

Chaire Innovation technologique Liliane Bettencourt 2021-2022

Energie solaire photovoltaïque et transition énergétique

Collège de France, cours de Daniel Lincot, 2 mars 2022

Les pérovskites hybrides halogénées : des nouveaux semiconducteurs adaptés aux défis du photovoltaïque

Emmanuelle DELEPORTE

Professeure ENS Paris-Saclay Laboratoire LuMIn: Lumière, Matière et Interfaces

Emmanuelle.Deleporte@ens-paris-saclay.fr

école———	
normale ———	_
supérieure ——	
oaris-saclay —	

Perovskite Team

Physiciens: E. Deleporte, J.-S. Lauret, E. Cassette, D. Garrot (GEMAC), J.M. Urban, G. Chehade, T. Campos, H. Levy-Falk, T. Nguyen Chimistes: C. Mayer, G. Trippé-Allard, M. Rémond

école———	
normale ———	
supérieure ——	
paris-saclay —	_

Qu'est-ce qu'une pérovskite? Un cristal

Par extension: tout cristal dont le motif est de la forme ABX₃

Les pérovskites hybrides halogénées

La plus connue: MAPI (MéthylAmmonium-Plomb-Iode) CH₃NH₃PbI₃ Pérovskite 3D

CH₃NH₃PbI₃: la plus connue

Une arrivée spectaculaire dans le monde du photovoltaïque

Best Research-Cell Efficiencies

Première synthèse de CH₃NH₃PbX₃: W. Dieter, Zeitschrift für Natur- forschung B, 33 :1443, 1978

CH₃NH₃PbI₃: la plus connue

Une arrivée spectaculaire dans le monde du photovoltaïque

Dernier record: 25.7%

(silicium monocristallin 27.6%)

Un engouement instantané

Entretien avec DANIEL LINCOT

Pourquoi une telle réussite?

PLAN

- 1- Des propriétés physiques adaptées pour le PV
- 2- Design chimique adapté pour le PV
- 3- Des défis à relever et des pistes de solution

CONVERSION Energie solaire – Energie électrique

- 3 étapes sont nécessaires:
- Génération des charges
- Séparation des charges
- Transport des charges

1- Des propriétés physiques adaptées pour le PV a- Génération des charges b- Séparation des charges c- Transport des charges

2- Design chimique adapté pour le PV

3- Des défis à relever et des pistes de solution

Absorption de la lumière solaire par un semiconducteur

L'absorption d'un photon crée une paire électron-trou

Absorption de la lumière solaire par un semiconducteur

La bonne énergie de bande interdite (le bon gap)

E. Deleporte, Collège de France, 02/03/2022

Absorption de la lumière solaire par un semiconducteur

Un grand coefficient d'absorption sur une large gamme de λ

Absorption de la lumière solaire par un semiconducteur

Interaction lumière-matière:

Probabilité de transition d'un niveau d'énergie de la bande de valence (BV) vers un niveau d'énergie de la bande de conduction (BC) dépend de règles de sélection

E. Deleporte, Collège de France, 02/03/2022

15

1b - Séparation des charges

Effets excitoniques

Attraction coulombienne entre un électron et un trou

• Energie de liaison entre électron et trou = $Ry = \frac{me^4}{2(4\pi\epsilon)^2\hbar^2}$

Quelques meV dans MAPI (environ 10 meV dans Si)

• Distance moyenne entre électron et trou = $a_B = \frac{\hbar^2 4\pi\varepsilon}{\pi^2}$ Quelques nm dans MAPI et Si

J. Even et al, J. Phys. Chem. C 118, 11566, 2014

(o) Dielectri

(m: masse réduite)

Energie thermique à température ambiante $k_{\rm B}T = 25 \text{ meV}$

A température ambiante, Ry << k_BT : paires électron-trou ionisées

16 E. Deleporte, Collège de France, 02/03/2022

 $(\mathbf{0})$

1b - Séparation des charges

peut représenter un gros problème quand Ry >> k_BT Exemple: semiconducteurs organiques (Ry = quelques 100 meV)

Best Research-Cell Efficiencies

E. Deleporte, Collège de France, 02/03/2022

CINREL

1c -Transport des charges

Une grande longueur de diffusion des charges

• Aptitude de l'électron à se mouvoir dans le cristal:

1c- Transport des charges

Une grande longueur de diffusion

1c- Transport des charges

Une grande longueur de diffusion

MAPI:

$$\mu = 10 - 100 \text{ cm}^2 \text{.V}^{-1} \text{.s}^{-1}$$

 $\tau = ns - \mu s$

```
Long pour un gap direct : ??
```

```
L = 1 à 100 µm

Avec un nombre colossal de défauts !

Tolérance aux défauts: ??
```


MEB image

P.S.C. Schulze et al, Sol RRL 2020, 4, 2000152

Silicium: μ: 1 000 cm².V⁻¹.s⁻¹

 τ = µs dans le Si polycristallin ms dans le Si monocristallin Long car gap indirect

L = 100 µm dans le Si polycristallin 1 mm dans le Si monocristallin L est d'autant plus grand que le nombre de défauts est petit

Pérovskite

Silicium

Une nouvelle classe de semiconducteurs

Un ensemble de propriétés adaptées pour le photovoltaïque rassemblées dans un même matériau !

- **Génération des charges:** Un grand coefficient d'absorption
 - Une bonne énergie de bande interdite

Séparation des charges: • Des propriétés excitoniques faibles

- Transport des charges: Une grande longueur de diffusion
 - Tolérance aux défauts

Un semiconducteur « mou » (soft)

Présence de la partie organique ----- propriétés spécifiques:

- offets exciteniques faibles
- effets excitoniques faibles
- tolérance aux défauts
- grandes longueurs de diffusion

Une nouvelle classe de semiconducteurs

1- Des propriétés physiques adaptées pour le PV

2- Design chimique adapté pour le PV

 a- Dépôt par voie liquide à basse température
 b- Flexibilité chimique
 c- Tous les atouts pour les cellules tandem

3- Des défis à relever et des pistes de solution

2a- Dépôt par voie liquide à basse température

Couches minces (quelques 100 nm) déposées par « spin-coating »

 Voie liquide compatible avec des dépôts en grande surface et sur des substrats plats

2b- Flexibilité chimique

Ion halogène

On peut changer tous les constituants de cette molécule par chimie douce et ainsi ajuster les propriétés physiques

1×54×39 mm

25×25×6 mm

Y. Liu et al., Adv. Mater. 27, 5176, 2015

Ion métallique

F. de Angelis, J. Mater. Chem. A, 2015, 3, 9208

Cation organique

A₂MX₄

Etendre la famille aux pérovskites 2D

2c. Tous les atouts pour les cellules tandem

propriétés physiques à l'origine de hautes performances + dépôt par voie liquide en couches minces + flexibilité chimique

tous les atouts pour les cellules tandem

=

2c. Tous les atouts pour les cellules tandem

Cellule tandem pérovskite / Si

B. Chen et al, Adv . Energ. Mater 2017, 1602400

Cellules tandem tout pérovskite ?

B. Chen et al, Adv . En. Mater 2017, 1602400 G.E. Eperon et al, Science 2016, 354, 861

1- Des propriétés physiques adaptées pour le PV

2- Design chimique adapté pour le PV

3- Des défis à relever et des pistes de solution
 a- Les défis
 b- Solutions: de nombreuses pistes

3a. Les défis

Présence du plomb

0,2 g dans une cellule solaire de surface 1 m² contenant des couches de pérovskite d'épaisseur 200 nm

A comparer à : 4,8 kg dans une batterie de voiture !

Analyses de cycles de vie, utilisation des pérovskites dans des conditions sûres d'utilisation de la mine jusqu'au recyclage

MAPI –

K. Jemli et al, Molecules *21*, 885-897, 2016

28

Humidité, oxygène, température, lumière UV

Conséquences sur les propriétés de conduction et la stabilité

Pbl₂

Mieux connaître les propriétés physiques (morphologiques, structurales, opto-électroniques) du matériau sous stress environnementaux

+

Utiliser la flexibilité chimique de la molécule de pérovskite

Migration des ions

O. Mohammed et al, J. Phys. Chem. Lett. 2018, 9, 18, 5474

Présence de plomb

• Optimiser l'interaction avec les couches adjacentes

Stabilité quelques années • Utiliser d'autres stoechiométries: les pérovskites 2D (étudiées depuis 2000, avant les 3D!) (1) D.B. Mitzi et al, IBM J. Res. Develop. 45, 29-45, 2001 * Découpe selon <100> Insérer des molécules volumineuses telles que NH3⁺ NH MAPI Stoechiométrie: A₂PbX Encore + de flexibilité que × les pérovskites 3D: Découpe selon (100> Moins de contraintes sur le choix de la partie organique + 2 👯 • Faire varier le nombre m de couches d'octaèdres MAPI 33 Stoechiométrie: A₂(MA)Pb₂X₇

E. Deleporte, Collège de France, 02/03/2022

De gros progrès en

De la pérovskite 2D à la pérovskite 3D A₂(CH₃NH₃)_{m-1}Pb_mI_{3m+1}

Les pérovskites 2D

Des propriétés physiques différentes

m = nombre de couches d'octaèdres entre les barrières organiques

K. Gauthron et al, Optics Express **18** (2010) 5912

Structure de bandes en fonction de m G. Delport et al, J. Phys. Chem. Lett. 2019, 10, 5153; J.M. Urban et al, J. Phys. Chem. Lett. 2020, 11, 5810 m = 3 m = 1 m = 2 Modelization 500 1s exciton Binding energy (meV) experiment 400 y = 1.76300 • Effets excitoniques en fonction de m 200 Quantum confinement (y=1) 100 0 10 100 J.C. Blancon et al, Nat. Comm. 9, 2254, 2018 m Anode • Propriétés de transport Cathode

E. Deleporte, Collège de France, 02/03/2022

Confinements quantique + diélectrique

De la pérovskite 2D à la pérovskite 3D

36

Cellules à base de pérovskites 2D ?

• Cellules à base d'hétérostructures 2D/3D

One-Year Stable Perovskite Solar Cells by 2D/3D Interface Engineering

G. Grancini, M.K. Nazeeruddin, Nature Comm. 8, 15684 (2017)

Thèse en cours LuMIn/IPVF

• Travail sur le design du matériau 2D

Conclusion

• Un ensemble de propriétés physiques exceptionnelles pour le photovoltaïque rassemblées dans un seul matériau

• Une synthèse par voie liquide à basse température peu coûteuse en énergie, utilisant des matériaux abondants

• Une grande flexibilité chimique : des possibilités infinies d'ingéniérie chimique

Des défis à relever: La molécule elle-même détient vraisemblablement les solutions:

- explorer les propriétés physiques du matériau
- exploiter la flexibilité chimique

Conclusion

Des propriétés physiques qui ouvrent le champ à d'autres applications

M. Kepenekian, J. Even, JPCL 2017, 8 (14), 3362-3370

⁴⁰ E. Deleporte, Collège de France, 02/03/2022

http://gdr-hpero.cnrs.fr/

Institut de Physique- INP Institut de Chimie- INC Institut des Sciences de l'Ingéniérie et des Systèmes- INSIS

2017-2026

175 chercheurs dans 42 laboratoires 4 partenaires étrangers

6 axes scientifiques:

- Ingéniérie du matériau
- Etudes structurales et défauts
- Propriétés physiques
- Interfaces
- Photovoltaïque
- Développements émergents

Evénements HPERO:

- JPH: Journées annuelles des Pérovskites Halogénées (cette année: ECL Ecully 16-18 mars 2022)
- Ecole thématique (Piriac-sur-Mer en juillet 2021)
- Workshops thématiques
- Ateliers
- Mobilités entre laboratoires
- •.