> Matthieu Latapy

complexnetworks.fr

Contex

Approac

Degree

Densit

Paths

Algorithm

Stream Graphs, Link Streams and

Related Algorithmic Challenges

Matthieu Latapy, Tiphaine Viard, Clémence Magnien

http://complexnetworks.fr

latapy@complexnetworks.fr

LIP6 – CNRS and Sorbonne Université Paris, France

Link Streams

Matthieu Latapy

complexnetworks.fr

Context

Approac

Daning

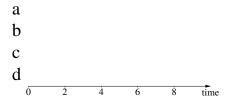
Degree

Paths

Further

Algorithms

interactions over time



• a, b, c, and d for 10 time units

> Matthieu Latapy

complexnetworks.fr

Context

Approach

Racios

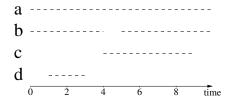
Degree

Paths

Further

Algorithm

interactions over time



- a, b, c, and d for 10 time units
- a always present, b leaves from 4 to 5, c present from 4 to 9, d from 1 to 3

> Matthieu Latapy

complexnetworks.fr

Context

Approac

Racine

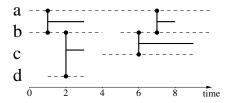
Degree

Paths

T GITTIOI

Algorithm

interactions over time



- a, b, c, and d for 10 time units
- a always present, b leaves from 4 to 5, c present from 4 to 9, d from 1 to 3
- a and b interact from 1 to 3 and from 7 to 8; b and c from 6 to 9; b and d from 2 to 3.

Matthieu Latapy

complexnetworks.fr

Context

Approac

_ .

Degree

Ŭ

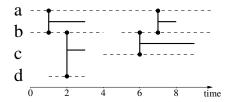
_

Paths

Furthe

Algorithm

interactions over time



- a, b, c, and d for 10 time units
- a always present, b leaves from 4 to 5, c present from 4 to 9, d from 1 to 3
- a and b interact from 1 to 3 and from 7 to 8; b and c from 6 to 9; b and d from 2 to 3.

e.g., social interactions, network traffic, money transfers, chemical reactions, etc.

> Matthieu Latapy

complexnetworks.fr

Context

Approac

Pagino

Degree

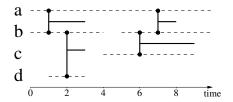
Ŭ

Paths

Further

Algorithm

interactions over time



- a, b, c, and d for 10 time units
- a always present, b leaves from 4 to 5, c present from 4 to 9, d from 1 to 3
- a and b interact from 1 to 3 and from 7 to 8; b and c from 6 to 9; b and d from 2 to 3.

e.g., social interactions, network traffic, money transfers, chemical reactions, etc.

how to describe such data?

and Link Streams

Matthieu Latapy

complexnetworks.fr

Context

Appro

Basics

Degree

Donoite

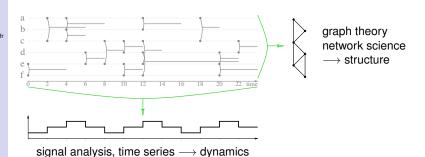
D ...

Paths

Furthe

Algorithn

structure or dynamics



Streams Graphs

Link Streams

Matthieu Latapy

complexnetworks.fr

Context

Annroac

Dooles

Dogroc

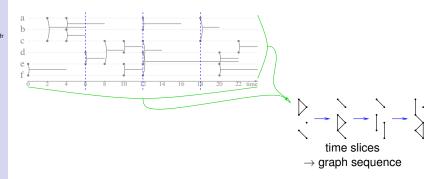
Densi

Patho

rallis

Algorithm

structure and dynamics?



and Link Streams

> Matthieu Latapy

complexnetworks.fr

Context

Approa

. .

Daoioc

Degree

Densit

_ ...

Paths

Furthe

Algorithm

structure and dynamics?



information loss what slices? graph sequences?

Streams Graphs

Link Streams

Matthieu Latapy

complexnetworks.fr

Context

Approac

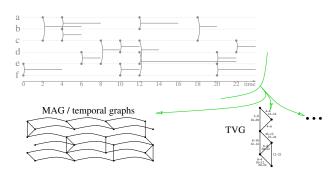
Degree

Paths

Furthe

Algorithms

structure and dynamics



lossless but graph-oriented

+ ad-hoc properties (mostly path-related) + contact sequences + relational event models + ...

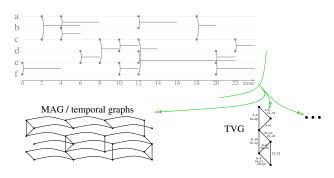
Link Streams

Matthieu Latapy

complexnetworks.fr

Context

structure and dynamics



lossless but graph-oriented

+ ad-hoc properties (mostly path-related) + contact sequences + relational event models + ...

Link Streams

Matthieu Latapy

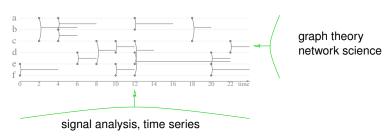
complexnetworks.fr

Context

what we propose

deal with the stream directly

stream graphs and link streams



Matthieu Latapy

complexnetworks.fr

Context

Approac

Basics

Dogic

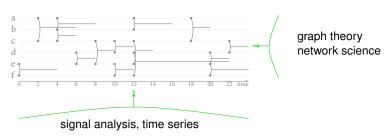
Densit

Algorithm

what we propose

deal with the stream directly

stream graphs and link streams



wanted features: simple and intuitive, comprehensive, time-node consistent, generalizes graphs/signal

and Link Streams

Matthieu Latapy

complexnetworks.fr

Context

Approac

Basics

Degree

Damete

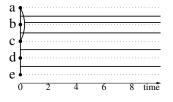
Dotho

Eurtha

Algorithm

graph-equivalent streams

stream with no dynamics: nodes always present, either always or never linked



> Matthieu Latapy

complexnetworks.fr

Context

Approacl

Basics

Degree

_

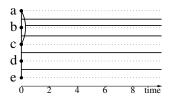
Paths

Eurtho

Algorithm

graph-equivalent streams

stream with no dynamics: nodes always present, either always or never linked



stream properties

graph properties

→ generalizes graph theory

> Matthieu Latapy

complexnetworks.fr

Contex

Approach

Degree

Paths

our approach

very careful generalization of the most basic concepts
stream graphs and link streams
numbers of nodes and links
clusters and induced sub-streams
density and paths

→ buliding blocks for higher-level concepts

 neighborhood and degrees
 clustering coefficient
 betweenness centrality
 many others

+ ensure consistency with graph theory+ ensure classical relations are preserved

> Matthieu Latapy

complexnetworks.fr

Basics

definition of stream graphs

Graph G = (V, E) with $E \subseteq V \otimes V$ $uv \in E \Leftrightarrow u$ and v are linked

$$(t,v) \in W \Leftrightarrow v \text{ is present at time } t$$

$$T_v = \{t, (t,v) \in W\}$$

$$(t, uv) \in E \Leftrightarrow u \text{ and } v \text{ are linked at time } t$$

 $T_{uv} = \{t, (t, uv) \in E\}$

$$(t, uv) \in E$$
 requires $(t, u) \in W$ and $(t, v) \in W$
i.e. $T_{uv} \subseteq T_u \cap T_v$

Link Streams

Matthieu Latapy

complexnetworks.fr

Contex

Approac

Basics

Daawaa

209.00

Paths

Further

Algorithms

definition of stream graphs

Graph G = (V, E) with $E \subseteq V \otimes V$ $uv \in E \Leftrightarrow u$ and v are linked

Stream graph
$$S = (T, V, W, E)$$

$$(t, v) \in W \Leftrightarrow v \text{ is present at time } t$$

 $T_v = \{t, (t, v) \in W\}$

$$(t, uv) \in E \Leftrightarrow u \text{ and } v \text{ are linked at time } t$$

$$T_{uv} = \{t, (t, uv) \in E\}$$

$$(t, uv) \in E$$
 requires $(t, u) \in W$ and $(t, v) \in W$
i.e. $T_{uv} \subseteq T_u \cap T_v$

Link Streams

Matthieu Latapy

complexnetworks.fr

Contex

Approac

Basics

D -- -----

Dogroo

Paths

Further

Algorithms

definition of stream graphs

Graph G = (V, E) with $E \subseteq V \otimes V$ $uv \in E \Leftrightarrow u$ and v are linked

Stream graph
$$S = (T, V, W, E)$$

$$(t, v) \in W \Leftrightarrow v \text{ is present at time } t$$

$$T_v = \{t, (t, v) \in W\}$$

$$(t, uv) \in E \Leftrightarrow u \text{ and } v \text{ are linked at time } t$$

$$T_{uv} = \{t, (t, uv) \in E\}$$

$$(t, uv) \in E$$
 requires $(t, u) \in W$ and $(t, v) \in W$
i.e. $T_{uv} \subseteq T_u \cap T_v$

Link Streams

Matthieu Latapy

complexnetworks.fr

Contex

Approac

Basics

Dograd

209.00

Paths

Further

Algorithms

definition of stream graphs

Graph G = (V, E) with $E \subseteq V \otimes V$ $uv \in E \Leftrightarrow u$ and v are linked

Stream graph S = (T, V, W, E)

$$(t, v) \in W \Leftrightarrow v \text{ is present at time } t$$

$$T_v = \{t, (t, v) \in W\}$$

$$(t, uv) \in E \Leftrightarrow u \text{ and } v \text{ are linked at time } t$$

$$T_{uv} = \{t, (t, uv) \in E\}$$

$$(t,uv) \in E$$
 requires $(t,u) \in W$ and $(t,v) \in W$
i.e. $T_{uv} \subseteq T_u \cap T_v$

> Matthieu Latapy

complexnetworks.fr

Contex

Approac

Basics

Dograd

209.00

Paths

Algorithms

definition of stream graphs

Graph G = (V, E) with $E \subseteq V \otimes V$ $uv \in E \Leftrightarrow u$ and v are linked

Stream graph S = (T, V, W, E)

$$(t, v) \in W \Leftrightarrow v \text{ is present at time } t$$

$$T_v = \{t, (t, v) \in W\}$$

$$(t, uv) \in E \Leftrightarrow u \text{ and } v \text{ are linked at time } t$$

$$T_{uv} = \{t, (t, uv) \in E\}$$

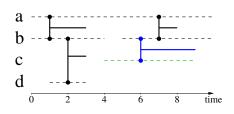
$$(t, uv) \in E$$
 requires $(t, u) \in W$ and $(t, v) \in W$
i.e. $T_{uv} \subseteq T_u \cap T_v$

> Matthieu Latapy

complexnetworks.fr

Basics

an example



$$T = [0, 10]$$
 $V = \{a, b, c, d\}$

$$W = T \times \{a\} \cup ([0,4] \cup [5,10]) \times \{b\} \cup [4,9] \times \{c\} \cup [1,3] \times \{d\}$$
 $T_a = T$ $T_b = [0,4] \cup [5,10]$ $T_c = [4,9]$ $T_d = [1,3]$

$$E = ([1,3] \cup [7,8]) \times \{ab\} \cup [6,9] \times \{bc\} \cup [2,3] \times \{bd\}$$

 $T_{ab} = [1,3] \cup [7,8]$ $T_{bc} = [6,9]$ $T_{bd} = [2,3]$ $T_{ad} = \emptyset$

Approac

Basics

Degree

_

ĺ

1 41110

Algorithm

a few remarks

works with... discrete time, continuous time, instantaneous interactions or with durations, directed, weighted, bipartite...

if $\forall v, T_v = T$ then $S \sim L = (T, V, E)$ is a **link stream**

if $\forall u, v, T_{uv} \in \{T, \emptyset\}$ then $S \sim G = (V, E)$ is a graph-equivalent stream

Link Streams

Matthieu Latapy

complexnetworks.fr

Contex

Approac

Basics

Degree

Density

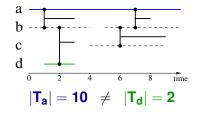
Paths

Further

Algorithms

size of a stream graph

How many nodes? How many links?



Link Streams

Matthieu Latapy

complexnetworks.fr

Contex

Approac

Basics

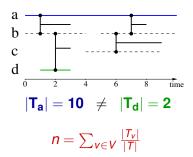
Degree

Paths

Further

size of a stream graph

How many nodes? How many links?



$$n = \frac{|\mathbf{T_a}|}{10} + \frac{|T_b|}{10} + \frac{|T_c|}{10} + \frac{|\mathbf{T_d}|}{10} = 1 + 0.9 + 0.5 + 0.2 = 2.6$$
 nodes

Link Streams

Matthieu Latapy

complexnetworks.fr

Contex

Approac

Basics

Degree

Paths

Algorithm

size of a stream graph

How many nodes? How many links?

a
b
c
d
$$|\mathbf{T_a}| = \mathbf{10} \neq |\mathbf{T_d}| = \mathbf{2}$$

$$n = \sum_{v \in V} \frac{|T_v|}{|T|}$$

$$m = \sum_{uv \in V \otimes V} \frac{|T_{uv}|}{|T|}$$

$$n = \frac{|T_a|}{10} + \frac{|T_b|}{10} + \frac{|T_c|}{10} + \frac{|T_d|}{10} = 1 + 0.9 + 0.5 + 0.2 = 2.6 \text{ nodes}$$

$$m = \frac{|T_{ab}|}{10} + \frac{|T_{bc}|}{10} + \frac{|T_{bd}|}{10} = 0.3 + 0.3 + 0.1 = 0.7 \text{ links}$$

> Matthieu Latapy

complexnetworks.fr

Contex

Approac

Basics

Daawaa

20g.00

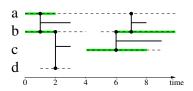
Paths

Furthe

Algorithm

clusters, sub-streams

Cluster in G = (V, E): a subset of V. Cluster in S = (T, V, W, E): a subset of $W \subseteq T \times V$.



$$C = [0,2] \times \{a\} \cup ([0,2] \cup [6,10]) \times \{b\} \cup [4,8] \times \{c\}$$

$$S(C)$$
 sub-stream induced by C
 $S(C) = (T, V, C, E_C)$

 \hookrightarrow properties of (sub-streams induced by) clusters

> Matthieu Latapy

complexnetworks.fr

Context

Approacl

Basics

Daawaa

20g.00

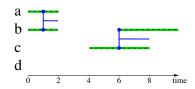
Paths

Furthe

Algorithm

clusters, sub-streams

Cluster in G = (V, E): a subset of V. Cluster in S = (T, V, W, E): a subset of $W \subseteq T \times V$.



$$C = [0,2] \times \{a\} \ \cup \ ([0,2] \cup [6,10]) \times \{b\} \ \cup \ [4,8] \times \{c\}$$

$$S(C)$$
 sub-stream induced by C
 $S(C) = (T, V, \mathbf{C}, \mathbf{E_C})$

 \hookrightarrow properties of (sub-streams induced by) clusters

Link Streams

Matthieu

Latapy complexnetworks.fr

Contex

Approach

Б.

Degrees

Ŭ

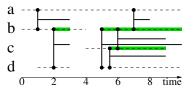
Paths

Furthe

Algorithm

neighborhood

in
$$G = (V, E)$$
: $N(v) = \{u, uv \in E\}$
in $S = (T, V, W, E)$: $N(v) = \{(t, u), (t, uv) \in E\}$



$$N(d) = ([2,3] \cup [5,10]) \times \{b\} \cup [5.5,9] \times \{c\}$$

N(v) is a cluster

> Matthieu Latapy

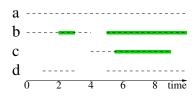
complexnetworks.fr

Degrees

degree

in G and in S:

$$d(v)$$
 is the size of $N(v)$



$$N(d) = ([2,3] \cup [5,10]) \times \{b\} \cup [5.5,9] \times \{c\}$$
$$d(d) = \frac{|[2,3] \cup [5,10]|}{10} + \frac{|[5.5,9]|}{10} = 0.6 + 0.35 = 0.95$$

- degree distribution, average degree, etc
- if graph-equivalent stream then graph degree
- relation with n and m

Link Streams

Matthieu Latapy

complexnetworks.fr

Contex

Approaci

Dagwaa

Density

Pathe

Further

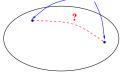
Algorithms

density

in G:

proba two random nodes are linked

$$\delta(G) = \frac{\text{nb links}}{\text{nb possible links}}$$
$$= \frac{2 \cdot m}{n \cdot (n-1)}$$



random

in S:

proba two random nodes are linked at a random time instant

$$\delta(S) = \frac{\text{nb links}}{\text{nb possible links}}$$
$$= \frac{\sum_{uv \in V \otimes V} |T_{uv}|}{\sum_{uv \in V \otimes V} |T_{u} \cap T_{v}|}$$

> Matthieu Latapy

complexnetworks.fr

Context

Approac

_

Degree

Density

Paths

Further

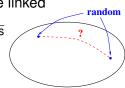
Algorithms

density

in G:

proba two random nodes are linked

$$\delta(G) = \frac{\text{nb links}}{\text{nb possible links}}$$
$$= \frac{2 \cdot m}{n \cdot (n-1)}$$



random

in S:

proba two random nodes are linked at a random time instant

 $\delta(S) = \frac{\text{nb links}}{\text{nb possible links}} = \frac{\sum_{uv \in V \otimes V} |T_{uv}|}{\sum_{uv \in V \otimes V} |T_{u} \cap T_{v}|}$

- if graph-equivalent stream then graph density
- relation with n, m, and average degree

> Matthieu Latapy

complexnetworks.fr

Contex

Approach

Dasics

Degree

Density

_

Paths

Further

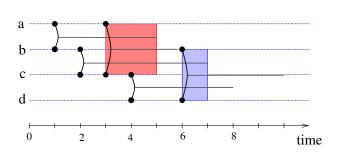
Algorithm

cliques

in G: sub-graph of density 1 all nodes are linked together

in S: sub-stream of density 1

all nodes interact all the time



Link Streams

Matthieu Latapy

complexnetworks.fr

Contex

Approacl

200.00

Degree

Density

D-H--

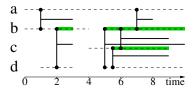
_ ...

Algorithn

clustering coefficient

in G and in S: density of the neighborhood

$$cc(v) = \delta(N(v))$$



$$N(d) = ([2,3] \cup [5,10]) \times \{b\} \cup [5.5,9] \times \{c\}$$

Matthieu

Latapy complexnetworks.fr

Contovi

Approacl

Basics

Degree

Density

Dotho

clustering coefficient

in G and in S: density of the neighborhood

$$cc(v) = \delta(N(v))$$

$$N(d) = ([2,3] \cup [5,10]) \times \{b\} \cup [5.5,9] \times \{c\}$$
$$cc(d) = \delta(N(d)) = \frac{|[6,9]|}{|[5.5,9]|} = \frac{6}{7}$$

Approac

Degree

Paths

i di tiloi

Algorithm

paths

from a to d: (a, b), (b, c), (c, d) length: 3

 $\rightarrow \text{shortest paths}$

in S

from (1, d) to (9, c):

(2, d, b), (3, b, a), (7.5, a, b), (8, b, c)

length: 4

→ shortest paths

→ fastest paths

> Matthieu Latapy

complexnetworks.fr

Contex

Approac

Racios

Degre

Daniella

Paths

Furthe

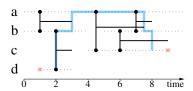
Algorithm

paths

from a to d: (a, b), (b, c), (c, d) length: 3

 \rightarrow shortest paths

in S:



from (1, d) to (9, c):

$$(2, d, b), (3, b, a), (7.5, a, b), (8, b, c)$$

length: 4 duration: 6

 $\rightarrow \text{shortest paths}$

 \rightarrow fastest paths

and Link Streams

Matthieu Latapy

complexnetworks.fr

Contex

Approac

3 - -

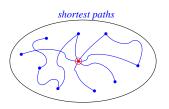
Paths

Algorithm

betweenness centrality

in G:

b(v) = fraction of $shortest\ paths$ from any u to any w in Vthat involve v



in S:

b(t, v) = fraction of $shortest \, \text{fastest } paths$ from any (i, u) to any (j, w) in Wthat involve (t, v)

Link Streams

Matthieu Latapy

complexnetworks.fr

Contex

Approac

_

3 --

Paths

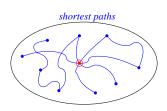
Paths

i di tiloi

betweenness centrality

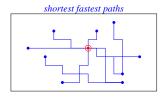
in G:

b(v) = fraction of $shortest\ paths$ from any u to any w in Vthat involve v



in *S*:

b(t, v) = fraction of shortest fastest paths from any (i, u) to any (j, w) in Wthat involve (t, v)

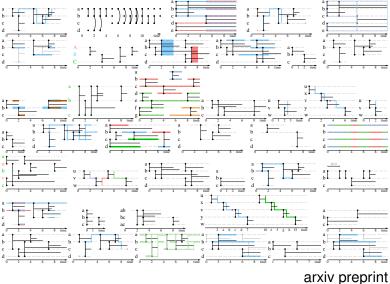


Link Streams

Matthieu Latapy

complexnetworks.fr

Further



Link Streams

Matthieu Latapy

complexnetworks.fr

Contex

Approac

Dasics

Degree

Densi

Paths

Algorithms

algorithmic concerns

extension of graph concepts...

...extension of graph algorithms?

some properties of S derive from properties of G_t neighborhood, degrees, k-cores, ...

some don't but algorithms may be adapted density, cliques (greedy, Bron-Kerbosch), ...

some still don't ⇒ new algorithms needed

(directed) paths, betweenness, patterns, ...

> Matthieu Latapy

complexnetworks.fr

Algorithms

algorithmic concerns

extension of graph concepts...

...extension of graph algorithms?

some properties of S derive from properties of G_t neighborhood, degrees, k-cores, ...

some don't but algorithms may be adapted density, cliques (greedy, Bron-Kerbosch), ...

some still don't ⇒ new algorithms needed (directed) paths, betweenness, patterns, ...

> Matthieu Latapy

complexnetworks.fr

Contex

Approac

_

Degree

D ...

rauis

Algorithms

algorithmic challenges

classical ones

streaming/on-line fully dynamic approximation space complexity

new ones

cliques, paths, betweenness unbounded number of links prediction?

good news

time-induced locality knowledge of dynamics better than induced graph?

Link Streams

Matthieu Latapy

complexnetworks.fr

Contex

Approac

Duoloo

Degree

Damaik

Paths

Algorithms

algorithmic challenges

classical ones

streaming/on-line fully dynamic approximation space complexity

new ones

cliques, paths, betweenness unbounded number of links prediction?

good news

time-induced locality knowledge of dynamics better than induced graph?

> Matthieu Latapy

complexnetworks.fr

Contex

Approac

_

- - 9. - -

Paths

_ .

Algorithms

algorithmic challenges

classical ones

streaming/on-line fully dynamic approximation space complexity

new ones

cliques, paths, betweenness unbounded number of links prediction?

good news

time-induced locality knowledge of dynamics better than induced graph?

Matthieu Latapy

complexnetworks.fr

Contex

Approac

Б.

Degree

Donoit

_ ...

Contlan

Algorithms

conclusion

we provide a language (set of concepts) that:

- makes it easy to deal with interaction traces,
- combines structure and dynamics in a consistent way,
- generalizes graphs / networks ; signals / time series ?
- meets classical and new algorithmic challenges,
- opens new perspectives for data analysis,
- clarifies the interplay interactions ←→ relations.

studies in progress: internet traffic, financial transactions, mobility/contacts, mailing-lists, sales, etc.

> Matthieu Latapy

complexnetworks.fr

Contex

Approac

Degree

rallis

Algorithms

calls for papers

special issues of international journals

Theoretical Computer Science (TCS)

Link Streams: models and algorithms

Computer Networks

Link Streams: methods and case studies

deadline: July 1st http://link-streams.com