

Chaire Innovation technologique Liliane Bettencourt 2021-2022

Énergie solaire photovoltaïque et transition énergétique

Mercredi 9 février 2022

L'essor du photovoltaïque moderne : aspects fondamentaux de la conversion photovoltaïque

Daniel LINCOT

À la recherche des performances ultimes pour la conversion photovoltaïque

Jean François Guillemoles

daniel.lincot@cnrs.fr

Chaire Innovation technologique Liliane Bettencourt 2021-2022

Énergie solaire photovoltaïque et transition énergétique

Mercredi 2 février 2022

L'essor du photovoltaïque moderne : aspects fondamentaux de la conversion photovoltaïque

Daniel LINCOT

daniel.lincot@cnrs.fr

Un clin d'œil au cycle de l'eau

La renaissance des diagrammes de bandes

Des raies de Balmer à la physique quantique

https://laboiteaphysique.fr/site2/index.php/quotidien/lalumiere/transferts-quantiques-denergie

Des niveaux atomiques aux bandes d'énergie

By Chetvorno - Own work, CC0, https://commons.wikimedia.org/w/index.php?curid=56983339

Energie (eV)

Qui se déclinent suivant toutes les classes de matériaux...

Structure de bandes des solides

Si

Ge

Surfaces d'énergie constante

S.M. Sze, Physics of semiconductor devices, Wiley, 1969

Diagrammes énergétiques des semiconducteurs (V=0)

Matériaux organiques

Wang et al., J. Mater. Chem. C, 2018, 6, 12217--12223

Molecular orbital diagrams and calculated HOMO–LUMO energy levels : Complexes for aggregation-induced emission and piezochromic luminescence

[(dfppz)2lr(DPhTz)][PF6] (1) and [(ppz)2lr(DPhTz)][PF6] (2), with the 2,4-diphenyl-6-(pyridine2-yl)-1,3,5triazine ancillary ligand (DPhTz)

Wang et al., Frontiers in Energy Research 6 (2018)113

Métaux et couples rédox

Couple oxydo-réducteurs en solution Métaux $E = E_0 + RT/nF Log ([ox]/[red])$ Echelle Echelle énergie Travail de sortie électrochimique / vide -2.0-2.0K, Na -2 -3.0 -3.0 Li+/Li -1 eV H_2O/OH^- Mg Energy / -4.0-4.0 V³⁺/V²⁺ Energy AI 0 H^+/H_2 $H^++ e \rightarrow H_2$ Ag,Cu, Mo I₂/I⁻ Fe²⁺/Fe³⁺ -5.0 -5.0Au, NiOx Pt 1 H₂O/O₂ Cl₂/Cl⁻ -6.0-6.0 2 V (V)

Wang et al., Frontiers in Energy Research 6 (2018)113

Le niveau de remplissage des électrons : niveau de Fermi : E_F

Nc : densité effective d'états dans la bande de conduction (Si:2,8 10¹⁹ cm⁻³) Nv : densité effective d'états dans la bande de valence (Si: 10¹⁹ cm⁻³) *D*a

Effet du dopage : de l'isolant au métal

Oxydes transparents conducteurs (TCO) : $In_2(Sn)O_3$ ITO

 $Sn_{ln} + \rightarrow Sn_{ln}^{+} + e_{BC}^{-}$

Contact entre deux phases

Jonction métal- semiconducteur : barrière de Schottky

Daniel Lincot, Collège de France, 9/02/2022

Ε

Influence de la polarisation

V = -(E_{FM}-E_{F,sc})/q

Polarisation directe, conditions de bandes plates

Daniel Lincot, Collège de France, 9/02/2022

Ε

Daniel Lincot, Collège de France, 9/02/2022

 E_{BV}

Application numérique : mécanisme d'injection thermoionique

$$J_{n} = \left\{ A^{*}T^{2} \exp\left(-\frac{q\phi_{Bn}}{kT}\right) \right\} \left[\exp\left(\frac{qV}{kT}\right) - 1 \right]$$
$$= J_{ST} \left[\exp\left(\frac{qV}{kT}\right) - 1 \right]$$

$$J_{ST} \equiv A^* T^2 \exp\left(-\frac{q\phi_{Bn}}{kT}\right).$$

For free electrons, $A^* = 120 \text{ amp/cm}^2/^\circ \text{K}^2 \equiv A$ q/kT = 40 V⁻¹ à 25°C

Source : S.M. Sze

Les différents régimes de polarisation d'une barrière de Schottky : Type N

En fonction de la polarisation pour une phase de contact donnée

-

Les différents régimes de polarisation d'une barrière de Schottky : Type P

Caractéristique courant tension globale

P_s^{*} concentration de trous en surface sous éclairement >> concentration à l'équilibre (obscurité)

Génération du photocourant sous rayonnement monochromatique

Génération du photocourant sous rayonnement monochromatique

Réponse spectrale

$$RQ_{ext}(\lambda) = \frac{J_{ph}(\lambda)}{q\phi_o(\lambda)} = (1 - R) \left[1 - \frac{exp(-\alpha W)}{1 + \alpha L_D} \right]$$

$$RQ_{int}(\lambda) = 1 - \frac{exp(-\alpha W)}{1 + \alpha L_D}$$

Qualité du matériau augmente 5>4>3>2>1 Longueur de diffusion croissante :

Longueur d'onde

Génération du photocourant sous éclairement solaire

Rendement maximum « avec les mains » : où l'on retrouve la limite de Shockley-Queisser

Pertes par résistance série et résistance shunt

Pertes de photocourant par mécanismes de recombinaison

Pertes de photocourant par mécanismes de recombinaison : cas des hétérojonctions

Pertes de photocourant par mécanismes de recombinaison: cas de hétérojonctions

Exemple des cellules CIGS

Par courtoisie : Dr. K. Ramanathan et al., NREL, EMRS 2004

Application au photovoltaïque organique

Transparents de réserve

Figure 9.26 "Frontier molecular orbitals HOMO and LUMO."

Daniel Lincot, Collège de France, 9/02/2022

Daniel Lincot, Collège de France, 9/02/2022