## Space \& Time Efficient Algorithms for Lipschitz Problems

Barna Saha<br>University of Massachusetts Amherst

## Collection of Some Basic Polynomial Time Problems

- Longest Increasing Subsequence [Schensted, 1961]
- String Edit Distanaration [Levenshtein, 1 !
- Context Free Gr

Dynamic Programming parser, CYK, 196o-10]

- Language Edit Distance [Aho \& Peterson, 1972]
- RNA Folding [Nussinov, Jacobson, 1980]


## 1. Longest Increasing Subsequence [Schensted, 1961]

- Given a sequence of integers s[1], s[2],..,s[n], find a subsequence $1 \leq i_{1} \leq i_{2} \leq \ldots . \leq i_{k} \leq n$ such that $s\left[i_{1}\right]<s\left[i_{2}\right]<\ldots . .<s\left[i_{k}\right]$ and $k$ is maximized.
- Example

$$
12381951110
$$

- The longest increasing subsequence has length 4


## 1. Longest Increasing Subsequence

 [Schensted, 1961]- Dynamic Programming
- LIS[1]=1
$-\operatorname{LIS[i]}=$ max $_{\mathrm{j}<1: \mathrm{S}[\mathrm{j} / \mathrm{k}[\mathrm{ij}]} \operatorname{LIS[j]+1}$



## 1. Longest Increasing Subsequence [Schensted, 1961]

- Dynamic Programming
- LIS[1]=1
- LIS[i] $=$ max $_{\text {jllss[jiks[i] }} \operatorname{LIS[j]+1}$

- More sophisticated dynamic programming with time complexity $O(n \log n)$ and $O(n)$ space exists.


## 2. String Edit Distance [Levenshtein, 1965]

- Given two strings $s$ and $t$ what is the minimum number of edits (insertion, deletion, substitution) needed to transform s to t?
- Example


Edit distance is 3

## 2. String Edit Distance [Levenshtein, 1965]

- Dynamic Programming
$-\operatorname{Edit}[0, i]=E d i t[i, 0]=i$
- Edit[i,j]=min[1+Edit(i-1,j), 1+Edit(i,j-1), $\operatorname{cost}(\mathrm{s}[\mathrm{i}], \mathrm{t}[\mathrm{j}])+\mathrm{Edit}(\mathrm{i}-1, \mathrm{j}-1)]$

|  | A |  |  |  |  |  |  | C |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | C | G | A | C T |  |  |  |  |
| A | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| T | 1 | 1 | 2 | 3 | 4 | 5 | 6 | 6 |
| A | 2 | 2 | 2 | 3 | 4 | 4 | 5 | 6 |
| C | 3 | 2 | 2 |  |  |  |  |  |
| G |  |  |  |  |  |  |  |  |
| G |  |  |  |  |  |  |  |  |
| A |  |  |  |  |  |  |  |  |
| C |  |  |  |  |  |  |  |  |

Time Complexity $=0\left(\mathrm{n}^{2}\right)$
Space Complexity $=0\left(n^{2}\right)$

## 2. String Edit Distance [Levenshtein, 1965]

- Dynamic Programming
- Edit[0,i]=Edit[i,0]=i
- Edit[i,j]=min[1+Edit(i-1,j), 1+Edit(i,j-1), $\operatorname{cost}(\mathrm{s}[\mathrm{i}], \mathrm{t}[\mathrm{j}]+\mathrm{Edit}(\mathrm{i}-1, \mathrm{j}-1)]$

|  |  |
| :--- | :--- |
|  | 0 |
| T | 1 |
| A | 2 |
| C |  |
| G |  |
| G |  |
| A |  |
| C |  |
|  |  |

Time Complexity $=0\left(\mathrm{n}^{2}\right)$
Space Complexity=O(n)

- Assuming Strong Exponential Time Hypothesis no truly subquadratic algorithm exists for the exact computation [Backurs, Indyk, STOC'15]
- Even shaving arbitrary polylog factor is seemingly hard [Abboud, Dueholm, V Williams, Williams, STOC'16]


## 3. Context Free Grammar Parsing

 [Earley's parser, CYK 1968-70]- Given a grammar G and a string s, can s be parsed according to rules of G?



## 3. Context Free Grammar Parsing

## [Earley's parser, CYK 1968-70]

- Given a grammar G and a string s, can s be parsed according to rules of G?
- G:

End index
$\begin{array}{llllllll}1 & 2 & 3 & 4 & 5 & 6 & 7\end{array}$

- Without using fast matrix multiplication, no truly subcubic exact algorithm
- Using fast matrix multiplication an $\mathrm{O}\left(\mathrm{n}^{\omega}\right)$ exact algorithm [L Valiant, Ph.D. Thesis, 1978]
- Valiant's algorithm is the best possible [Abboud, Backurs, V. Williams, FOCS'15, Lee 2001]
$B->y$
6
7
Time Complexity $=\mathrm{O}\left(\mathrm{n}^{3}\right)$


## 4. Language Edit Distance [Aho \& Peterson, 1972]

- Given a grammar G and a string s, find the minimum number of edits required in s to be able to parse the edited string according to the rules of $G$.

> End index

- G:
(Production rules)
A $\rightarrow$ BC

- When only insertion is allowed, LED is as hard as weighted All-Pairs-Shortest Paths [Saha, FOCS'15]
- For all possible edits, no conditional lower bound known that is stronger than parsing
- Using fast matrix multiplication, the first truly subcubic algorithm was developed last year [Bringmann, Grandoni, Saha, V. Williams, FOCS'16]



## 5. RNA Folding [Nussinov, Jacobson, 1980]

Nucleotides in RNA form complementary base pairs to form the RNA secondary structure: C pairs with $G$ and $A$ pairs with $U$.


## 5. RNA Folding [Nussinov, Jackobson, 1980]

- Dynamic Programming
- RNA[i,i]=0, RNA[i,j]=0 if $j<i$
$-R N A[i, j]=\max \left(R[i, j], \max _{i<1 \ll j} R N A[i, l]+R N A[l+1, j]\right)$
- $R(i, j)=0$ if $s[j]$ does not pair with $s[j]$
- $R(i, j)=2+R(i+1, j-1)$ if $s[j]$ pairs with $s[j]$

End
index 1234567

- Without fast matrix multiplication, no truly subcubic exact algorithm
- Unlikely to have an algorithm with running time better than boolean matrix mutiplication [Abboud, Backurs, V. Williams, FOCS'15]
- Using fast matrix multiplication, the first truly subcubic algorithm last year [Bringmann, Grandoni, Saha, V. Williams, FOCS'16]


# What is common among these Dynamic Programming Problems? 

Longest Increasing Subsequence

## String Edit Distance

Context Free Grammar Parsing Language Edit Distance

RNA Folding
They all exhibit the property of
bounded difference

What is common among these Dynamic Programming Problems?

| 1 | 1 | 2 | 2 | 3 |
| :--- | :--- | :--- | :--- | :--- |

Longest Increasing Subsequence


## Language Edit Distance




## String Edit Distance

They all exhibit the property of bounded difference

## What is the main difference?

Looks at many subproblems at a time

Longest Increasing
Subsequence
Context Free Grammar Parsing
Language Edit Distance RNA Folding

Looks at a constant number of subproblems at a time

String Edit Distance

## What is the main difference?

Looks at many instant number at at Using Additive Approximation problems Longest Increasing Subsequence
Context Free Grammar Parsing
Language Edit Distance RNA Folding
can improve both space and time complexity using amnesic dynamic programming

## String Edit Distance

can improve space complexity using amnesic dynamic programming

## Results: Language Edit Distance

## - Previously Known

- Conditional Lower Bound: No combinatorial subcubic algorithm exists even for any nontrivial multiplicative approximation. [Abboud, Backurs, V. Williams, FOCS'2015]
- Upper Bound:
- Combinatorial: O( $n^{3}$ ) time complexity, O( $n^{2}$ ) space [Aho \& Peterson, 1972, Myers, 1985,..]
- Using Fast Matrix Multiplication: O( $\left.\mathrm{n}^{2.8244}\right)$ time complexity, $\mathrm{O}\left(\mathrm{n}^{2}\right)$ space [Bringmann, Grandoni, Saha, V. Williams, FOCS 2016]
- Using Fast Matrix Multiplication: $O\left(n^{\omega} / \varepsilon^{4}\right)$ time complexity, $O\left(n^{2}\right)$ space randomized algorithm for multiplicative (1+ $)$-approximation [Saha, FOCS 2015]
- What we show [Saha, FOCS'17]
- Combinatorial \& Deterministic algorithm with time complexity $\mathrm{O}\left(\mathrm{n}^{2} / \varepsilon\right)$, space $O(n / \varepsilon), \varepsilon n$-additive approximation
- Sublinear space: $O\left(n^{2 / 3} / \varepsilon^{4 / 3}\right)$ space for $\varepsilon n$-additive approximation
- Implies same bound for approximate membership checking for context free grammars


## Results: RNA Folding

## - Previously Known

- Conditional Lower Bound: No combinatorial subcubic algorithm exists [Abboud, Backurs, V. Williams, FOCS'2015]
- Upper Bound:
- Combinatorial: O( $n^{3}$ ) time complexity, $O\left(n^{2}\right)$ space [Nussinov, Jacokbson 1980]
- Using Fast Matrix Multiplication: $\mathrm{O}\left(\mathrm{n}^{2.8244}\right)$ time complexity, $\mathrm{O}\left(\mathrm{n}^{2}\right)$ space [Bringmann, Grandoni, Saha, V. Williams, FOCS'2016]
- Using Fast Matrix Multiplication: $O\left(n^{\omega} / \varepsilon^{4}\right)$ time complexity, $\mathrm{O}\left(\mathrm{n}^{2}\right)$ space randomized algorithm for $\varepsilon n$-approximation [Saha, FOCS 2015]
- What we show [Saha, FOCS'17]
- Combinatorial \& Deterministic algorithm with time complexity $O\left(n^{2} / \varepsilon\right)$, space $O(n / \varepsilon)$, $\varepsilon$-additive approximation
- Sublinear space: $O\left(n^{2 / 3} / \varepsilon^{4 / 3}\right)$ space for $\varepsilon n$-additive approximation


## Further Results: String Edit Distance, Linear Grammar, Map Reduce \& More

- New result
- Linear grammar edit distance which generalizes string edit distance
- Better space vs approximation trade offs: $O\left(n^{2 / 3} / \varepsilon^{2 / 3}\right)$ space for $\varepsilon n$ additive approximation
- Map Reduce and multi-pass streaming algorithms for Language Edit Distance, RNA Folding, String Edit distance
- Single pass streaming algorithm for string edit distance in asymmetric setting
- Previously $O\left(n^{1 / 21} / \varepsilon^{1 / 2}\right)$ space [Saks and Seshadri, SODA'13]
- This paper: $O\left(n^{1 / 2} / \varepsilon\right)$ space for $\varepsilon n$-additive approximation



## Dynamic Programming

## Amnesic Dynamic Programming

- A technique to forget DP states systematically to allow for fast running time
- (1) Sample only part of the DP table for computation
- (2) For computing DP(i,j) consider fewer subproblems



## Amnesic DP for Longest Increasing Subsequence

- Dynamic Programming
- LIS[1]=1
$-\operatorname{LIS[i]}=$ max $_{\mathrm{j}<1: \mathrm{S}[\mathrm{j} /<\mathrm{s}[\mathrm{i}]} \mathrm{LIS[j]+1}$



## Amnesic DP for Longest Increasing Subsequence

- Dynamic Programming
- LIS[1]=1
$-\operatorname{LIS[i]}=$ max $_{\text {jl|:s }[j)<[[i]} \operatorname{LIS[[]]+1}$



## Amnesic DP for Longest Increasing Subsequence

- Dynamic Programming
- LIS[1]=1




## Amnesic DP for Longest Increasing Subsequence

- Dynamic Programming
- LIS[1]=1
$-\operatorname{LIS[i]}=$ max $_{\mathrm{j}<1: \mathrm{S}[\mathrm{j} /<\mathrm{s}[\mathrm{i}]} \mathrm{LIS[j]+1}$

| 12 | 3 | 8 | 1 | 9 | 5 | 1 | 10 | Perturb the boundaries slightly <br> such that going from i to i+1 only <br> subsampling is required. |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 1 | 2 | 2 |  |  |  |  |  |



## Amnesic DP for Longest Increasing Subsequence

- To show: LIS ${ }^{\text {approx }}[i] \geq L I S[i]-\left\lfloor\frac{i}{k}\right\rfloor$
- LIS[i]: Optimal LIS sequence for s[1,..i]
- LISapprox[i]: Approximate LIS sequence for $\mathrm{s}[1, \ldots$, ,i]
- Cost[i]=i-LIS[i], Costapprox[i]=i-LISapprox[i]



## Amnesic DP for LIS

$$
L I S^{\text {approx }}\left[[] \geq \operatorname{LIS}[i]-\left\lfloor\frac{i}{k}\right\rfloor\right.
$$

- Proof:
$\operatorname{cost}^{\text {approx }}[i] \leq \operatorname{cost}[i]+\left\lfloor\frac{i}{k}\right\rfloor$

$$
-i \leq k: \text { LIS }^{\text {approx }}[i]=\operatorname{LIS}[i], \text { cost }{ }^{\text {approx }}[i]=\operatorname{cost}[i]
$$

- Suppose true for $i \leq k T$


# 12381951110 <br> Perturb the boundaries slightly such that going from i to $i+1$ only subsampling is required. 

 \begin{tabular}{l|l|l|l|l}$11^{2}$ \& 2 <br>
\hline
\end{tabular}



## Amnesic D.P for LIS

LIS ${ }^{\text {appros }}[[]] \geq$ LIS $[\bar{l}]-\left\lfloor\frac{i}{k}\right\rfloor \operatorname{cost} t^{\text {approx }}[i] \leq \operatorname{cost}[[]]+\left\lfloor\frac{i}{k}\right\rfloor$ $i<k:$ LIS $^{\text {approx }}[i]=\operatorname{LIS}[i]$, cost ${ }^{\text {approx }}[i]=\operatorname{cost}[i$ Suppose true for $i \leq k T$

- Take $i \in[k T+1, k(T+1)]$


## Perturb the boundaries slightly such that going from i to i+1 only subsampling is required.

Let $l$ be the optimum break-point considered.


## Amnesic DP for LIS

$$
\operatorname{cost}^{\text {approx }}[i] \leq \operatorname{cost}[i]+\left\lfloor\frac{i}{k}\right\rfloor
$$

- Proof:
- Take $i \in[k T+1, k(T+1)]$

If $(i-l+1) \leq k$ :
Move to $L I S[l]$ and $L I S^{\text {approx }}[l]$

## Perturb the boundaries slightly such that going from i to i+1 only subsampling is required.

Let $l$ be the optimum break-point considered $l] \leq$ k
$\square$


## Amnesic DP for LIS

$$
\operatorname{cost}^{\text {approx }}[i] \leq \operatorname{cost}[i]+\left\lfloor\frac{i}{k}\right\rfloor
$$

- Proof:

Take $i \in[k T+1, k(T+1)]$
Let $l \overline{\mathrm{~b}}$ e the optimum break-point considered. $f$ is the sampled break-point nearest to the left

$$
\text { Let } k 2^{a-1}+1 \leq(i-l+1) \leq k 2^{a}
$$

## Perturb the boundaries slightly such that going from i to i+1 only subsampling is required.



## Amnesic DP for LIS

$$
\operatorname{cost}^{\text {approx }}[i] \leq \operatorname{cost}[i]+\left\lfloor\frac{i}{k}\right\rfloor
$$

- Proof:
_ Take $i \in[k T+1, k(T+1)]$
- By induction hypothesis

$$
\operatorname{cost} t^{\text {approx }}[l] \leq \operatorname{cost}[l]+\left\lfloor\frac{l}{k}\right\rfloor
$$

## Perturb the boundaries slightly such that going from i to i+1 only subsampling is required.



## Amnesic DP for LIS

 $\operatorname{cost}^{\text {approx }}[i] \leq \operatorname{cost}[i]+\left\lfloor\frac{i}{k}\right\rfloor$- Proof:
*Does not hold quite because of the subtleties of the LIS DP.
_ Take $i \in[k T+1, k(T+1)]$
_ cost $^{\text {approx }}[l] \leq \operatorname{cost}[l]+\left\lfloor\frac{l}{k}\right\rfloor$
- cost approx $[l] \leq \operatorname{cost}[l]+\left\lfloor\frac{l}{k}\right\rfloor \begin{aligned} & \text { But would hold if we randomly } \\ & \text { sample the points with a rate }\end{aligned}$
$-L I S^{a p p r o x}[l] \leq L I S^{a p p r o x}[f]+(l-f)$

From the Lipschitz Property*


## Amnesic DP for LIS

$$
\operatorname{cost}^{\text {approx }}[i] \leq \operatorname{cost}[i]+\left\lfloor\frac{i}{k}\right\rfloor
$$

- Proof:

$$
\begin{aligned}
& \text { - Take } i \in[k T+1, k(T+1)] \\
& -\operatorname{cost}^{\text {approx }}[l] \leq \operatorname{cost}[l]+\left\lfloor\frac{l}{k}\right\rfloor \\
& -\operatorname{cost}^{\text {approx }}[f] \leq \operatorname{cost}^{\text {approx }}[l]
\end{aligned}
$$

Perturb the boundaries slightly such that going from i to i+1 only subsampling is required.


## Amnesic DP for LIS

$\operatorname{cost}^{\text {approx }}[i] \leq \operatorname{cost}[i]+\left\lfloor\frac{-}{k}\right\rfloor$

$$
\begin{aligned}
\operatorname{cost}^{\text {approx }}[i] & \leq(i-f)+\operatorname{cost}^{\text {approx }}[f] \\
& \leq(i-f)+\operatorname{cost}^{\text {approx }}[l] \\
& \leq(i-l)+(l-f)+\operatorname{cost}[l]+\left\lfloor\frac{l}{k}\right\rfloor \\
& \leq \operatorname{cost}[i]+\left\lfloor\frac{i}{k}\right\rfloor
\end{aligned}
$$

## Perturb the boundaries slightly such that going from i to i+1 only

 subsampling is required.

## Amnesic DP for LIS

$\operatorname{cost}^{\text {approx }}[i] \leq \operatorname{cost}[i]+\left\lfloor\frac{\imath}{k}\right\rfloor$

$$
\begin{aligned}
\operatorname{cost}^{\text {approx }}[i] & \leq(i-f)+\operatorname{cost}^{\text {approx }}[f] \\
& \leq(i-f)+\operatorname{cost}^{\text {approx }}[l] \\
& \leq(i-l)+(l-f)+\operatorname{cost}[l]+\left\lfloor\frac{i}{k}\right\rfloor \\
& \leq \operatorname{cost}[i]+\left\lfloor\frac{i}{k}\right\rfloor
\end{aligned}
$$

Perturb the boundaries slightly such that going from i to i+1 only subsampling is required.

$\operatorname{cost}^{\text {approx }}[i] \leq \operatorname{cost}[i]+2\left[\frac{c}{k}\right\rfloor$

$$
\begin{gathered}
\operatorname{cost}^{\operatorname{approx}[i] \leq} \leq(i-f)+\operatorname{cost}^{\operatorname{approx}}[f] \\
\text { Space usage }=O\left(k \log \frac{n}{k}\right) \\
\text { Time usage }=O\left(n k \log \frac{n}{k}\right)
\end{gathered}
$$

Additive Approximation $=\frac{n}{k}$
Perturb the bou such that going subsampling is re,

$$
\text { Set } k=\frac{1}{\epsilon}
$$



## Amnesic DP for Language Edit Distance

## End index



- Starting from j, go backward until $i$ and sample breakpoints like before



## Amnesic DP for Language Edit Distance

End index


- Perturb the boundaries slightly such that going from ( $i^{\prime}, j^{\prime}$ ) to ( $\mathrm{i}, \mathrm{j}$ ) where ( $i^{\prime}, j^{\prime}$ ) is a subinterval of ( $\mathrm{i}, \mathrm{j}$ ), the algorithm only subsamples break-points within ( ${ }^{\prime},{ }^{\prime}{ }^{\prime}$ )



## Amnesic DP for Language Edit Distance

End index


- Perturb the boundaries slightly such that going from ( $i^{\prime}, j^{\prime}$ ) to ( $\mathrm{i}, \mathrm{j}$ ) where ( $i^{\prime}, j^{\prime}$ ) is a subinterval of ( $\mathrm{i}, \mathrm{j}$ ), the algorithm only subsamples break-points within ( $i^{\prime}, j^{\prime}$ )



## Amnesic DP for Language Edit Distance

- Language Edit Distance
- Amnesic DP: from O(n) subproblems to O(klog(n))

Exact Dynamic Programming


Amnesic Dynamic Programming


Sparsified in the middle

## Understanding the Intuition Behind Break Point Selection

- Long recursion



## Short Recursion



Can make mistake on the long substrings but not on the short substrings-too many of them

## Understanding the Intuition Behind Break Point Selection

- Long recursion Short Recursion

Let $P(i, j)$ denote the optimum recursion tree for $s(i, i$ $+1, \ldots, j)$ and Papprox $(i, j)$ denote the approximate recursion tree computed by us.
$\operatorname{Cost}(P(i, j)):$ Total edit cost paid by $P(i, j)$ Cost(Papprox $(i, j))$ : Total edit cost paid by Papprox $(i, j)$

## Understanding the Intuition Behind Break Point Selection

- Long recursion Short Recursion


Cannot make mistake either
in the short or in the long substrings

## Understanding the Intuition Behind Break Point Selection

## - Long recursion

 Short Recursion$\operatorname{cost}($ Papprox $[i, j]) \leq \operatorname{cost}(P[i, j])+{ }_{4} \sum \min \left(\left\lfloor\frac{w\left(v_{L}\right)}{k}\right\rfloor,\left\lfloor\frac{w\left(v_{R}\right)}{h}\right\rfloor\right)$
Theorem 6. Given a parameter $k \geq 1$, there exists an algorithm which for any grammar $G=$ $(\mathcal{N}, \Sigma, \mathcal{P}, S)$, and $\sigma \in \Sigma^{*}$ of $|\sigma|=n$, computes an $O\left(\frac{n}{k} \log n\right)$-additive approximation for LED in $O\left(n^{2} k \log n\right)$ time and $O\left(n^{2}\right)$ space.

$$
\sum_{\text {al nodes of } P(i, j)} \min \left(\left\lfloor\frac{w\left(v_{L}\right)}{k}\right\rfloor,\left\lfloor\frac{w\left(v_{R}\right)}{k}\right\rfloor<\frac{(j-i+1)}{k}\right] 00(j-i+1)
$$

vngs

Cannot make mistake either in the short or in the long substrings

## Amnesic DP: Improving Space Complexity

- Improved time complexity $\rightarrow$ Improved space complexity
- Few subproblems to look at implies less space complexity
- Locality among subproblems:
- Store the solution for all subproblems (i,j) of length $2 k$
- For ( $\mathrm{j}-\mathrm{i}+1$ )=r>2k: among the subproblems that are accessed to solve for ( $\mathrm{i}, \mathrm{j}$ ), keep only those which will be required by ( $\mathrm{i}, \mathrm{j}+1$ ) and ( $\mathrm{i}-1, \mathrm{j}$ ). Also store all the solutions for length $r$ substrings.
- Space complexity: O(nk log n)


## Amnesic DP for Sublinear Space Complexity

- Exact dynamic programming computes/stores solutions for every subproblem
- Compute/Store solutions for only a subset of the entries


For long substrings: use the nearest DP value that is computed

## Amnesic DP for Sublinear Space Complexity

- Exact dynamic programming computes/stores solutions for every subproblem
- Compute/Store solutions for only a subset of the entries


Length of ( $\mathrm{i}, \mathrm{p}$ ) and ( $\mathrm{j}, \mathrm{p}+1$ ) are large: select the $\mathrm{I}_{1}$ nearest neighbor for which a solution has been computed and use that.

## Amnesic DP for Sublinear Space Complexity

- Exact dynamic programming computes/stores solutions for every subproblem
- Compute/Store solutions for only a subset of the entries


Length of ( $\mathrm{i}, \mathrm{p}$ ) or ( $\mathrm{j}, \mathrm{p}+1$ ) is small: Initialize the $\Delta$ with the nearest computed solutions and then recompute....

## Amnesic DP for Sublinear Space Complexity

- Exact dynamic programming computes/stores solutions for every subproblem
- Compute/Store solutions for only a subset of the entries

Theorem 2. Given two parameters $\gamma$ and $q$ such that $\gamma>\sqrt{q} \geq 1$, there exist efficient algorithms for LED, RNA folding, and approximate CFG recognizer that use space $O\left(\max \left(\frac{n^{2}}{q}, \frac{\gamma^{2} \log n}{\sqrt{q}}\right)\right)$ and achieve an additive approximation of $O\left(\frac{n \sqrt{q} \log n}{\gamma}\right)$.


With the ume and space eiricient DP

$$
\text { Setting } \gamma=\frac{\sqrt{q} \log n}{\epsilon} \text { we get } \epsilon n \text {-additive approximation in } \tilde{O}\left(\frac{n^{2 / 3}}{\epsilon^{4 / 3}}\right) \text { space }
$$

## From Sublinear Space to Parallel and Streaming Algorithms

- First Map-Reduce algorithm for Language Edit Distance and RNA Folding
- Each machine stores only the computed entries of the dynamic programming table
- Part of input
- Multi-pass streaming algorithm for Language Edit Distance and RNA Folding
- Better space vs approximation trade offs for linear grammar edit distance that generalizes string edit distance
- Single pass algorithm for edit distance in asymmetric setting


## What is the main difference?

Looks at many instant number at at Using Additive Approximation problems Longest Increasing Subsequence
Context Free Grammar Parsing
Language Edit Distance RNA Folding
can improve both space and time complexity using amnesic dynamic programming

## String Edit Distance

can improve space complexity using amnesic dynamic programming

## What is the main difference?

Looks at many at at Exact Solution instant number problems time

Using fast matrix multiplication can beat the dynamic programming

Context Free Grammar Parsing

Language Edit Distance RNA Folding

## String Edit Distance

Conditional hardness rules out
better running time

## What is the main difference?

## Looks at many subproblems at a time

can improve both space and time complexity using amnesic dynamic programming via additive approximation

## Parsing

Language Edit Distance
RNA Folding
Using fast matrix multiplication can beat the dynamic programming

Looks at a constant number of subproblems
cannot improve time complexity using amnesic dynamic programming via additive approximation

## String Edit Distance

Conditional hardness rules out better running time

## From Dynamic Programming to Matrix

$$
\begin{aligned}
& S \rightarrow A C \\
& C \rightarrow A B \\
& B \rightarrow A R \\
& A \rightarrow A L \\
& R \rightarrow a \\
& L \rightarrow b \\
& R \rightarrow b \text { score (1) } \\
& L \rightarrow a \text { score(1) }
\end{aligned}
$$

Multiplisation

$C \rightarrow A B$ and $z=x+y$
A derives $\mathrm{s}(\mathrm{i}, \mathrm{k}-1)$ with a score of x
$B$ derives $s(k, j)$ with a score of $y$


## To Matrix Multiplication [Saha, FOCs'15]

- Compute Transitive Closure Computation under a Special Matrix Product $\rightarrow$ (min,+)-product
- The product is nonassociative $\rightarrow$ computing transitive closure is difficult $\rightarrow$ keeping approximation error low is difficult
From cubic to $\mathrm{O}\left(\mathrm{n}^{2.327}\right)$ time for ( $1+\varepsilon$ )-approximation LED, APSP, stochastic CFG parsing,...
i



## Can we develop an exact fast algorithm for LED?

- Conditional Lower Bound: A subcubic exact algorithm for LED is weighted APSP hard if we allow only "insertion" as edit operation. [Saha FOCS'15]
- The lower bound breaks down when all three types of edits are allowed!!!


## Can we develop an exact fast algorithm for LED?

- When all three types of edits are allowed, the corresponding (min,+)-product matrices have bounded difference property
- No of edits required for substring $s(i, j)$ and $s(i, j+1)$ can not differ much—similarly for $s(i, j)$ and $s(i+1, j)$



## Can we develop an exact fast algorithm for LED?

- When all three types of edits are allowed, the corresponding (min,+)-product matrices have bounded difference property
- No of edits required for substring $s(i, j)$ and $s(i, j+1)$ can not difier rnuch-sirrilarly for $s(i, j)$ and $s(i+1, j)$

(min,+)-matrix product with bounded difference can be computed in truly subcubic time.
[Bringmann, Grandoni, Saha, V. Williams, FOCS'16]


## Open Problems

- Improve the upper bounds
- Amnesic Dynamic Programming---Running time below $\mathrm{O}\left(\mathrm{n}^{2}\right)$ would give new approximation results even for string edit distance
- Improve the bound for Bounded-difference (min,+)product towards a truly subcubic algorithm for integer APSP
- Is Real APSP >> Integer APSP?
- Higher Dimensional Amnesic DP for Lipschitz problems
- Lower bound for space and time complexity trade-off
- Understand the true complexity of LED


## Towards an Exact fast algorithm for (min,+) product

- Will be a major breakthrough resulting in a huge number of graph and string problems to have faster running time.
- Technique for bounded difference matrices-----matrices with integer entries in [1,n] ?


## How close are we?

- As long as the absolute difference in any one dimension for any one matrix is at most $\mathrm{n}^{3-\omega-\varepsilon}$
- To start with there are $\mathrm{n}^{3}$ triplets ( $\mathrm{i}, \mathrm{k}, \mathrm{j}$ ) that can contribute to (min,+)-product computation.
- A triplet $(i, k, j)$ is relevant if $A(i, k)+B(k, j) \approx C(i, j)[a n$ approximate value of the $(\mathrm{i}, \mathrm{j})^{\text {th }}$ entry of the product matrix C]
- Even for two arbitrary matrices after subcubic amount of processing, we are only left with subcubic number of relevant triplets which we have not looked at.
- How do we find these few relevant triplets which are yet to be considered?

