

Elements arrive in uniform random order.

Elements arrive in uniform random order.

Total order \succ over R.

Elements arrive in uniform random order.

Total order \succ over R.

Select one element: What is the best stopping rule?

Strong algorithms for the Ordinal Matroid Secretary Problem

José Soto Abner Turkieltaub **Victor Verdugo** UChile UChile UChile-ENS

Approximation and Networks, Collége de France

Paris. June 7, 2018

 r_1

 r_1 r_2

P(select best) $\approx -\frac{s}{100} \ln \left(\frac{s}{100} \right)$.

Colour best seem so la

P(select best)
$$\approx -\frac{s}{100} \ln \left(\frac{s}{100} \right)$$
.

(*) Conditioning on the history at time t,

$$\mathsf{P}_t(\mathsf{select\ best}) \geq \prod_{j=s+1}^{t-1} \mathsf{P}_t(r_j \mathsf{\ is\ not\ the\ second\ best}) = \prod_{j=s+1}^{t-1} \frac{j-1}{j} = \frac{s}{t-1},$$

 (\star) Conditioning on the history at time t,

$$\mathsf{P}_t(\mathsf{select\ best}) \geq \prod_{j=s+1}^{t-1} \mathsf{P}_t(r_j \mathsf{\ is\ not\ the\ second\ best}) = \prod_{j=s+1}^{t-1} \frac{j-1}{j} = \frac{s}{t-1},$$

P(select best)
$$\geq \frac{s}{100} \sum_{t=s+1}^{100} \frac{1}{t-1} \approx \frac{s}{100} \int_{s}^{100} \frac{dx}{x} = -\frac{s}{100} \ln \left(\frac{s}{100} \right)$$

probability

 $s = 37 \approx 100/e$ maximizes the probability!

Who solved it?

Lindley 1961, scientific publication.

Scientific American 1960, puzzle.

For every element in OPT, P(element is selected) $\geq 1/\alpha$.

Obs. By picking $s \sim \text{Binomial}(100, 1/e)$, algorithm is 1/e prob-competitive.

$$E_s\left(\frac{1}{100}\sum_{i=s+1}^{100}\prod_{j=s+1}^{t-1}\frac{j-1}{j}\right) \ge -p\ln p \dots \text{ optimize here}$$

For every element in OPT, P(element is selected) $\geq 1/\alpha$.

Obs. By picking $s \sim \text{Binomial}(100, 1/e)$, algorithm is 1/e prob-competitive.

$$E_{s}\left(\frac{1}{100}\sum_{j=s+1}^{100}\prod_{j=s+1}^{t-1}\frac{j-1}{j}\right) \geq -p\ln p \dots \text{ optimize here}$$

Utility competitive $\sim \mathbb{E}(w(ALG)) \geq \frac{1}{2}w(OPT)$.

This solution is $41/28 \approx 1.46$ utility-competitive.

Offline: Select greedily

- 1. Greedy in decreasing order returns the optimal OPT(E).
- 2. For every $F \subseteq E$, $OPT(E) \cap F \subseteq OPT(F)$.

$$r_3 \succ r_2 \succ r_1 \succ r_4 \cdots r_{m-1} \succ r_m$$

OPT

neighbours

terminals arrive online!

neighbours

terminals arrive online!

neighbours

terminals arrive online!

 $\{r_1, r_2, r_3\}$ is a feasible selection

 $\{r_2, r_3, r_4\}$ is **not** a feasible selection

If $r_t \in OPT$, it could only be blocked by **one** other current best!

If $r_t \in \text{OPT}$, it could only be blocked by **one** other current best!

If $r_t \in \text{OPT}$, it could only be blocked by **one** other current best!

$$\mathsf{P}_t(\mathsf{select}\ r_t) \geq \prod_{i=s+1}^{t-1} \mathsf{P}_t(r_j \in \mathit{OPT}_j \ \mathsf{is} \ \mathsf{not} \ \mathsf{matched} \ \mathsf{to} \ \mathsf{green}) = \prod_{i=s+1}^{t-1} \frac{j-1}{j} = \frac{s}{t-1}.$$

More generally ...

Suppose we have an algorithm for a matroid class such that:

(Feasibility) Returns an independent set.

(Sampling) Sample $s \sim Bin(m, p)$ elements and reject them.

(k-forbidden) Let r an element in OPT arriving at time t > s.

For each s < i < t, a random set F_i of size atmost k, such that: If for each s < i < t, the element arriving $\notin F_i$ then r is selected.

More generally ...

Suppose we have an algorithm for a matroid class such that:

(Feasibility) Returns an independent set.

(Sampling) Sample $s \sim \text{Bin}(m, p)$ elements and reject them.

(k-forbidden) Let r an element in OPT arriving at time t > s.

For each s < i < t, a random set F_i of size atmost k, such that: If for each s < i < t, the element arriving $\notin F_i$ then r is selected.

Thm. By setting the right sampling probability, a k-forbidden algorithm is α prob-competitive, where

$$\alpha = \begin{cases} e & \text{if } k = 1, \\ k^{k/(k-1)} & \text{if } k \geq 2. \end{cases}$$

More generally ...

Suppose we have an algorithm for a matroid class such that:

(Feasibility) Returns an independent set.

(Sampling) Sample $s \sim Bin(m, p)$ elements and reject them.

(k-forbidden) Let r an element in OPT arriving at time t > s.

For each s < i < t, a random set F_i of size atmost k, such that: If for each s < i < t, the element arriving $\notin F_i$ then r is selected.

Thm. By setting the right sampling probability, a k-forbidden algorithm is α prob-competitive, where

$$\alpha = \begin{cases} \mathbf{e} & \text{if } k = 1, \\ k^{k/(k-1)} & \text{if } k \ge 2. \end{cases}$$

Proof. Study the quantity

$$E_s\left(\frac{1}{100}\sum_{j=s+1}^{100}\prod_{j=s+1}^{t-1}\frac{j-k}{j}\right).$$

Further applications of the technique

	Previous	Our results (p)
Transversal	<i>e</i> (u)	е
μ -Gammoid	μ e (u)	$\mu^{\mu/(\mu-1)}$
Graphic	2e (u)	4
Laminar	9.6 (p)	$3\sqrt{3}\approx 5.19$
k-column sparse	ke (u)	$k^{k/(k-1)}$
Matching	-	4
Graph packings	-	$\mu^{\mu/(\mu-1)}$
k-framed	-	$k^{k/(k-1)}$
Hypergraphic	-	4
Semiplanar	-	4 ^{4/3}

Good necessary condition for optimality
e.g. current offline optimum

+

Small forbidden sets

e.g. study some combinatorial witness

- O(1)-forbidden algorithm for general matroids.
- ▶ Strongest version: 1-forbidden algorithm for general matroids.

Apply the framework over non-matroidal settings.

- O(1)-forbidden algorithm for general matroids.
- Strongest version: 1-forbidden algorithm for general matroids.
- Apply the framework over non-matroidal settings.

Merci!