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How to protect these flowers from wild animals?
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How to protect these flowers from wild animals?

?

Which one of the two is the least expensive in fences?
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More formally

Unit-disk fencing problem

Input: A set D of unit-disks in R2.
Output: A partition {D1, . . . , D`} of D that minimizes

∑̀
i=1

|ConvexHull(Di)|.
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More formally

Unit-disk fencing problem

Input: A set D of unit-disks in R2.
Output: A partition {D1, . . . , D`} of D that minimizes

∑̀
i=1

|ConvexHull(Di)|.

Other variant:

k-cluster fencing problem

Input: A set P of points in R2.
Output: A partition {P1, . . . , Pk} of P into k clusters that minimizes

k∑
i=1

|ConvexHull(Pi)|.

A.k.a. min perimeter sum problem.
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History

k-cluster fencing f(k)nO(k) Capoyleas, Rote, Woeginger’91
k-cluster fencing f(k)nO(k) Arkin, Khuller, Mitchell’93
2-cluster fencing n3 Mitchell and Wynters’91
2-cluster fencing n log4 n Abrahamsen, de Berg, Buchin, Mehr, Mehrabi’17

Unit-disk fencing exp(n logn) Arkin, Khuller, Mitchell’93:
Run the algorithm for k-cluster,

for each 1 ≤ k ≤ n.

Conjecture by Arkin, Khuller, Mitchell’93:
k-cluster and unit-disk fencing are NP-Hard.
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Our Results

Algorithms:

Unit-disk fencing n poly log n
k-cluster fencing n27

Unit-disk algorithm extends to polygons.

Take-home message

Unit-disk fencing: Nice structure, simple polynomial time algo-
rithms, more complicated near-linear time algorithm.

k-cluster fencing: Nice separator properties, not NP-Hard!
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This talk: A polynomial time algorithm for unit-disk fencing

1. Simplify the problem

2. Structural property

3. Algorithm
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Our problem for the rest of the talk

Input: A set P of points in R2. An opening cost c.
Output: A partition {P1, . . . , P`} of P that minimizes

` · c+
∑̀
i=1

ConvexHull(Pi).

Claim: Solving this problem helps us solve the unit-disk fencing problem.

Formally: For any instance of the unit-disk fencing problem D, define an
instance of the new problem:
I c = perimeter of unit-disk
I P = {d | d center of a disk in D}.

Any optimal solution for this problem is also an optimal solution for the
unit-disk fencing problem.
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I c = perimeter of unit-disk
I P = {d | d center of a disk in D}.

Any optimal solution for this problem is also an optimal solution for the unit-disk
fencing problem.

Solution for unit-disk: Cost is length of red lines.
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I c = perimeter of unit-disk
I P = {d | d center of a disk in D}.

Any optimal solution for this problem is also an optimal solution for the unit-disk
fencing problem.

Solution for the new problem: cost is c + convexhull of centers of disks
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Our problem for the rest of the talk

Input: A set P of points in R2. An opening cost c.
Output: A partition {P1, . . . , P`} of P that minimizes

` · c+
∑̀
i=1

ConvexHull(Pi).

Obvious observation:

In an optimal solution, the convex hulls of the clusters do not intersect.
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Key Definition:

A set of points P is indivisible if the optimal solution for P is {P}.

Observation:

The clusters of OPT are indivisible.

12



Key Definition:

A set of points P is indivisible if the optimal solution for P is {P}.

indivisible indivisible
not

Observation:

The clusters of OPT are indivisible.
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Structural Result

Lemma

Consider two indivisible sets of points A and B.
If their convex hulls intersect then A ∪B is an indivisibile set of points.

OPT for pinkOPT for blue

=⇒

OPT for blue + pink
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Proof of Structural Result

Lemma

Consider two indivisible sets of points A and B.
If their convex hulls intersect then A ∪B is an indivisibile set of points.

Assume this is not true.

OPT for blue + pink

A1 ∪ P1 is not indivisible.

Conv.Hull(A1 ∪ P1) ≤
Conv.Hull(blue) + Conv.Hull(P1)− Conv.Hull(red)

By indivisibility of blue:
OPT(blue) = Conv.Hull(blue) + c ≤
Conv.Hull(A1) + Conv.Hull(red) + 2c

Summing up the two equations
Conv.Hull(A1 ∪ P1) + c ≤ Conv.Hull(A1) + Conv.Hull(P1) + 2c
Thus A1 ∪ P1 is indivisible, a contradiction.
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Proof of Structural Result

Lemma

Consider two indivisible sets of points A and B.
If their convex hulls intersect then A ∪B is an indivisibile set of points.

Assume this is not true.

Solution better than
OPT for blue + pink

A1 ∪ P1 is not indivisible.

Conv.Hull(A1 ∪ P1) ≤
Conv.Hull(blue) + Conv.Hull(P1)− Conv.Hull(red)

By indivisibility of blue:
OPT(blue) = Conv.Hull(blue) + c ≤
Conv.Hull(A1) + Conv.Hull(red) + 2c

Summing up the two equations
Conv.Hull(A1 ∪ P1) + c ≤ Conv.Hull(A1) + Conv.Hull(P1) + 2c
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This suggests the following algorithmic approach

OPT for pinkOPT for blue

=⇒

OPT for blue + pink

15



Algorithm
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Algorithm: Step 1

Recursively divide R2 into cells.

Level 0 cells.

Goal: Solve for cells of level i using solution for cells of level i+ 1.
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Algorithm: Step 1

Recursively divide R2 into cells.

Level 1 cells.

Goal: Solve for cells of level i using solution for cells of level i+ 1.
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Algorithm: Step 1

Recursively divide R2 into cells.

Level 2 cells.

Goal: Solve for cells of level i using solution for cells of level i+ 1.
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Define Shapes with Level-i Cells

Basic Polyominos:

Evolved Polyominos:

18



Define Shapes with Level-i Cells

Basic Polyominos:
Evolved Polyominos:
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Property

Optimal solution for basic polyominoes made of level-i cells can be computed
from optimal solutions for evolved polyominoes made of level-i+ 1 cells.
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Property

Optimal solution for evolved polyominoes made of level-i cells computed:
I from optimal solution for basic polyominoes made of level-i cells, and
I Sweeping step to find out if there is a cluster intersecting all cells.

Alg:
1. Greedily merge optimal clusters of the basic polyominos that overlap.

2. Guess a point that belongs to the large cluster, compute the best cluster
that intersects all cells, if it decreases the cost, keep it.
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Overall Running Time

I O(n2) time per level
I O(logn) levels in total
I Overall running time : O(n2 logn).

Faster

O(n poly logn), using a more sophisticated algorithm for the last step.
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k-Clustering Fencing Problem

Other structural result:

Separators with small complexity: Cells only intersect a few clusters of OPT.

Dynamic programming on cells.
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Our Results

Algorithms:

Unit-disk fencing n poly log n
k-cluster fencing n27

Unit-disk alg. extends to polygons w/ slightly worse complexity.

Take-home message

Unit-disk fencing: Nice structure, simple polynomial time algo-
rithms, more complicated near-linear time algorithm.

k-cluster fencing: Nice separator properties, not NP-Hard!

23


