

À la recherche des performances ultimes pour la conversion photovoltaïque

Jean-François GUILLEMOLES IPVF, UMR 9006, CNRS-X-ENSCP, Palaiseau, France

ParisTech

1530-

Auto-introduction

HORIBAJOBIN YVON

L'IPVF: un centre de recherche et de valorization:

Partenariat public-Privé

(Institut de la transition énergétique)

200 personnes, 8000 m² à Palaiseau

Jean François Guillemoles, Chercheur CNRS, Directeur de l'UMR de l'Institut Photovoltaïque d'Ile de France (IPVF),

Pr chargé de cours à l'X

CV : <u>https://cv.archives-ouvertes.fr/jean-francois-guillemoles</u> https://www.researchgate.net/profile/Jean_Francois_Guillem oles

PSL ★

Remerciements

FedPV

C2N: S. Collin, A. Cattoni, A. Delamarre, Hung-Ling Chen, ...

FOTON: S. Richard, A. Lecorre, O. Durand

GEEPS: JP Kleider, Z. Djebbour, J. Connolly

IMN: N. Barreau

IM2NP: N. Cavassilas, F. Michelini, ...

Icube: Th. Fix A. Slaoui

ILV, INL, LMGP, IRCP, IPHC, LCMCP,...

ECOLE des HOUCHES

(application : https://sunlit-team.eu/pv-school-2022/application/)

International:

Julich (U. Rau), WIS (D. Cahen), ASU (S. Goodnick), UNSW (G. Conibeer, M.A. Green), Imp. College, U. Okhlahoma, HZB (D. Abou Ras, HW Schock, ...), U. Huston (A. Freundlich), ISE, ...

D. Lincot, L. Lombez, D. Suchet, AL Joudrier, N. Schneider, P. Schulz, N. Naghavi, G. Delport, B. Berenguier, A. Rebai, N. Loones, J. Rousset, N. Vandamme, Julie Goffard, D. Ory, A. Bercegol, M. Legrand, G. Vidon, T. Vezin, A. Py-Renaudie, A. Julien, Mayhar, D. Micha, ...

et IRDEP: Trung Dac Nguyen, F. Gibelli, J. Rodière, C. Crevant, A. Lebris, M. Paire, C. Andriamiadamanana, S. Ivanovna, S. Laribi, J. Vidal, P. Olsson, C. Domain, ...

JF Guillemoles, UMR IPVF-9/02/2022

3

Jusqu'où?

D'où vient la décroissance spectaculaire des coûts de production PV?

Quelle en est la limite?

Les défis sur les dispositifs de conversion

- Rendement => Levier coût
 - ▶ 20%
- Utilisation des matériaux => Soutenabilité •
 - Quelques g/W
- Facteur de charge => Intégration •
 - 15% en moyenne en France \succ

efficiency (%)

5

System

5

Plan

1. Les limites d'efficacité de la conversion Photovoltaïque

2. Questions de soutenabilité

6

Efficacité

JF Guillemoles, UMR IPVF-9/02/2022

7

Limites de rendement et description des cellules solaires

Joint Research Unit

Thermodynamique de la radiation

D'après « Thermodynamics of Solar Energy Conversion », Alexis De Vos, Wiley-VCH, 1992 Kirchhoff, Planck, etc : thermodynamique du rayonnement

Corps noir : Energie et entropie

 $E = \sigma T^4$ $S = \frac{4}{3} \sigma T^3$

Limite de concentration solaire et nature géométrique de l'entropie de rayonnement (étendue)*

Carnot corrigé par Landsberg:

(93%)

 $\eta_L = 1 - \frac{4}{3}T_A / T_S + \frac{1}{3}T_A^4 / T_S^4$

Flux de chaleur tel que S_{in}= S_{out}

Travail tel que: E_{in}= E_{out}

Température de rayonnement généralisée : pour chaque longueur d'onde

* Markvart, T. J. Opt. A 10, 015008 (2008).

Thermodynamique

Carnot, Landsberg: efficacité, sans puissance Pas de puissance sans flux d'energie Pas de flux sans dissipation \Rightarrow Approche Endoreversible : 85%

Mieux?

Oui, si la source froide est l'espace intersidéral:

 \Rightarrow 99,6%

 \Rightarrow Refroidissement radiatif

10

Le système le plus simple : 2 niveaux

$$\boldsymbol{\mu} = \mathbf{q}\mathbf{V} = \mathbf{E}_{\mathbf{fn}} - \mathbf{E}_{\mathbf{fp}}$$

Potentiel chimique des photons

Bilan Détaillé

- Pas de chute ohmique (très hautes mobilités des charges), collecte idéale
- Pas d'absorption parasite
- Limite Radiative

$$J = q. \left(\phi_{abs} - \phi_{em}\right)$$

• Loi de Planck généralisée (microreversibility)

$$\phi_{em} = A(E) \frac{2\pi E^2}{h^3 c^2} \frac{1}{e^{\left(\frac{E-\mu}{kT}\right)} - 1} = A(E)$$

$$\boldsymbol{\phi}_{abs} = A(E) \frac{2\pi E^2}{h^3 c^2} \bar{f}_{in}(E)$$

Guillemoles, J.F. "Fundamental Physical Limits to Photovoltaic Conversion." Wiley & Sons, 2014.

 $()\frac{2\pi E^2}{h^3 c^2}$.f

11

Le système le plus simple : 2 niveaux , version Shockley

$$\boldsymbol{\mu} = \boldsymbol{q} \mathbf{V} = \boldsymbol{E}_{\mathbf{fn}} - \boldsymbol{E}_{\mathbf{fp}}$$

 « Photodissociation » $hv \Leftrightarrow e^- + h^+$

- hv: énergie du photon
- Energie libre disponible $\mu = qV = E_{fn} E_{fp}$

E_f est le niveau de Fermi, ou potentiel électrochimique, ou potentiel redox, ou travail de sortie, ou...

Bilan détaillé:

$$J = q. (\phi_{abs} - \phi_{em})$$
$$\phi_{em} = B.n.p \approx Bn_i^2 . exp \left(\frac{qV}{k}\right)$$

L'équation de Schockley de la diode est une loi d'action de masse

Guillemoles, J.F. "Fundamental Physical Limits to Photovoltaic Conversion." Wiley & Sons, 2014.

T

12

Rendement optimal de conversion d'une longueur d'onde

 $\eta = \frac{1}{P_{\text{inc}}}$

$$P = J.V = \mu.(\Phi_{abs} - \Phi_{em}(\mu))$$

Au point de puissance Maximale

dP=0 et: $\eta = J_{mp}.V_{mp}/P_{inc} = J_{mp}.qV_{mp}/(E.I_{ph})$

Pour un système à la limite radiative

Voltage (V)
Voltage (V)
Open circuit

$$\mu_{0c} = q.V_{0c} = E_g.(1 - T/T_s)$$

(Mind Carnot factor)

$$F_{\rm inc} = f_{\rm M} \cdot \left[1 + \left(1 + f_{\rm M}\right) \cdot \left(\frac{E}{kT} - Ln\left(\frac{1 + f_{\rm M}}{f_{\rm M}}\right) \right) \right]$$

$$I_{\rm m} = q \frac{2\pi E^2}{h^3 c^2} \left(\overline{f}_{\rm inc} - f_{\rm M} \right) = I_{\rm ph} \left(1 - \frac{f_{\rm M}}{f_{\rm inc}} \right)$$

JF Guillemoles, UMR IPVF-9/02/2022

Du sytème à 2 niveau aux semiconducteurs

- Mêmes hypothèses
- 2 Bandes plutot que 2 niveaux+ chaque bande est en quasi-équilibre

$$dn(E) = \frac{dN(E)}{dV} = D(E).f(E).dE$$
$$n = \int D(E).f(E)dE$$

	Photons	Electro
Extractible free energy per particle	$\mu = E_{\rm fn} - E_{\rm fp}$	qV = I
Current	$\Phi_{\rm abs} - \Phi_{\rm em}$	$I = q.(\Phi_{abs})$
Power	$P_{\gamma} = \mu . (\Phi_{\rm abs} - \Phi_{\rm em}(\mu))$	P =

$$\Phi_{\text{em}} = \int \dot{N}_{\text{em}} (E) . dE \qquad \Phi_{\text{abs}} = \int A(E) . \dot{N}_{\text{inc}} (E) . dE \qquad \dot{N}_{\text{em}} (E) = \frac{2\pi}{L^{3-2}}$$

 $\frac{2\pi}{h^3c^2}A(E)\frac{E^2}{e^{(E-\mu)kT}-1}$

14

Une pile solaire est elle une batterie?

15

Types de pertes

Plusieurs mécanismes de pertes

Compétition entre relaxation par le circuit extérieur et relaxation interne

Jean-Francois Guillemoles, et al.Nat. Photonics 13, 501–505 (2019)

16

Modèle Shockley-Queisser

Joint Research Unit

- Modèle de référence (Shockley, W. & Queisser, H. J. J. Appl. Phys. 32, • 510-519 (1961))
- Idealisation basée sur des hypothèses •
 - (1 hv \Leftrightarrow 1 eh pair) si et seulement si hv > Eg
 - Marche abrupte d'absorption (transparence/absorption totale)
 - Limite radiative
 - Stoechiometrie (1 seul photon correspond à une seule paire)
 - Fonctionnement Isotherme
 - Collecte idéale aux contacts
- Only optical properties enter •

3x1/3 rule

> Guide for the perplexed to the Shockley-Queisser model for solar cells

Jean-Francois Guillemoles 🏧, Thomas Kirchartz 🏧, David Cahen 🏧 & Uwe Rau 🖾

Fonctionnement accessible par des techniques de luminescence

17

Pertes II

Joint Research Unit

Du point de fonctionnement Du gap du matériau absorbant

Current

La classification des pertes dépends

18

Bose ou Fermi?

Joint Research Unit

Guillemoles, JF., Kirchartz, T., Cahen, D. et al. Nat. Photonics 15, 165–166 (2021).

Deux représentations possibles et complémentaires:

of saturation currents in solar cells by photoluminescence", 19 Applied Physics Letters, 100, (2012) 131108

Rendement radiatif et performance : au-delà de la limite radiative

Recombinaisons non radiatives: facteur multiplicatif sur les pertes

Conversion Photon-electron : corrélée à l'émission de lumière

=> Ouvre la voie à des approches de caractérisation de cellules solaires

From M. Sessolo, U. Valencia;

Indoor EL image of a c-Si module. Trupke et al. PIP, UNSW 2018

20

Closing in on limits with single junctions

A. Polman et al, Science, 2016, DOI: 10.1126/science.aad4424

Joint Research Unit

Optimum multispectral

L'énergie libre disponible dépend de

- L'énergie du photon converti
- De la température des électrons produits
- De l'intensité du flux de photons

 $\mu_M(E)/E \sim 0.7$ en moyenne pour AM 1.5

- ⇒ Rendement optimal chromatique **67,8%**
- \Rightarrow 87% sous concentration

Guillemoles, J.F. "Fundamental Physical Limits to Photovoltaic Conversion." Wiley & Sons, 2014.

22

Multijonctions : un convertisseur chromatique

Solar cells of different bandgaps

- \Rightarrow Mieux couvrir le spectre solaire par rapport à la simple jonction
- \Rightarrow Mieux tirer parti de chaque longueur d'onde

23

Multijonctions : Réalisations et état de l'art

Junctions	1	2	3	4	5	6
AM 1.5	29,1%	32.8 %	37.9%		38.8%	
Max eff	29.3% x50	35.6% x40	44.4% x300	46.0% x500		47,1% (x143)

John F. Geisz 💿 🖾, Ryan M. France 💿, Kevin L. Schulte 💿, Myles A. Steiner 💿, Andrew G. Norman 💿, Harvey L. Guthrey, Matthew R. Young, Tao Song and Thomas Moriarty

Still far from optimum

Significant gain from concentration

nature

energy

- Si-Based
- Thin film

MA Green et al, NATURE MATERIALS DOI: 10.1038/NMAT4676©2016

ARTICLES

Check for updates

Six-junction III-V solar cells with 47.1% conversion efficiency under 143 Suns concentration

6J IMM structure

24

Multijonctions: limitations

Conc=1000 Conc=100 Conc≡10 EurosW 2 Joint Research Unit

Constrained efficiency

- \checkmark lattice matching (<<0.1%)
- ✓ current matching
- Cost of substrate
- Decreasing marginal gain $\eta(N) = \frac{\gamma}{1 + a/2}$

- Production yield losses
- Optical losses (Transparency)
- •Electrical losses (Tunnel junctions)
- Mitigated success for a-Si

η[∞] : 68% (AM1.5) à 86.8% (x46200) a~1

25

Nouvelles approches des Tandems

S. Albrecht et al., Energy Envir. Science, 9 (2016)

29,5% (2020, Oxford PV)

Tandems couches minces polycristallines

GeePs

Typiquement

- Même courant dans top et bottom
- 2/3 du voltage dans la top
 - Eg optimaux : 1.1 et 1.8
 - Eg Vm > 0.4 V

Phototransistor (3T)

=> Au mieux 1/3 de la puissance vient de la bottom

Grey line: top cell alone Black line: tandem eff

Holman et-al, Nat En. 2015 -, 32/2022

Approches alternatives

© D. Suchet

Multiple exciton generation / singlet fission

Intermediate band

Peut on faire autrement?

Peut on faire mieux?

27

Autres approches: IBSC

Lopes et al. Phys. Rev. Lett. (2011)

S. Asahi, H. Teranishi, K. Kusaki, T. Kaizu, and T. Kita, Nature Communications 8, 14962 (2017).

Ratchet

A. Delamarre, et al, IEEE JPV 8, 6 (2018)

Compounds with transition metals

P. Olsson, C. Domain, and J.-F. Guillemoles, Physical Review Letters 102, (2009).

2D materials (MoS₂ nano-ribbon)

S.-F. Chen and Y.-R. Wu, Applied Physics Letters 110, 201109 (2017).

30

Autres approches: MEG

Science 16 December 2011, Vol. 334 no. 6062 pp.

1530-1533; DOI: 10.1126/science.1209845 Peak External Photocurrent Quantum Efficiency Exceeding 100% via MEG in a Quantum Dot Solar Cell

Octavi E. Semonin, 1,2 Joseph M. Luther, 1 Sukgeun Choi, 1 Hsiang-Yu Chen, 1 Jianbo Gao, 1,3 Arthur J. Nozik, 1,4* Matthew C. Beard 1*

Existe dans tous les matériaux

Mis en évidence dans des cellules PV

Joint Research Unit

44% (1 sun) 85% (full)

Concept de cellule « à porteurs chauds »

Extract carriers before full thermalization Narrow width energy selective contacts

L'extraction des porteurs se fait avant thermalisation complète

Avec des contacts sélectifs en énergie, le gap ne limite plus le Voc

Concept associant effet photovoltaïque et thermoélectrique

Ross & Nozik, J. Appl. Phys (1982)

32

Autres approches: HCSC

Thermalisation ralentie dans les nanostructures et sous fort flux

 \Rightarrow Dispositifs très fins

Cellules solaires avec un optimum à 15000 suns et dont la température de porteurs est de 600K

ARTICLES https://doi.org/10.1038/s41560-018-0106-3

Quantitative experimental assessment of hot carrier-enhanced solar cells at room temperature

Dac-Trung Nguyen¹, Laurent Lombez^{1,2*}, François Gibelli¹,², Soline Boyer-Richard³, Alain Le Corre³, Olivier Durand³ and Jean-François Guillemoles^{1,2}

 10^{4}

1000

100

10

0.1

12

10

6

2

PCE (%)

nature

energy

Jsc (A/cm²)

Myriam Paire et al., Energy Environ. Sci., 2011 A. Lebris et al., Energy Environ. Sci., 2012 Trung Dac Nguyen et al, Nat Energy 2018 33

Couplage thermique-PV

$$\Phi_{\rm PL}(E) = \frac{A(E)E^2}{4\pi^2\hbar^3 c_0^2} \frac{1}{\exp\left(\frac{E-\Delta\mu}{kT}\right) - 1}$$

Cold vs Hot: Half the generation, twice the recombination Trung Dac Nguyen et al, Nat Energy 2018

34

Generalization (multi-thermal)

Let's define:

$$\hat{\mu}(E) = E\left(1 - \frac{T}{T_{\rm H}}\right) + \mu_{\rm H} \cdot \frac{T}{T_{\rm H}} = \left(E - E_{\rm ext}\right)$$

This yields

- \checkmark the same spectral power at ambient as the Bose distribution at $\mu_{\rm H}$ and $T_{\rm H}$
- \checkmark the same useable work per photon at room temperature
- ✓ NB: the linear relationship of $\mu(E)$ fits nicely (for a proper choice of μ_{μ} and $T_{\rm H}$) the optimal $\mu(E)$ curve
- **NB: non thermal photon vs electron QY reads**

$$\mu_{\rm H}(E) = \left[qV - E_{\rm ext} \left(1 - \frac{T}{T_{\rm H}} \right) \right] \frac{T_{\rm H}}{T} = QY.qV$$

Yields close to optimal efficiencies (85%)

Guillemoles, J.F. "Fundamental Physical Limits to Photovoltaic Conversion." Wiley & Sons, 2014.

 $\left(1-\frac{T}{T_{\rm H}}\right)+qV$

$V + S.\Delta T$

Autres approches: Conversion de photons

Mostly rare earth (QD and TTA also possible)

Epoxy

Tetracene on Silicon solar cell

Einzinger et al Nature (2019)

Tetracene

Quartz

Conversion ascendante: facile à effets coopératifs

Conversion descendante: plus difficile à détecter

Triplet-triplet annihilation

M. Löning, D. Suchet, L. Lombez and J.-F. Guillemoles, J. Chem. Phys. 154, 014201 (2021)

détecter, mais nécessite souvent des

Advanced Concepts in Photovoltaics (Royal Society of Chemistry, Cambridge, UK, 2014).

Exemples

Joint Research Unit

Soutenabilité

38

Soutenabilité : le défi TW

Joint Research Unit

Energie primaire mondiale : 19 TW (2019 BP Stat review 2020)

dont 7,5 TW électrique

PV installé en 2020: 700 GW

=> environ 5000 km²

=> ~ 50 Mt de matériaux (verre)

Abondance: au delà des éléments (Si)

Purification (2 Mt c-Si)

Contacts Ag (50% demande), Pb, ...

Faire évoluer les procédés de fabrication; Economie d'atomes

39

Ordres de grandeurs

Quelle puissance volumique dans les systèmes de conversion chaleur => électricité?

- ٠
- Rendement: facteur 4 possible
- Photonique: facteur 10-100 possible
- Concentration: facteur 46500 max •
- Valeurs ultimes au GW/cm³ •

=> Les matériaux actifs ne sont pas un problème fondamental

Centrales thermiques et couches minces: 100-300 W/cm³

40

Reduire la quantité de matériaux par la photonique

Effective thickness: $d_{eff} = F.d$ *F*: light path enhancement

M. Giteau et al, World Conference on Photovoltaic

41

Exemple Si

Les cellules solaires ultrafines, Stéphane Collin et Andrea Cattoni

https://doi.org/10.1051/photon/202010244

42

Exemple : GaAs

Hung-Ling Chen, Andrea Cattoni, Romaric de Lépinau, et al.. absorber and a silver nanostructured back mirror. Nature Energy, 2019

rendement (33%), mais loin de la limite d'absorption:

=> Cellules 10x plus fines possibles

Massiot, Cattoni, Collin "Ultrathin solar cells: recent advances, promises and challenges" Nat. Energy 2020

A 19.9%-efficient ultrathin solar cell based on a 205-nm-thick GaAs

- Technologie proche de la limite théorique en

43

Concentration

Limite concentration: 46 500 fois

Triple problème de transport:

- Photons
- Electrons
- Chaleur

 \Rightarrow Pic de rendement avec la concentration

Conversion d'une puissance équivalente à 100 000 soleils

Feynman: « There is plenty of room at the bottom »

M. Paire et al, J. Appl. Phys 2010 M. Paire et al., Energy Environ. Sci., 2011 JF Guillemoles, UMR IPVF-9/02/2022

Joint Research Unit

Trung Dac Nguyen et al, Nat Energy 2018

Voc (V)

$V = \Delta E_f \sim \log(p.n)$

44

Durée de fonctionnement: quelle limite?

Dopant : charges statiques ou faiblement mobiles

Les homojonctions p/n sont généralement instables [1,2]

Certaines jonctions p/n peuvent être stables

C'est un domaine très largement à développer!

[1] J.-F. Guillemoles, I. Lyubomirsky, I. Riess, and D. Cahen, J. Phys. Chem. 99, 14486-14493 (1995) 45 [2] I. Lyubomirsky, V. Lyakhovitskaya, J.F. Guillemoles et al., J. of Crystal Growth, 161, 90-93 (1996)

Problème du facteur de charge

20-25% aux US (Tracking)

ce

••

Là où le soleil brille tout le temps

« There is plenty of room up there, also » (anonyme)

STRATOBUS

THE AUTONOMOUS, STATIONARY STRATOSPHERIC PLATFORM

Exemple

35 m radius flying 6 km high

- 90 t lift \bigcirc
- 2.5 kg/m^2 (enveloppe + cells) => 46 t Ο
- Ο

- Cost estimates \$1/W possible \geq

Higher productivity Capacity factor up to 50% (above

Low footprint

2

3

clouds) More incident power (+ 30%)

Strongly reduced structure materials

Little competition for use of space

Higher efficiency from concentration

More direct insolation Lower active material usage

Energy storage Low cost energy storage (H2), built-in

Deployment

Ease and rapidity of installation 5

Availability Everywhere on earth! 6

Aglietti et al. 2010; Guillemoles et al. 2015

JF Guillemoles, UMR IPVF

16 t cable (Al fibers reinforced, 55 m/s winds, 5% electric losses)

20% cells + tracking => 0.9 MW plant with 50% capacity factor

Stores 180 000 m³ H₂, i.e. about 8 days PV production equivalent

Cout de l'électricité solaire

- => Down to $20 \in /m^2$ 1. Innovative processes, scale up, standardization
- Abs/unit volume, low defect, new concepts 2.
- Localisation, tracking, ... 3.
- Failure mech., operation conditions 4.
- 5. Interest rates, business model

- => Up to 66 % (one sun)
- => Up to 50% capacity factor
- => Up to 50 years
- => Free

 \Rightarrow LCOE (modules) < 0.1 \in /MWh from best values => Free energy?

49

Conclusion

Une source d'énergie: Quasi gratuite... Tout le temps... A faible empreinte ...

\Rightarrow Qu'en ferons nous?

Une énergie peut être gratuite et à faible impact à la production. Quels sont les coûts et les impacts de son utilisation?

50

Summary of maximal efficiencies

Type of cell	Ideal efficiency range	Remarks
(ideal)	AM1.5 à x46000	
MJ N > 100	68-87%	Extremely complex to impl
Hot carriers	67-86%	Proof of concept, 11% achi
Impact ionisation (multiples Eg)	44-86%	Proof of concept, 5% achie
Thermoionique, thermal, TPV	54-85%	23% achieved
Intermediate bands (N>10)	62-85%	Extremely complex
MJ N=3	49-64%	39%-47% achieved
Up conversion	48-63%	Small gain achieved
Intermediate bands (N=1)	48-63%	Proofs of concept/ Small ga
Tandem N=2	43-56%	32% achieved
Down conversion	39-52%	Proofs of concept/ Small ga
Impact ionisation (2 Eg)	38-52%	5% achieved
Rectennas	?-48%	Proof of concept
Junction p/n, single	31-41%	28% -29% achieved

Useful reading

P.T. Landsberg 1978

> Thermodynamics and statistical mechanics, P.T Landsberg, Dover, 1978 Nice chapter on blackbody radiation

A. De Vos 1992

> Thermodynamics of Solar Energy Conversion, Alexis De Vos, Wiley-VCH, 1992 General but easy on solar energy conversion

MA Green 2003

> Third generation photovoltaics, M.A. Green, Springer, 2003 Short but rather complete on the bases of advanced photovoltaics

P. Wurfel 2005

> Physics of Solar Cells, Peter Würfel, Wiley-VCH, 2005 **Excellent physical exposition of the bases of photovoltaics**

JM Rax 2014

> Physique de la conversion d'énergie, Jean-Marcel Rax, EDP Sciences/CNRS Editions, 2014 Direct energy conversion, revisited

