence	

	
String	Edit	Distance	

Context	Free	Grammar		
Parsing		
Language	Edit	Distance		
RNA	Folding	

Looks	at	many	subproblems		
at	a	9me	

Looks	at	a	constant	number		
of	subproblems		

at	a	9me	

What	is	the	main	difference?	

Longest	Increasing		
Subsequence	

	
String	Edit	Distance	

Context	Free	Grammar		
Parsing		
Language	Edit	Distance		
RNA	Folding	

Looks	at	many	subproblems		
at	a	9me	

Looks	at	a	constant	number		
of	subproblems		

at	a	9me	

can	improve	both	space	and	
9me	complexity	using	amnesic	
dynamic	programming	

can	improve	space	complexity	
using	amnesic	dynamic	
programming	

Using	Addi9ve	Approxima9on	

Results:	Language	Edit	Distance	
– Previously	Known	
•  Condi9onal	Lower	Bound:	No	combinatorial	subcubic	
algorithm	exists	even	for	any	nontrivial	mul9plica9ve	
approxima9on.	[Abboud,	Backurs,	V.	Williams,	FOCS’2015]	

•  Upper	Bound:		
–  Combinatorial:	O(n3)	9me	complexity,	O(n2)	space	[Aho	&	Peterson,	1972,	
Myers,	1985,..]	

–  Using	Fast	Matrix	Mul9plica9on:	O(n2.8244)	9me	complexity,	O(n2)	space	
[Bringmann,	Grandoni,	Saha,	V.	Williams,	FOCS	2016]	

–  Using	Fast	Matrix	Mul9plica9on:	O(nω/ε4)	9me	complexity,	O(n2)	space	
randomized	algorithm	for	mul9plica9ve	(1+ε)-approxima9on	[Saha,	FOCS	
2015]	

– What	we	show	[Saha,	FOCS’17]	
•  Combinatorial	&	Determinis9c	algorithm	with	9me	complexity	O(n2/ε),	space	
O(n/ε),	εn-addi9ve	approxima9on	

•  	Sublinear	space:	O(n2/3/ε4/3)	space	for	εn-addi9ve	approxima9on		
•  Implies	same	bound	for	approximate	membership	checking	for	context	free	
grammars	

Results:	RNA	Folding	
– Previously	Known	
•  Condi9onal	Lower	Bound:	No	combinatorial	subcubic	algorithm	
exists	[Abboud,	Backurs,	V.	Williams,	FOCS’2015]	

•  Upper	Bound:		
–  Combinatorial:	O(n3)	9me	complexity,	O(n2)	space	[Nussinov,	
Jacokbson	1980]	

–  Using	Fast	Matrix	Mul9plica9on:	O(n2.8244)	9me	complexity,	O(n2)	
space	[Bringmann,	Grandoni,	Saha,	V.	Williams,	FOCS’2016]	

– Using	Fast	Matrix	Mul9plica9on:	O(nω/ε4)	9me	complexity,	
O(n2)	space	randomized	algorithm	for	εn-approxima9on	
[Saha,	FOCS	2015]	

– What	we	show	[Saha,	FOCS’17]	
•  Combinatorial	&	Determinis9c	algorithm	with	9me	complexity	O(n2/ε),	
space	O(n/ε),	εn-addi9ve	approxima9on		

•  Sublinear	space:	O(n2/3/ε4/3)	space	for	εn-addi9ve	approxima9on		

Further	Results:	String	Edit	Distance,		
Linear	Grammar,	Map	Reduce	&	More	
•  New	result	
–  Linear	grammar	edit	distance	which	generalizes	string	edit	
distance		
•  Be4er	space	vs	approxima9on	trade	offs:	O(n2/3/	ε2/3)	space	for	εn	
addi9ve	approxima9on	

– Map	Reduce	and	mul9-pass	streaming	algorithms	for	
Language	Edit	Distance,	RNA	Folding,	String	Edit	distance	

–  Single	pass	streaming	algorithm	for	string	edit	distance	in	
asymmetric	setng	
•  Previously	O(n1/2l/ε1/2)	space	[Saks	and	Seshadri,	SODA’13]		
•  This	paper:	O(n1/2/ε)	space	for	εn-addi9ve	approxima9on	

	Dynamic	Programming		
	

																			Amnesic	Dynamic	Programming	

•  A	technique	to	forget	DP	states	systema9cally	to	allow	for	fast	
running	9me	
–  (1)	Sample	only	part	of	the	DP	table	for	computa9on	
–  (2)	For	compu9ng	DP(i,j)	consider	fewer	subproblems	

Amnesic	DP	for	Longest	Increasing	
Subsequence	

•  Dynamic	Programming	
– LIS[1]=1	
– LIS[i]=maxj<l:s[j]<s[i]	LIS[j]+1	

12		3		8		1		9		5	11	10	
1	 1	 2	 2	

+1	

+1	

+1	

Amnesic	DP	for	Longest	Increasing	
Subsequence	

•  Dynamic	Programming	
– LIS[1]=1	
– LIS[i]=maxj<l:s[j]<s[i]	LIS[j]+1	

12		3		8		1		9		5	11	10	
1	 1	 2	 2	

+1	

+1	

+1	
k	2k	4k	8k	

Create	geometrically	increasing	
	subintervals	star9ng	from	i	and		
moving	backward	

i	

Amnesic	DP	for	Longest	Increasing	
Subsequence	

•  Dynamic	Programming	
– LIS[1]=1	
– LIS[i]=maxj<l:s[j]<s[i]	LIS[j]+1	

12		3		8		1		9		5	11	10	
1	 1	 2	 2	

+1	

+1	

+1	
k	2k	4k	8k	

i	

On	a	subinterval	of	length	2hk,		
select	1/2h	break-points	at		
equal	distance	

Amnesic	DP	for	Longest	Increasing	
Subsequence	

•  Dynamic	Programming	
– LIS[1]=1	
– LIS[i]=maxj<l:s[j]<s[i]	LIS[j]+1	

12		3		8		1		9		5	11	10	
1	 1	 2	 2	

+1	

+1	

+1	
k	2k	4k	8k	

i	

Perturb	the	boundaries	slightly		
such	that	going	from	i	to	i+1	only		
subsampling	is	required.	

Amnesic	DP	for	Longest	Increasing	
Subsequence	

•  To	show:	
– LIS[i]:	Op9mal	LIS	sequence	for	s[1,..i]	
– LISapprox[i]:	Approximate	LIS	sequence	for	s[1,…,i]	
– Cost[i]=i-LIS[i],	Costapprox[i]=i-LISapprox[i]	

12		3		8		1		9		5	11	10	
1	 1	 2	 2	

+1	

+1	

+1	
k	2k	4k	8k	

i	

Perturb	the	boundaries	slightly		
such	that	going	from	i	to	i+1	only		
subsampling	is	required.	

Amnesic	DP	for	LIS	

•  Proof:		
–  		
–  		

12		3		8		1		9		5	11	10	
1	 1	 2	 2	

+1	

+1	

+1	
k	2k	4k	8k	

i	

Perturb	the	boundaries	slightly		
such	that	going	from	i	to	i+1	only		
subsampling	is	required.	

Amnesic	DP	for	LIS	

•  Proof:		
–  		
–  		
–  		

+1	

+1	
k	2k	4k	8k	

i	

Perturb	the	boundaries	
slightly	such	that	going	
from	i	to	i+1	only		
subsampling	is	required.	

Amnesic	DP	for	LIS	

•  Proof:		
–  		

+1	

+1	
k	2k	4k	8k	

i	

Perturb	the	boundaries	
slightly	such	that	going	
from	i	to	i+1	only		
subsampling	is	
required.	

≤	k	

Amnesic	DP	for	LIS	

•  Proof:		
–  		

Perturb	the	boundaries	slightly	
such	that	going	from	i	to	i+1	only		
subsampling	is	required.	

Sample	every	2a-1th	point	

+1	

+1	
k	2k	4k	8k	

i	

Perturb	the	boundaries	slightly	
such	that	going	from	i	to	i+1	only		
subsampling	is	required.	

[k2a-1+1,	k2a]	
f	
≤	2a-1	

Amnesic	DP	for	LIS	

•  Proof:		
–  		
– By	induc9on	hypothesis		

Perturb	the	boundaries	slightly	
such	that	going	from	i	to	i+1	only		
subsampling	is	required.	

+1	

+1	
k	2k	4k	8k	

i	

Perturb	the	boundaries	slightly	
such	that	going	from	i	to	i+1	only		
subsampling	is	required.	

[k2a-1+1,	k2a]	
f	
≤	2a-1	

Amnesic	DP	for	LIS	

•  Proof:		
–  		
–  		
–  		

+1	

+1	
k	2k	4k	8k	

i	

From	the	Lipschitz	Property*	
[k2a-1+1,	k2a]	

f	
≤	2a-1	

*Does	not	hold	quite	because	of		
the	subtle9es	of	the	LIS	DP.	
	
But	would	hold	if	we	randomly		
sample	the	points	with	a	rate	
higher	by	a	log	n	factor.	

Amnesic	DP	for	LIS	

•  Proof:		
–  		
–  		
–  		

+1	

+1	
k	2k	4k	8k	

i	

Perturb	the	boundaries	slightly	
such	that	going	from	i	to	i+1	only		
subsampling	is	required.	

[k2a-1+1,	k2a]	
f	
≤	2a-1	

Amnesic	DP	for	LIS	

+1	

+1	
k	2k	4k	8k	

i	

Perturb	the	boundaries	slightly	
such	that	going	from	i	to	i+1	only		
subsampling	is	required.	

[k2a-1+1,	k2a]	
f	
≤	2a-1	

Amnesic	DP	for	LIS	

+1	

+1	
k	2k	4k	8k	

i	

Perturb	the	boundaries	slightly	
such	that	going	from	i	to	i+1	only		
subsampling	is	required.	

[k2a-1+1,	k2a]	
f	
≤	2a-1	

Amnesic	DP	for	LIS	

+1	

+1	
k	2k	4k	8k	

i	

Perturb	the	boundaries	slightly	
such	that	going	from	i	to	i+1	only		
subsampling	is	required.	

[k2a-1+1,	k2a]	
f	
≤	2a-1	

Amnesic	DP	for	Language	Edit	Distance	

•  Star9ng	from	j,	go	backward	
un9l	i	and	sample	break-
points	like	before	

3	 2	 1	 2	
1	

3	

1	

1				2					3				4				5				6			7	
End	index	

Start	Index	
1	
2	
3	
4	
5	
6	
7	
	 +1	

+1	

+1	
k	2k	4k	8k	

j	i	

Amnesic	DP	for	Language	Edit	Distance	

•  Perturb	the	boundaries	slightly	
such	that	going	from	(i’,j’)	to	(i,j)	
where	(i’,j’)	is	a	subinterval	of	
(i,j),	the	algorithm	only	
subsamples	break-points	within	
(i’,j’)	

3	 2	 1	 2	
1	

3	

1	

1				2					3				4				5				6			7	
End	index	

Start	Index	
1	
2	
3	
4	
5	
6	
7	
	

+1	

+1	

+1	

k	 2k	 4k	 8k	

j	i	 +1	

+1	
k	2k	4k	8k	

i	

Amnesic	DP	for	Language	Edit	Distance	

•  Perturb	the	boundaries	slightly	
such	that	going	from	(i’,j’)	to	(i,j)	
where	(i’,j’)	is	a	subinterval	of	
(i,j),	the	algorithm	only	
subsamples	break-points	within	
(i’,j’)	

3	 2	 1	 2	
1	

3	

1	

1				2					3				4				5				6			7	
End	index	

Start	Index	
1	
2	
3	
4	
5	
6	
7	
	

+1	

+1	

+1	

k	 2k	 4k	 8k	

j	i	 +1	

+1	
k	2k	4k	8k	

i	

Amnesic	DP	for	Language	Edit	Distance	

•  Language	Edit	Distance	
– Amnesic	DP:	from	O(n)	subproblems	to	O(klog(n))	

i	 j	

i	 j	

Exact	Dynamic	Programming	

Amnesic	Dynamic	Programming	

Sparsified	in	the	middle	

Understanding	the	Intui9on	Behind	
Break	Point	Selec9on	

•  Long	recursion 	 	Short	Recursion	

:	
:	

Cannot	make	mistake	either	
	in	the	short	or	in	the	long	substrings	

Can	make	mistake	on	the	long	substrings	
	but	not	on	the	short	substrings—too	many		
of	them	

Understanding	the	Intui9on	Behind	
Break	Point	Selec9on	

•  Long	recursion 	 	Short	Recursion	

:	
:	

Cannot	make	mistake	either	
	in	the	short	or	in	the	long	substrings	

Can	make	mistake	on	the	long	substrings	
	but	not	on	the	short	substrings—too	many		
of	them	

Let	P(i,j)	denote	the	opDmum	recursion	tree	for	s(i,i
+1,…,j)	and	Papprox(i,j)	denote	the	approximate	
recursion	tree	computed	by	us.		
	
Cost(P(i,j)):	Total	edit	cost	paid	by	P(i,j)	
Cost(Papprox(i,j)):	Total	edit	cost	paid	by	Papprox(i,j)	

Understanding	the	Intui9on	Behind	
Break	Point	Selec9on	

•  Long	recursion 	 	Short	Recursion	

:	
:	

Cannot	make	mistake	either	
	in	the	short	or	in	the	long	substrings	

Can	make	mistake	on	the	long	substrings	
	but	not	on	the	short	substrings—too	many		
of	them	

cost(Papprox[i,j])	≤	cost(P[i,j])+		 4	

Understanding	the	Intui9on	Behind	
Break	Point	Selec9on	

•  Long	recursion 	 	Short	Recursion	

:	
:	

Cannot	make	mistake	either	
	in	the	short	or	in	the	long	substrings	

Can	make	mistake	on	the	long	substrings	
	but	not	on	the	short	substrings—too	many		
of	them	

cost(Papprox[i,j])	≤	cost(P[i,j])+		 4	

Amnesic	DP:	Improving	Space	Complexity	

•  Improved	9me	complexity	à	Improved	space	
complexity	

•  Few	subproblems	to	look	at	implies	less	space	
complexity	

•  Locality	among	subproblems:	
•  Store	the	solu9on	for	all	subproblems	(i,j)	of	length	2k	
•  For	(j-i+1)=r>2k:	among	the	subproblems	that	are	
accessed	to	solve	for	(i,j),	keep	only	those	which	will	be	
required	by	(i,j+1)	and	(i-1,j).	Also	store	all	the	
solu9ons	for	length	r	substrings.	

– Space	complexity:	O(nk	log	n)	

Amnesic	DP	for	Sublinear	Space	
Complexity		

•  Exact	dynamic	programming	computes/stores	
solu9ons	for	every	subproblem	
–  Compute/Store	solu9ons	for	only	a	subset	of	the	entries	

	 i	 j	
Break	points	considered	by	9me	and	space	efficient	DP	

For	small	substrings:	compute	using	auxiliary	space		
														with	the	9me	and	space	efficient	DP	

For	long	substrings:	use	the	nearest	DP	value	that	is	computed	

Amnesic	DP	for	Sublinear	Space	
Complexity		

•  Exact	dynamic	programming	computes/stores	
solu9ons	for	every	subproblem	
–  Compute/Store	solu9ons	for	only	a	subset	of	the	entries	

	 i	 j	
Break	points	considered	by	9me	and	space	efficient	DP	

Considering	break-point	p,	but	solu9on	for	(i,p)	not	stored	

Length	of	(i,p)	and	(j,p+1)	are	large:	select	the	l1		nearest		neighbor	for	which	a		
solu9on	has	been	computed	and	use	that.	

Amnesic	DP	for	Sublinear	Space	
Complexity		

•  Exact	dynamic	programming	computes/stores	
solu9ons	for	every	subproblem	
–  Compute/Store	solu9ons	for	only	a	subset	of	the	entries	

	 i	 j	
Break	points	considered	by	9me	and	space	efficient	DP	

Considering	break-point	p,	but	solu9on	for	(i,p)	not	stored	

Length	of	(i,p)	or	(j,p+1)	is	small:	Ini9alize	the	Δ	with	the	nearest	computed	
solu9ons	and	then	recompute….		

γ	

q	

Amnesic	DP	for	Sublinear	Space	
Complexity		

•  Exact	dynamic	programming	computes/stores	
solu9ons	for	every	subproblem	
–  Compute/Store	solu9ons	for	only	a	subset	of	the	entries	

	 i	 j	
Break	points	considered	by	9me	and	space	efficient	DP	

For	small	substrings:	compute	using	auxiliary	space		
														with	the	9me	and	space	efficient	DP	

For	long	substrings:	use	the	nearest	DP	value	that	is	computed	

From	Sublinear	Space	to	Parallel	and	
Streaming	Algorithms	

•  First	Map-Reduce	algorithm	for	Language	Edit	Distance	and	
RNA	Folding	
–  Each	machine	stores	only	the	computed	entries	of	the	dynamic	
programming	table	

–  Part	of	input	
	

•  Mul9-pass	streaming	algorithm	for	Language	Edit	Distance	
and	RNA	Folding	

•  Be4er	space	vs	approxima9on	trade	offs	for	linear	
grammar	edit	distance	that	generalizes	string	edit	distance	
–  Single	pass	algorithm	for	edit	distance	in	asymmetric	setng		

What	is	the	main	difference?	

Longest	Increasing		
Subsequence	

	
String	Edit	Distance	

Context	Free	Grammar		
Parsing		
Language	Edit	Distance		
RNA	Folding	

Looks	at	many	subproblems		
at	a	9me	

Looks	at	a	constant	number		
of	subproblems		

at	a	9me	

can	improve	both	space	and	
9me	complexity	using	amnesic	
dynamic	programming	

can	improve	space	complexity	
using	amnesic	dynamic	
programming	

Using	Addi9ve	Approxima9on	

What	is	the	main	difference?	

	
String	Edit	Distance	Context	Free	Grammar		

Parsing		
Language	Edit	Distance		
RNA	Folding	

Looks	at	many	subproblems		
at	a	9me	

Looks	at	a	constant	number		
of	subproblems		

at	a	9me	
Exact	Solu9on	

Using	fast	matrix	mul9plica9on		
can	beat	the	dynamic	programming	

Condi9onal	hardness	rules	out	
be4er	running	9me		

What	is	the	main	difference?	

Longest	Increasing		
Subsequence	

	
String	Edit	Distance	

ü  Context	Free	Grammar		
Parsing	
ü  Language	Edit	Distance		
ü  RNA	Folding	

Looks	at	many	subproblems		
at	a	9me	

Looks	at	a	constant	number		
of	subproblems		

at	a	9me	

Using	fast	matrix	mul9plica9on		
can	beat	the	dynamic	programming	

Condi9onal	hardness	rules	out	
be4er	running	9me		

can	improve	both	space	and	9me	
complexity	using	amnesic	dynamic	
programming	via	addi9ve		
approxima9on	

cannot	improve	9me	
complexity	using	amnesic	
dynamic	programming	via	
addi9ve	approxima9on	

From	Dynamic	Programming	to	Matrix	
Mul9plica9on	

A,x	 C,z	

B,y	

i	

j	k-1	

k	

CàAB	and	z=x+y	
	
A	derives	s(i,k-1)	with	a	
score	of	x	
	
B	derives	s(k,j)	with	a	
score	of	y	

Dynamic	Programming	Table	

Sà	AC	
Cà	AB	
BàAR	
AàAL	
Ràa	
Là	b	
Ràb	score(1)	
Làa	score(1)	
	

A,				
x	

B,y	
C,	
x+y	

i	

k	

k	

i	

Use	producFon	CàAB	 Compute	Transi9ve	Closure	

To	Matrix	Mul9plica9on	[Saha,	FOCS’15]	

•  Compute	Transi9ve	Closure	Computa9on	under	a	Special	
Matrix	Productà(min,+)-product	

•  The	product	is	nonassocia9veàcompu9ng	transi9ve	closure	is	
difficultàkeeping	approxima9on	error	low	is	difficult	

A,				
x	

B,y	
C,	
x+y	

i	

k	

k	

j	

i	

j	

Use	producFon	CàAB	

From	cubic	to	O(n2.327)	9me	for	(1+ε)-approxima9on	LED,	APSP,	stochas9c	CFG	
parsing,…	

Can	we	develop	an	exact	fast	algorithm	
for	LED?	

–  Condi9onal	Lower	Bound:	A	subcubic	exact	
algorithm	for	LED	is	weighted	APSP	hard	if	we	allow	
only	“inser9on”	as	edit	opera9on.	[Saha	FOCS’15]	

–  The	lower	bound	breaks	down	when	all	three	types	
of	edits	are	allowed!!!	

Can	we	develop	an	exact	fast	algorithm	
for	LED?	

– When	all	three	types	of	edits	are	allowed,	the	
corresponding	(min,+)-product	matrices	have	
bounded	difference	property	
•  No	of	edits	required	for	substring	s(i,j)	and	s(i,j+1)	can	not	
differ	much—similarly	for	s(i,j)	and	s(i+1,j)	

|A(i,j)-A(i+1,j1)|<=1	

|A(i,j)-A(i,j+1)|<=1	

Can	we	develop	an	exact	fast	algorithm	
for	LED?	

– When	all	three	types	of	edits	are	allowed,	the	
corresponding	(min,+)-product	matrices	have	
bounded	difference	property	
•  No	of	edits	required	for	substring	s(i,j)	and	s(i,j+1)	can	not	
differ	much—similarly	for	s(i,j)	and	s(i+1,j)	|A(i,j)-A(i+1,j1)|<=1	

|A(i,j)-A(i+1,j1)|<=1	

|A(i,j)-A(i,j+1)|<=1	(min,+)-matrix	product	with	bounded	difference	can	be	
computed	in	truly	subcubic	9me.	

[Bringmann,	Grandoni,	Saha,	V.	Williams,	FOCS’16]	

Open	Problems	

•  Improve	the	upper	bounds	
–  Amnesic	Dynamic	Programming---Running	9me	below	
O(n2)	would	give	new	approxima9on	results	even	for	string	
edit	distance		

–  Improve	the	bound	for	Bounded-difference	(min,+)-
product	towards	a	truly	subcubic	algorithm	for	integer	
APSP	

–  Is	Real	APSP	>>	Integer	APSP?	
–  Higher	Dimensional	Amnesic	DP	for	Lipschitz	problems	

•  Lower	bound	for	space	and	9me	complexity	trade-off	
•  Understand	the	true	complexity	of	LED	

Towards	an	Exact	fast	algorithm	for	
(min,+)	product	

•  Will	be	a	major	breakthrough	resul9ng	in	a	huge	
number	of	graph	and	string	problems	to	have	faster	
running	9me.	

•  Technique	for	bounded	difference	matrices------
matrices	with	integer	entries	in	[1,n]	?	

How	close	are	we?	
•  As	long	as	the	absolute	difference	in	any	one	dimension	

for	any	one	matrix	is	at	most	n3-ω-ε	
•  To	start	with	there	are	n3	triplets	(i,k,j)	that	can	contribute	

to	(min,+)-product	computa9on.	
•  A	triplet	(i,k,j)	is	relevant	if	A(i,k)+B(k,j)	≈	C(i,j)	[an	

approximate	value	of	the	(i,j)th	entry	of	the	product	matrix	
C]	

•  Even	for	two	arbitrary	matrices	a�er	subcubic	amount	of	
processing,	we	are	only	le�	with	subcubic	number	of	
relevant	triplets	which	we	have	not	looked	at.	

•  How	do	we	find	these	few	relevant	triplets	which	are	yet	
to	be	considered?	

