Space & Time Efficient Algorithms for
Lipschitz Problems

CETOQEREIE
University of Massachusetts Amherst



Collection of Some Basic Polynomial
Time Problems

Longest Increasing Subsequence [Schensted,
1961]

String Edit Dista
[Levenshtein, 1

Context Free G
parser, CYK, 19€6-

Language Edit Distance [Aho & Peterson,
1972]

RNA Folding [Nussinov, Jacobson, 1980]




1. Longest Increasing Subsequence [Schensted,
1961]

* Given a sequence of integers s[1], s[2],..,s[n], find
a subsequence 1<i,<i,<... <i < nsuch that
sli,] <sli,] <.....<s[i,] and k is maximized.

 Example

12 1951110

 The longest increasing subsequence has length 4



1. Longest Increasing Subsequence
[Schensted, 1961]

* Dynamic Programming
— LIS[1]=1

— LIS[i]=maXx

i<tsiijesgiy LISUI+1

12 1 951110

kbl 1L

(R
R




1. Longest Increasing Subsequence
[Schensted, 1961]

* Dynamic Programming
— LIS[1]=1

+1 Time Complexity=0(n?)
Space Complexity=0(n)

More sophisticated dynamic programming with time

complexity O(n log n) and O(n) space exists.



2. String Edit Distance [Levenshtein, 1965]

* Given two strings s and t what is the minimum
number of edits (insertion, deletion,

substitution) needed to transform s to t?
* Example

s=ACCGGACGTT ! )

t=ATACGGACGT )
deIetZ T T

substitute insert



O>00 0> >

2. String Edit Distance [Levenshtein, 1965]

* Dynamic Programming
— Edit[0,i]=Edit[i,0]=i
— Edit[i,j]=min[1+Edit(i-1,j), 1+Edit(i j-1),
cost(s[i],t[j])+Edit(i-1,j-1)]

ACCGGACT

Time Complexity=0(n?)
Space Complexity=0(n?)




2. String Edit Distance [Levenshtein, 1965]

* Dynamic Programming
— Edit[0,i]=Edit[i,0]=i

— Edit[i j]=min[1+Edit(i-1,j), 1+Edit(i j-1),

cost(s[i],t[j])+Edit(i-1,j-1)]
ACCGGAGCT

Time Complexity=0(n?)
Space Complexity=0(n)

* Assuming Strong Exponential Time Hypothesis no truly subguadratic
algorithm exists for the exact computation [Backurs, Indyk, STOC'15]

* Even shaving arbitrary polylog factor is seemingly hard [Abboud,
Dueholm, V Williams, Williams, STOC’16]

O>00 0> >



3. Context Free Grammar Parsing
[Earley’s parser, CYK 1968-70]

* Givena grammar G and a string s, can s be
parsed according to rules of G?

End index

I CH 1 2 3 45 6 7

(Production rules) >trtind
A ->BC
B->XX
C-> AX
X->3
B->y

N O O BW N



3. Context Free Grammar Parsing
[Earley’s parser, CYK 1968-70]

* Givena grammar G and a string s, can s be
parsed according to rules of G?

End index

* G 1 2 3 45 67

Start Ind

* Without using fast matrix multiplication, no truly subcubic
exact algorithm
* Using fast matrix multiplication an O(n%) exact algorithm [L
Valiant, Ph.D. Thesis, 1978]
e Valiant’s algorithm is the best possible [Abboud, Backurs, V.
Williams, FOCS’15, Lee 2001]

B->y
Time Complexity=0(n3)
Space Complexity=0(n?)




4. Language Edit Distance [Aho & Peterson,
1972]

* Given a grammar G and a string s, find the minimum
number of edits required in s to be able to parse the

edited string according to the rules of G.

End index

 G: 1 2 3 4 5 6 7

Start Ind

1

When only insertion is allowed, LED is as hard as weighted All-

Pairs-Shortest Paths [Saha, FOCS’15]
For all possible edits, no conditional lower bound known that is

stronger than parsing
Using fast matrix multiplication, the first truly subcubic
algorithm was developed last year [Bringmann, Grandoni, Saha,

V. Williams, FOCS’16]




5. RNA Folding [Nussinov, Jacobson, 1980}

Nucleotides in RNA form complementary base pairs to
form the RNA secondary structure: C pairs with & and
pairs with

e
GGCAGUACCGGUAAUAAGCUGCC

\/7




5. RNA Folding [Nussinov, Jackobson, 1980]
* Dynamic Programming
— RNA[i,i]=0, RNA[i,j]=0if j < i
— RNA[i,j]=max( R[i,j], max_. ; RNA[i,[[+RNA[I+1,j] )
* R(i,j)=0 if s[i] does not pair with s][j]
g * R(i,j)=2+R(i+1,j-1) if s[i] pairs with s[j]

indexl] 2 3 45 6 7
Start

Index 1
2

Time Complexity=0(n3)
Space Complexity=0(n?)

3 *  Without fast matrix multiplication, no truly subcubic exact

4 algorithm

5 * Unlikely to have an algorithm with running time better than boolean
6

7/

matrix mutiplication [Abboud, Backurs, V. Williams, FOCS’15]
e Using fast matrix multiplication, the first truly subcubic algorithm
last year [Bringmann, Grandoni, Saha, V. Williams, FOCS’16]



What is common among these
Dynamic Programming Problems?

Longest Increasing Subsequence

String Edit Distance

Context Free Grammar Parsing
Language Edit Distance

They all exhibit the property of

RNA Folding bounded difference



What is common among these
Dynamic Programming Problems?

Longest Increasing Subsequence
ACCGGACT

1 1 2 3 4 5 6 6
2 2 X=X 3 4 4 5 6
3 2 »il
String Edit Distance

>00 0> >

They all exhibit the property of

bounded difference



What is the main difference?

Looks at many subproblems} Looks at a constant number
at a time of subproblems

Longest Increasing atatime

Subsequence

Context Free Grammar
Parsing

language Edit Distance
RNA Folding

String Edit Distance




What is the main difference?

nstant number
roblems
time

Looks at many
at a

Longest Increasing
Subsequence

Context Free Grammar
Parsing

language Edit Distance
RNA Folding

String Edit Distance

can improve both space and can improve space complexity

time complexity using amnesic using amnesic dynamic
dynamic programming programming




Results: Language Edit Distance

— Previously Known

* Conditional Lower Bound: No combinatorial subcubic
algorithm exists even for any nontrivial multiplicative
approximation. [Abboud, Backurs, V. Williams, FOCS’2015]

* Upper Bound:

— Combinatorial: O(n3) time complexity, O(n?) space [Aho & Peterson, 1972,
Myers, 1985,..]

— Using Fast Matrix Multiplication: O(n%2244) time complexity, O(n?) space
[Bringmann, Grandoni, Saha, V. Williams, FOCS 2016]
— Using Fast Matrix Multiplication: O(n*/e#) time complexity, O(n?) space

randomized algorithm for multiplicative (1+€)-approximation [Saha, FOCS
2015]

— What we show [Saha, FOCS’17]

* Combinatorial & Deterministic algorithm with time complexity O(n?/g), space
O(n/¢g), en-additive approximation
 Sublinear space: O(n?3/g%/3) space for en-additive approximation

* Implies same bound for approximate membership checking for context free
grammars



Results: RNA Folding

— Previously Known

* Conditional Lower Bound: No combinatorial subcubic algorithm
exists [Abboud, Backurs, V. Williams, FOCS’2015]
e Upper Bound:
— Combinatorial: O(n3) time complexity, O(n?) space [Nussinov,
Jacokbson 1980]
— Using Fast Matrix Multiplication: O(n?2244) time complexity, O(n?)
space [Bringmann, Grandoni, Saha, V. Williams, FOCS’2016]
— Using Fast Matrix Multiplication: O(n®/e*) time complexity,
O(n?) space randomized algorithm for en-approximation
[Saha, FOCS 2015]

— What we show [Saha, FOCS’17]

* Combinatorial & Deterministic algorithm with time complexity O(n?/g),
space O(n/g), en-additive approximation

 Sublinear space: O(n?/3/g*/3) space for en-additive approximation



Further Results: String Edit Distance,
Linear Grammar, Map Reduce & More

e New result

— Linear grammar edit distance which generalizes string edit
distance

 Better space vs approximation trade offs: O(n?/3/ €2/3) space for en
additive approximation

— Map Reduce and multi-pass streaming algorithms for
Language Edit Distance, RNA Folding, String Edit distance

— Single pass streaming algorithm for string edit distance in
asymmetric setting
* Previously O(nY/2!/g1/2) space [Saks and Seshadri, SODA’13]
* This paper: O(n'/2/¢) space for en-additive approximation



TeowN 295

g¢ =  Dynamic Programming

¢ Amnesic Dynamic Programming

* Atechnique to forget DP states systematically to allow for fast
running time

— (1) Sample only part of the DP table for computation

— (2) For computing DP(i,j) consider fewer subproblems




Amnesic DP for Longest Increasing
Subsequence
* Dynamic Programming

— LIS[1]=1
LIS[j]+1

— LIS[i]=man<1:s[j]<s[i]




Amnesic DP for Longest Increasing
Subsequence
* Dynamic Programming

— LIS[1]=1

Create geometrically increasing
5 10 subintervals starting from i and
moving backward

1




Amnesic DP for Longest Increasing
Subsequence
* Dynamic Programming

— LIS[1]=1

On a subinterval of length 2Pk,

5 10 select 1/2" break-points at
equal distance

1




Amnesic DP for Longest Increasing
Subsequence
* Dynamic Programming

— LIS[1]=1

Perturb the boundaries slightly
10 such that going from i to i+1 only
subsampling is required.




Amnesic DP for Longest Increasing
Subsequence
e To show: L[Sapprow[’b] > LIS[Z] — LEJ
— LIS[i]: Optimal LIS sequence for s[1,..i]

— LISaprProxTj]: Approximate LIS sequence for s[1,...,i]
— Cost[i]=i-LIS[i], CostaPrrox[j]=i-LISaPProx[j]

such that going from i to i+1 only
subsampling is required.




Amnesic DP for LIS
LISPPTo%[§) > LIS[i] — _%J

* Proof: cost®™PTi] < cost[i] + L%_
— < k : LISPP"°*[i| = LIS|i], cost®®P"°*[i] = cost|i]
— Suppose true for ¢ < kT

Perturb the boundaries slightly
5 10 such that going from i to i+1 only
subsampling is required.

1




Amnesic DZ,P S Z.
LISProTll > LIS[i] — L—J 0st®PPTO%[j] < costli] + LE

i < ko LIS*PPTO%[i] = LIS[i], cost™P"*[i] = cost|i
* Prootf: Suppose true for ¢ < kT
B Take S [kT T 17 k(T + 1)] Perturb the boundaries

— slightly such that going
fromito i+1 only
—_ subsampling is required.

Let [ be the optimum break-point considered.




Amnesic DP for LIS

cost?PPTo | < cost|i] + L%

* Proof:
— Take 1 € [kT -+ 1, k(T —+ 1)] Perturb the boundaries
slightly such that going
If (’L — l —|— 1) S k . fromitoi+1 only

subsampling is
required.

Move to LIS|l] and LIS*PP"°%|]]

Let [ be the optimum break-point considered

T T T .

I Q I

\Sk




Amnesic DP for LIS

costPPTo | < cost|i] + L%

 Proof:
Take i € [kT + 1, k(T + 1)]

Let | be the optimum break-point considered.
f is the sampled break-point nearest to the left

Let k2a— —I_ 1 S (Z - l —I_ 1) S k2a \ Sample every 23'th point

Perturb the boundaries slightly < 2%d [kza-l"'l; kza]
such that going from i to i+1 only A
subsampling is required.




Amnesic DP for LIS

cost?PPToT | < cost|i] + L%

 Proof:
~ Takeie kT +1,k(T +1)]

— By induction hypothesis l
costPPTOr]] < cost[l] + LEJ

- -1
Perturb the boundaries slightly < 2%d [kza +1, kza]
such that going from i to i+1 only A
subsampling is required.




Amnesic DP for LIS

cost®PPT% (i < costli] + L%

° P f *Does not hold quite because of
roor: the subtleties of the LIS DP.

_Takeie[kT+1,k(T——1)l] R
ut wou ola IT we ranaomily

_ costePpPTox Z S cost [l] - \-EJ sample the points with a rate
. higher by a log n factor.

— LISPPTo%[]] < LIS®PP™%[f] + (I — f)

A
<21 [k2*1+1, k27
From the Lipschitz Property* A

.




Amnesic DP for LIS

cost?PPo%j] < costi] L%

 Proof:
_ Takei e [kT 4+ 1,k(T + 1)l]

_ cost®PT]] < cost|l] + LEJ

— costPPTT[ f] < cost™PPTOT]]

-1
Perturb the boundaries slightly [kza +1, kza]
such that going from i to i+1 only A
subsampling is required.




| for LIS
cost?PPTo%§] < cost|i] + LEJ

costaPPror [’L] S (Z s f) + cost?PPTOx [f]

< (¢ — f) + cost®PPTo%(]]

<@ =0+ =Ff)+costll] + | 1]

< costfi] + L% |

Perturb the boundaries slightly [k23-1+1, k2?]
such that going from i to i+1 only A
subsampling is required.




ic DP for LIS

i~ )+ cost™ee f] i
)

+ cost“fw-‘ k
[

i— 1)+ (L= f) Fcostll] + | ]

Perturb the boundaries slightly
such that going from i to i+1 only
subsampling is required.




A Si for LIS
cost?PPTO%|§] < cost|i] + 2LEJ

costPPTO% | < (1 — f) + costPPTO%| f]

Perturb the bou
such that going i
subsampling is re§




Amnesic DP for Language Edit Distance

End index

1 2 3 4 5 6 7

Start Ind

1

2

3 e Starting from j, go backward

A until i and sample break-
points like before

5

6

7/




Amnesic DP for Language Edit Distance

End index

1 2 3 4 5 6 7

e Perturb the boundaries slightly
such that going from (i’,j’) to (i,j)
where (i’,j’) is a subinterval of

(i,j), the algorithm only
subsamples break-points within

(")




Amnesic DP for Language Edit Distance

End index

1 2 3 4 5 6 7

e Perturb the boundaries slightly
such that going from (i’,j’) to (i,j)
where (i’,j’) is a subinterval of
(i,j), the algorithm only
subsamples break-points within




Amnesic DP for Language Edit Distance

* Language Edit Distance
— Amnesic DP: from O(n) subproblems to O(klog(n))

Exact Dynamic Programming

T I I T I e I e me e oemes

Amnesic Dynamic Programming

et T ot T Irrrmm

Sparsified in the middle



Understanding the Intuition Behind
Break Point Selection

* Long recursion Short Recursion

Fat

Can make mistake on the long substrings
but not on the short substrings—too many
of them

4

Cannot make mistake either
in the short or in the long substrings



Understanding the Intuition Behind
Break Point Selection

* Long recursion Short Recursion
Let P(i,j) denote the optimum recursion tree for s(i,i

+1,...,j) and PePpProX(j j) denote the approximate
recursion tree computed by us.

Cost(P(i,j)): Total edit cost paid by P(i,j)
Cost(Parrrox(j j)): Total edit cost paid by PPP™X(j j)

Cannot make mistake either
in the short or in the long substrings



Understanding the Intuition Behind
Break Point Selection

* Long recursion Short Recursion

w(vL)J, Lw(vR)o

cost(PorProx[j jl) < cost(P[i,j])+ 4 Z miH(L

v€ internal nodes of P(%,7)

k

Z min (Lw ZL)J, Lw(ZR)

v€ internal nodes of P(%,7)

Cannot make mistake either
in the short or in the long substrings



Understanding the Intuition Behind
Break Point Selection

* Long recursion Short Recursion

w(vr)

w(vR) J)

- cost(Parprrox[j j]) < cost(P[ij])+ 4 Z miﬂ(L — |, | —

Theorem 6. Given a parameter k > 1, there exists an algorithm which for any grammar G =
WNV,X,P,S), and o € ¥* of |o| = n, computes an O(3: logn)-additive approximation for LED in
O(n2klogn) time and O(n?) space.

ngs
many

w(vr, w(v —1+1

v€ internal nodes of P(%,7)

Cannot make mistake either
in the short or in the long substrings



Amnesic DP: Improving Space Complexity

* |Improved time complexity = Improved space
complexity
 Few subproblems to look at implies less space
complexity
* Locality among subproblems:
 Store the solution for all subproblems (i,j) of length 2k

e For (j-i+1)=r>2k: among the subproblems that are
accessed to solve for (i,j), keep only those which will be
required by (i,j+1) and (i-1,j). Also store all the
solutions for length r substrings.

— Space complexity: O(nk log n)



Amnesic DP for Sublinear Space
Complexity

* Exact dynamic programming computes/stores
solutions for every subproblem

— Compute/Store solutions for only a subset of the entries

i .
J
Break points considered by time and space efficient DP

For small substrings: compute using auxiliary space
with the time and space efficient DP

For long substrings: use the nearest DP value that is computed



Amnesic DP for Sublinear Space
Complexity

* Exact dynamic programming computes/stores
solutions for every subproblem

— Compute/Store solutions for only a subset of the entries

i .
J
Break points considered b¥ time and space efficient DP

Considering break-point p, but solution for (i,p) not stored

Length of (i,p) and (j,p+1) are large: select the |, nearest neighbor for which a
solution has been computed and use that.



Amnesic DP for Sublinear Space
Complexity

* Exact dynamic programming computes/stores
solutions for every subproblem

— Compute/Store solutions for only a subset of the entries

i .
J
Break points considered b¥ time and space efficient DP

Considering break-point p, but solution for (i,p) not stored

Length of (i,p) or (j,p+1) is small: Initialize the A with the nearest computed
solutions and then recompute....



Amnesic DP for Sublinear Space
Complexity

* Exact dynamic programming computes/stores
solutions for every subproblem

— Compute/Store solutions for only a subset of the entries

Theorem 2. Given two parameters ~ and q such that
Y > /q = 1, there exist efficient algorithms for LED,
RNA folding, and approximate CFG recognizer that use

2 lc 1 . . o
—%)) and achieve an additive

n,/qlogn )

-~

space O(max (-,

approximation of O(

logn
€

Sublinear space algorithm even for additive approximation n3/ 405> 0



From Sublinear Space to Parallel and

Streaming Algorithms

* First Map-Reduce algorithm for Language Edit Distance and
RNA Folding

— Each machine stores only the computed entries of the dynamic
programming table

— Part of input

* Multi-pass streaming algorithm for Language Edit Distance
and RNA Folding

* Better space vs approximation trade offs for linear
grammar edit distance that generalizes string edit distance

— Single pass algorithm for edit distance in asymmetric setting



What is the main difference?

nstant number
roblems
time

Looks at many
at a

Longest Increasing
Subsequence

Context Free Grammar
Parsing

language Edit Distance
RNA Folding

String Edit Distance

can improve both space and can improve space complexity

time complexity using amnesic using amnesic dynamic
dynamic programming programming




What is the main difference?

)nstant number
oroblems
1 time

Context Free Grammar
Parsing

String Edit Distance

Language Edit Distance
RNA Folding

Using fast matrix multiplication Conditional hardness rules out

can beat the dynamic programming better running time



difference?

ooks at a constant number
of subproblems

Looks at many subproblems
at a time

can improve both space and time cannot improve time
complexity using amnesic dynamic f§ complexity using amnesic
programming via additive dynamic programming via
approximation additive approximation

String Edit Distance

Parsing

v’ Language Edit Distance
v" RNA Folding

Using fast matrix multiplication

Conditional hardness rules out
better running time

can beat the dynamic programming



From Dynamic Programming to Matrix

5> AC MUltlplkGathn

C-> AB C—>AB and z=x+y
B—2>AR

A->AL A derives s(i,k-1) with a
R—2>a C,z score of x

L= b

R—>b score(1) B derives s(k,j) with a
L—>a score(1) K B,y score of y

k
A,
i X
k C,
i X+y

Use production C>AB Compute Transitive Closure




To Matrix Multiplication [saha, FOCS’15]

e Compute Transitive Closure Computation under a Special
Matrix Product—>(min,+)-product

* The product is nonassociative—>computing transitive closure is
difficult—=>keeping approximation error low is difficult

From cubic to O(n?3%7 ) time for (1+€)-approximation LED, APSP, stochastic CFG
parsing,...

j j

Use production C>AB



Can we develop an exact fast algorithm
for LED?

— Conditional Lower Bound: A subcubic exact
algorithm for LED is weighted APSP hard if we allow
only “insertion” as edit operation. [Saha FOCS’15]

— The lower bound breaks down when all three types
of edits are allowed!!!



Can we develop an exact fast algorithm
for LED?

— When all three types of edits are allowed, the
corresponding (min,+)-product matrices have
bounded difference property

* No of edits required for substring s(i,j) and s(i,j+1) can not
differ much—similarly for s(i,j) and s(i+1,))

|A(L,)-A(i,j+1) [ <=1

P
=.
]
=
=
‘H
=
N
11
=



Can we develop an exact fast algorithm
for LED?

— When all three types of edits are allowed, the
corresponding (min,+)-product matrices have
bounded difference property

* No of edits required for substring s(i,j) and s(i,j+1) can not
difier rnuch—-simiilarly for s(i,j) and s(i+1,))

(min,+)-matrix product with bounded difference can be
computed in truly subcubic time.

I [Bringmann, Grandoni, Saha, V. Williams, FOCS’16] i



Open Problems

* Improve the upper bounds

— Amnesic Dynamic Programming---Running time below

O(n?) would give new approximation results even for string
edit distance

— Improve the bound for Bounded-difference (min,+)-

product towards a truly subcubic algorithm for integer
APSP

— Is Real APSP >> Integer APSP?
— Higher Dimensional Amnesic DP for Lipschitz problems
* Lower bound for space and time complexity trade-off

* Understand the true complexity of LED



Towards an Exact fast algorithm for
(min,+) product

* Will be a major breakthrough resulting in a huge
number of graph and string problems to have faster
running time.

* Technique for bounded difference matrices------
matrices with integer entriesin [1,n] ?



How close are we?

As long as the absolute difference in any one dimension
for any one matrix is at most n3-w

To start with there are n3 triplets (i,k,j) that can contribute
to (min,+)-product computation.

A triplet (i,k,j) is relevant if A(i,k)+B(k,j) = C(i,j) [an
approximate value of the (i,j)t" entry of the product matrix
Cl

Even for two arbitrary matrices after subcubic amount of

processing, we are only left with subcubic number of
relevant triplets which we have not looked at.

How do we find these few relevant triplets which are yet
to be considered?



