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‘ Select one element: What is the best stopping rule?
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(x) Conditioning on the history at time t,
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P(select best) > ] Pi(r is not the second best) = [ 5
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(x) Conditioning on the history at time t,

t—1 t—1
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P lect best) > P (r; t th d best) = = —
t(selec es)f(H +(r; is not the second best) || ; T
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100 -100
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P(select best) > — —_— = _In(—
(selectbest) > 355 > 5~ 5 o/S x 100 "<1o )
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Who solved it?

Lindley 1961, scientific publication.

Scientific American 1960, puzzle.




For every element in OPT, P(element is selected) > 1/cv.

Obs. By picking s ~ Binomial(100, 1/e), algorithm is 1/e prob-competitive.
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For every element in OPT, P(element is selected) > 1/a.

Obs. By picking s ~ Binomial(100, 1/e), algorithm is 1/e prob-competitive.
1 100 it i1
Es 100 > II = | = —pinp... optimize here

j=8+1 j=s+1 /
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Utility competitive ~ E(w(ALG)) > lW(OPT).
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7 7
2 /‘\ 20 2 /‘\ 20
8 8
w(ALG) = 28 w(OPT) = 41

This solution is 41/28 ~ 1.46 utility-competitive.



Offline: Select greedily

1. Greedy in decreasing order returns the optimal OPT(E).
2. Forevery F C E, OPT(E) N F C OPT(F).

R = n = n = h - Ima > Inm
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terminals arrive online!
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{r1, r2, 13} is a feasible selection

{r2, r3, 14} is not a feasible selection
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Sample phase

If r; € OPT, it could only be blocked by one other current best!
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Sample phase Select if is in best feasible solution so far

If r; € OPT, it could only be blocked by one other current best!
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Sample phase Select if is in best feasible solution so far

If 1 € OPT, it could only be blocked by one other current best!

t—1 t—1
Pi(select r;) > H Pt(r; € OPT; is not matched to green) = H
j=s+1 J=s+1

j—1 s
i t=1



More generally ...

Suppose we have an algorithm for a matroid class such that:
(Feasibility) Returns an independent set.
(Sampling) Sample s ~ Bin(m, p) elements and reject them.

(k-forbidden) Let r an element in OPT arriving at time t > s.

For each s < i < t, arandom set F; of size atmost k, such that:
If for each s < i < t, the element arriving ¢ F; then r is selected.
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prob-competitive, where
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Suppose we have an algorithm for a matroid class such that:
(Feasibility) Returns an independent set.
(Sampling) Sample s ~ Bin(m, p) elements and reject them.

(k-forbidden) Let r an element in OPT arriving at time t > s.

For each s < i < t, a random set F; of size atmost k, such that:
If for each s < i < t, the element arriving ¢ F; then r is selected.

Thm. By setting the right sampling probability, a k-forbidden algorithm is «
prob-competitive, where

e if k=1,
TV KKK ik > 2

100 t—1 .
1 j—k
Es | — A
5(100. I1 j )

j=s+1j=s+1

Proof. Study the quantity



Further applications of the technique

Previous  Our results (p)
Transversal e (u) e
pu-Gammoid pe (u) ph/e=T)
Graphic 2e (u) 4
Laminar 9.6 (p) 3v3~5.19
k-column sparse | ke (u) kK/Tk=T)
Matching - 4
Graph packings - ph/(b=1)
k-framed - KK/(k=T)
Hypergraphic - 4
Semiplanar - 44/3




Good necessary condition for optimality
e.g. current offline optimum
+
Small forbidden sets

e.g. study some combinatorial witness



» O(1)-forbidden algorithm for general matroids.
> Strongest version: 1-forbidden algorithm for general matroids.
> Apply the framework over non-matroidal settings.
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Merci!



