
Fast Fencing

Mikkel Abrahamsen Anna Adamaszek Karl Bringmann
University of Copenhagen University of Copenhagen Max Planck Institute

Vincent Cohen-Addad Mehran Mehr Eva Rotenberg
CNRS & Sorbonne Université TU Eindhoven TU of Denmark

Alan Roytman Mikkel Thorup
University of Copenhagen University of Copenhagen

1

2

How to protect these flowers from wild animals?

3

How to protect these flowers from wild animals?

?

Which one of the two is the least expensive in fences?
4

More formally

Unit-disk fencing problem

Input: A set D of unit-disks in R2.
Output: A partition {D1, . . . , D`} of D that minimizes

∑̀
i=1

|ConvexHull(Di)|.

5

More formally

Unit-disk fencing problem

Input: A set D of unit-disks in R2.
Output: A partition {D1, . . . , D`} of D that minimizes

∑̀
i=1

|ConvexHull(Di)|.

total cost = 7total cost = 8

1

1
1

1

1

1

1
1

1 1
1

1.5
2.5

5

More formally

Unit-disk fencing problem

Input: A set D of unit-disks in R2.
Output: A partition {D1, . . . , D`} of D that minimizes

∑̀
i=1

|ConvexHull(Di)|.

Other variant:

k-cluster fencing problem

Input: A set P of points in R2.
Output: A partition {P1, . . . , Pk} of P into k clusters that minimizes

k∑
i=1

|ConvexHull(Pi)|.

A.k.a. min perimeter sum problem.

5

History

k-cluster fencing f(k)nO(k) Capoyleas, Rote, Woeginger’91
k-cluster fencing f(k)nO(k) Arkin, Khuller, Mitchell’93
2-cluster fencing n3 Mitchell and Wynters’91
2-cluster fencing n log4 n Abrahamsen, de Berg, Buchin, Mehr, Mehrabi’17

Unit-disk fencing exp(n logn) Arkin, Khuller, Mitchell’93:
Run the algorithm for k-cluster,

for each 1 ≤ k ≤ n.

Conjecture by Arkin, Khuller, Mitchell’93:
k-cluster and unit-disk fencing are NP-Hard.

6

Our Results

Algorithms:

Unit-disk fencing n poly log n
k-cluster fencing n27

Unit-disk algorithm extends to polygons.

Take-home message

Unit-disk fencing: Nice structure, simple polynomial time algo-
rithms, more complicated near-linear time algorithm.

k-cluster fencing: Nice separator properties, not NP-Hard!

7

This talk: A polynomial time algorithm for unit-disk fencing

1. Simplify the problem

2. Structural property

3. Algorithm

8

Our problem for the rest of the talk

Input: A set P of points in R2. An opening cost c.
Output: A partition {P1, . . . , P`} of P that minimizes

` · c+
∑̀
i=1

ConvexHull(Pi).

Claim: Solving this problem helps us solve the unit-disk fencing problem.

Formally: For any instance of the unit-disk fencing problem D, define an
instance of the new problem:
I c = perimeter of unit-disk
I P = {d | d center of a disk in D}.

Any optimal solution for this problem is also an optimal solution for the
unit-disk fencing problem.

9

I c = perimeter of unit-disk
I P = {d | d center of a disk in D}.

Any optimal solution for this problem is also an optimal solution for the unit-disk
fencing problem.

Solution for unit-disk: Cost is length of red lines.

10

I c = perimeter of unit-disk
I P = {d | d center of a disk in D}.

Any optimal solution for this problem is also an optimal solution for the unit-disk
fencing problem.

10

I c = perimeter of unit-disk
I P = {d | d center of a disk in D}.

Any optimal solution for this problem is also an optimal solution for the unit-disk
fencing problem.

10

I c = perimeter of unit-disk
I P = {d | d center of a disk in D}.

Any optimal solution for this problem is also an optimal solution for the unit-disk
fencing problem.

Solution for the new problem: cost is c + convexhull of centers of disks

10

Our problem for the rest of the talk

Input: A set P of points in R2. An opening cost c.
Output: A partition {P1, . . . , P`} of P that minimizes

` · c+
∑̀
i=1

ConvexHull(Pi).

Obvious observation:

In an optimal solution, the convex hulls of the clusters do not intersect.

11

Key Definition:

A set of points P is indivisible if the optimal solution for P is {P}.

Observation:

The clusters of OPT are indivisible.

12

Key Definition:

A set of points P is indivisible if the optimal solution for P is {P}.

indivisible indivisible
not

Observation:

The clusters of OPT are indivisible.

12

Structural Result

Lemma

Consider two indivisible sets of points A and B.
If their convex hulls intersect then A ∪B is an indivisibile set of points.

OPT for pinkOPT for blue

=⇒

OPT for blue + pink

13

Proof of Structural Result

Lemma

Consider two indivisible sets of points A and B.
If their convex hulls intersect then A ∪B is an indivisibile set of points.

Assume this is not true.

OPT for blue + pink

A1 ∪ P1 is not indivisible.

Conv.Hull(A1 ∪ P1) ≤
Conv.Hull(blue) + Conv.Hull(P1)− Conv.Hull(red)

By indivisibility of blue:
OPT(blue) = Conv.Hull(blue) + c ≤
Conv.Hull(A1) + Conv.Hull(red) + 2c

Summing up the two equations
Conv.Hull(A1 ∪ P1) + c ≤ Conv.Hull(A1) + Conv.Hull(P1) + 2c
Thus A1 ∪ P1 is indivisible, a contradiction.

14

Proof of Structural Result

Lemma

Consider two indivisible sets of points A and B.
If their convex hulls intersect then A ∪B is an indivisibile set of points.

Assume this is not true.

OPT for blue + pink

A1

P1

A1 ∪ P1 is not indivisible.

Conv.Hull(A1 ∪ P1) ≤
Conv.Hull(blue) + Conv.Hull(P1)− Conv.Hull(red)

By indivisibility of blue:
OPT(blue) = Conv.Hull(blue) + c ≤
Conv.Hull(A1) + Conv.Hull(red) + 2c

Summing up the two equations
Conv.Hull(A1 ∪ P1) + c ≤ Conv.Hull(A1) + Conv.Hull(P1) + 2c
Thus A1 ∪ P1 is indivisible, a contradiction.

14

Proof of Structural Result

Lemma

Consider two indivisible sets of points A and B.
If their convex hulls intersect then A ∪B is an indivisibile set of points.

Assume this is not true.

OPT for blue + pink

A1

P1

OPT for blue

A1 ∪ P1 is not indivisible.

Conv.Hull(A1 ∪ P1) ≤
Conv.Hull(blue) + Conv.Hull(P1)− Conv.Hull(red)

By indivisibility of blue:
OPT(blue) = Conv.Hull(blue) + c ≤
Conv.Hull(A1) + Conv.Hull(red) + 2c

Summing up the two equations
Conv.Hull(A1 ∪ P1) + c ≤ Conv.Hull(A1) + Conv.Hull(P1) + 2c
Thus A1 ∪ P1 is indivisible, a contradiction.

14

Proof of Structural Result

Lemma

Consider two indivisible sets of points A and B.
If their convex hulls intersect then A ∪B is an indivisibile set of points.

Assume this is not true.

OPT for blue + pink

A1

P1

OPT for blue

A1 ∪ P1 is not indivisible.

Conv.Hull(A1 ∪ P1) ≤
Conv.Hull(blue) + Conv.Hull(P1)− Conv.Hull(red)

By indivisibility of blue:
OPT(blue) = Conv.Hull(blue) + c ≤
Conv.Hull(A1) + Conv.Hull(red) + 2c

Summing up the two equations
Conv.Hull(A1 ∪ P1) + c ≤ Conv.Hull(A1) + Conv.Hull(P1) + 2c
Thus A1 ∪ P1 is indivisible, a contradiction.

14

Proof of Structural Result

Lemma

Consider two indivisible sets of points A and B.
If their convex hulls intersect then A ∪B is an indivisibile set of points.

Assume this is not true.

OPT for blue + pink

A1

P1

OPT for blue

A1 ∪ P1 is not indivisible.

Conv.Hull(A1 ∪ P1) ≤
Conv.Hull(blue) + Conv.Hull(P1)− Conv.Hull(red)

By indivisibility of blue:
OPT(blue) = Conv.Hull(blue) + c ≤
Conv.Hull(A1) + Conv.Hull(red) + 2c

Summing up the two equations
Conv.Hull(A1 ∪ P1) + c ≤ Conv.Hull(A1) + Conv.Hull(P1) + 2c
Thus A1 ∪ P1 is indivisible, a contradiction.

14

Proof of Structural Result

Lemma

Consider two indivisible sets of points A and B.
If their convex hulls intersect then A ∪B is an indivisibile set of points.

Assume this is not true.

OPT for blue + pink

A1

P1

OPT for blue

A1 ∪ P1 is not indivisible.

Conv.Hull(A1 ∪ P1) ≤
Conv.Hull(blue) + Conv.Hull(P1)− Conv.Hull(red)

By indivisibility of blue:
OPT(blue) = Conv.Hull(blue) + c ≤
Conv.Hull(A1) + Conv.Hull(red) + 2c

Summing up the two equations
Conv.Hull(A1 ∪ P1) + c ≤ Conv.Hull(A1) + Conv.Hull(P1) + 2c
Thus A1 ∪ P1 is indivisible, a contradiction.

14

Proof of Structural Result

Lemma

Consider two indivisible sets of points A and B.
If their convex hulls intersect then A ∪B is an indivisibile set of points.

Assume this is not true.

A1

A1 ∪ P1 is not indivisible.

Conv.Hull(A1 ∪ P1) ≤
Conv.Hull(blue) + Conv.Hull(P1)− Conv.Hull(red)

By indivisibility of blue:
OPT(blue) = Conv.Hull(blue) + c ≤
Conv.Hull(A1) + Conv.Hull(red) + 2c

Summing up the two equations
Conv.Hull(A1 ∪ P1) + c ≤ Conv.Hull(A1) + Conv.Hull(P1) + 2c
Thus A1 ∪ P1 is indivisible, a contradiction.

14

Proof of Structural Result

Lemma

Consider two indivisible sets of points A and B.
If their convex hulls intersect then A ∪B is an indivisibile set of points.

Assume this is not true.

OPT for blue + pink

P1

A1

A1 ∪ P1 is not indivisible.

Conv.Hull(A1 ∪ P1) ≤
Conv.Hull(blue) + Conv.Hull(P1)− Conv.Hull(red)

By indivisibility of blue:
OPT(blue) = Conv.Hull(blue) + c ≤
Conv.Hull(A1) + Conv.Hull(red) + 2c

Summing up the two equations
Conv.Hull(A1 ∪ P1) + c ≤ Conv.Hull(A1) + Conv.Hull(P1) + 2c
Thus A1 ∪ P1 is indivisible, a contradiction.

14

Proof of Structural Result

Lemma

Consider two indivisible sets of points A and B.
If their convex hulls intersect then A ∪B is an indivisibile set of points.

Assume this is not true.

Solution better than
OPT for blue + pink

A1 ∪ P1 is not indivisible.

Conv.Hull(A1 ∪ P1) ≤
Conv.Hull(blue) + Conv.Hull(P1)− Conv.Hull(red)

By indivisibility of blue:
OPT(blue) = Conv.Hull(blue) + c ≤
Conv.Hull(A1) + Conv.Hull(red) + 2c

Summing up the two equations
Conv.Hull(A1 ∪ P1) + c ≤ Conv.Hull(A1) + Conv.Hull(P1) + 2c
Thus A1 ∪ P1 is indivisible, a contradiction.

14

This suggests the following algorithmic approach

OPT for pinkOPT for blue

=⇒

OPT for blue + pink

15

Algorithm

16

Algorithm: Step 1

Recursively divide R2 into cells.

Level 0 cells.

Goal: Solve for cells of level i using solution for cells of level i+ 1.

17

Algorithm: Step 1

Recursively divide R2 into cells.

Level 1 cells.

Goal: Solve for cells of level i using solution for cells of level i+ 1.

17

Algorithm: Step 1

Recursively divide R2 into cells.

Level 2 cells.

Goal: Solve for cells of level i using solution for cells of level i+ 1.

17

Define Shapes with Level-i Cells

Basic Polyominos:

Evolved Polyominos:

18

Define Shapes with Level-i Cells

Basic Polyominos:
Evolved Polyominos:

18

Property

Optimal solution for basic polyominoes made of level-i cells can be computed
from optimal solutions for evolved polyominoes made of level-i+ 1 cells.

19

Property

Optimal solution for evolved polyominoes made of level-i cells computed:
I from optimal solution for basic polyominoes made of level-i cells, and
I Sweeping step to find out if there is a cluster intersecting all cells.

Alg:
1. Greedily merge optimal clusters of the basic polyominos that overlap.

2. Guess a point that belongs to the large cluster, compute the best cluster
that intersects all cells, if it decreases the cost, keep it.

20

Property

Optimal solution for evolved polyominoes made of level-i cells computed:
I from optimal solution for basic polyominoes made of level-i cells, and
I Sweeping step to find out if there is a cluster intersecting all cells.

Alg:
1. Greedily merge optimal clusters of the basic polyominos that overlap.

2. Guess a point that belongs to the large cluster, compute the best cluster
that intersects all cells, if it decreases the cost, keep it.

20

Property

Optimal solution for evolved polyominoes made of level-i cells computed:
I from optimal solution for basic polyominoes made of level-i cells, and
I Sweeping step to find out if there is a cluster intersecting all cells.

Alg:
1. Greedily merge optimal clusters of the basic polyominos that overlap.

2. Guess a point that belongs to the large cluster, compute the best cluster
that intersects all cells, if it decreases the cost, keep it.

20

Property

Optimal solution for evolved polyominoes made of level-i cells computed:
I from optimal solution for basic polyominoes made of level-i cells, and
I Sweeping step to find out if there is a cluster intersecting all cells.

Alg:
1. Greedily merge optimal clusters of the basic polyominos that overlap.

2. Guess a point that belongs to the large cluster, compute the best cluster
that intersects all cells, if it decreases the cost, keep it.

20

Property

Optimal solution for evolved polyominoes made of level-i cells computed:
I from optimal solution for basic polyominoes made of level-i cells, and
I Sweeping step to find out if there is a cluster intersecting all cells.

Alg:
1. Greedily merge optimal clusters of the basic polyominos that overlap.

2. Guess a point that belongs to the large cluster, compute the best cluster
that intersects all cells, if it decreases the cost, keep it.

p

20

Property

Optimal solution for evolved polyominoes made of level-i cells computed:
I from optimal solution for basic polyominoes made of level-i cells, and
I Sweeping step to find out if there is a cluster intersecting all cells.

Alg:
1. Greedily merge optimal clusters of the basic polyominos that overlap.

2. Guess a point that belongs to the large cluster, compute the best cluster
that intersects all cells, if it decreases the cost, keep it.

p

20

Property

Optimal solution for evolved polyominoes made of level-i cells computed:
I from optimal solution for basic polyominoes made of level-i cells, and
I Sweeping step to find out if there is a cluster intersecting all cells.

Alg:
1. Greedily merge optimal clusters of the basic polyominos that overlap.

2. Guess a point that belongs to the large cluster, compute the best cluster
that intersects all cells, if it decreases the cost, keep it.

p

20

Property

Optimal solution for evolved polyominoes made of level-i cells computed:
I from optimal solution for basic polyominoes made of level-i cells, and
I Sweeping step to find out if there is a cluster intersecting all cells.

Alg:
1. Greedily merge optimal clusters of the basic polyominos that overlap.

2. Guess a point that belongs to the large cluster, compute the best cluster
that intersects all cells, if it decreases the cost, keep it.

p

20

Overall Running Time

I O(n2) time per level
I O(logn) levels in total
I Overall running time : O(n2 logn).

Faster

O(n poly logn), using a more sophisticated algorithm for the last step.

21

k-Clustering Fencing Problem

Other structural result:

Separators with small complexity: Cells only intersect a few clusters of OPT.

Dynamic programming on cells.

22

Our Results

Algorithms:

Unit-disk fencing n poly log n
k-cluster fencing n27

Unit-disk alg. extends to polygons w/ slightly worse complexity.

Take-home message

Unit-disk fencing: Nice structure, simple polynomial time algo-
rithms, more complicated near-linear time algorithm.

k-cluster fencing: Nice separator properties, not NP-Hard!

23

