
1. Representation theory of finite groups

Notation: Let G be a finite group, C the set of conjugacy classes of G, and {πi}i∈I a full set of
non-isomorphic irreducible representations of G. For i ∈ I and g ∈ C ∈ C we write χi(g) or χi(C)
for the trace of g on πi and set ni = χi(1) = dimπi.

1 (Schur’s lemma). For any i, j ∈ I, HomG(πj , πi) is C · Idπi
if i = j and {0} if i 6= j. This

is obvious since any non-zero G-map πj → πi is an isomorphism and any linear map πi → πi has
an eigenvalue.

2 (First orthogonality relation). Applying the general identity |G|−1
∑

g∈G Tr(g, V ) =

dim(V G) to V = πi ⊗ π∗
j (i, j ∈ I) and using 1. gives

∑
C∈C

|C|χi(C)χj(C) = |G| δij .

3 (Complete reducibility). Any finite-dimensional representation V of G is a direct sum of
irreducible representaions. This follows by induction on the dimension, since if π is any subrep-
resentation of V then V splits as the direct sum of π and the orthogonal complement to π with
respect to a non-degenerate G-invariant scalar product (which we can obtain by starting with any
positive-definite Hermitian form on V and summing its translates under G).

4. For V as in 3. we have canonically V ∼=
⊕

i∈I HomC(HomG(V, πi), πi) (as G-modules), the
map V → HomC(HomG(V, πi), πi) being given by v 7→ (φ 7→ φ(v)). Indeed, this holds for V = πj
by 1. and in general by 3.

5. For any representation V of G, HomG(C[G], V ) ∼= V as G-representations, since φ ∈
HomG(C[G], V ) is uniquely determined by φ(1) ∈ V , which is arbitrary.

6. Applying 4. to C[G] and using 5. gives a canonical G-module isomorphism

C[G] ∼=
⊕

i∈I

HomC(πi, πi) =
⊕

i∈I

EndC(πi) (1)

which sends [g] to (πi(g))i∈I . This equation is the central statement of the theory.

7. Comparing dimensions in (1), we find that |G| =
∑

i∈I n
2
i .

8. Since (1) is also an algebra homomorphism, C[G] ∼=
∏

iMni
(C) as an algebra. Comparing

the dimensions of the centers, we find that |I| = dimZ(C[G]) = |C|, since clearly a basis for Z(C[G])
is given by the elements eC =

∑
g∈C [g] (C ∈ C).

9 (Second orthogonality relation). Since a left inverse of a square matrix is also a right one,
2. and 8. imply

∑
i∈I χi(C1)χi(C2) = |G||C1|

−1δC1,C2
(C1, C2 ∈ C).

10. The isomorphism (1) is right G-equivariant, so C[G] =
∑

i π
∗
i ⊗πi as a G×G-representation.

Computing the trace of (g1, g2) ∈ C1×C2 on both sides of (1) gives another proof of 9. (and hence
also of 2.), since (g1, g2) acts on C[G] by [g] 7→ [g1gg

−1
2 ].

11. Comparing traces on each πi, we find that the image of eC under the isomorphism Z(C[G]) ∼=
C

I of 8. is {n−1
i |C|χi(C)}i∈I . On the other hand, if A and B are two conjugacy classes then

clearly eAeB =
∑

C∈C
|C|−1N(A,B,C−1) eC , where N(A,B,C) denotes the number of triples

(a, b, c) ∈ A×B×C with abc = 1. Multiplying this out and using 9. we find Frobenius’s formula

N(A,B,C)

|A×B × C|
=

1

|G|

∑

i∈I

χi(A)χi(B)χi(C)

χi(1)
(A, B, C ∈ C) . (2)



2. Explicit construction of the irreducible representations of Sn

A Young diagram is a finite union of sets of the form {0, 1, . . . , a} × {0,−1, . . . ,−b} ⊂ Z
2. We

systematically identify the set Yn of Young diagrams of cardinality n with the set Pn of partitions
λ = (λ1 ≥ λ2 ≥ . . . ) of n by λ 7→ Yλ = Young diagram with row-lengths λi. We will construct
pairwise distinct isomorphism classes of representations Vλ of Sn indexed by λ ∈ Pn; since |Pn| is
equal to the number of conjugacy classes of Sn, this solves the problem. (Actually, the space Vλ will
be a specific representation of the group SYλ

of permutations of the elements of Yλ. Since Yλ has
cardinality n, this group is isomorphic to Sn, but the isomorphism, and hence the representation of
the fixed groupSn on VYλ

, is unique only up to conjugacy.) The idea of the construction we describe
goes back to van der Waerden and von Neumann. Our presentation is a slight simplification of the
one in the very nice book Invariant Theory, Old and New by J. Dieudonné and J. Carrell.

Denote by Aλ (resp. Bλ) the subgroup of SYλ
leaving invariant the rows (resp. columns) of Yλ.

Clearly Aλ ∩ Bλ = {e}. Define three elements Aλ, Bλ, Xλ of the group algebra Rλ = C[SYλ
] by

Aλ =
∑

a∈Aλ

[a] , Bλ =
∑

b∈Bλ

ε(b)[b] , Xλ = AλBλ =
∑

(a,b)∈Aλ×Bλ

ε(b) [ab] (1)

(ε(b) = sign of the permutation b), and set VY = RλXλ ⊆ Rλ, a representation of SYλ
.

Theorem. The representations Vλ (λ ∈ Pn) are irreducible and pairwise non-isomorphic.

The key to the proof is the following lemma, in which the elements of Pn have been ordered
lexicographically (i.e. λ > µ if λ1 = µ1, . . . , λi−1 = µi−1 and λi > µi for some i).

Lemma (J. von Neumann). Let λ, µ ∈ Pn with λ ≥ µ, and let φ be any bijection from Yλ to Yµ.

Then either (i) Aλ ∩ φ−1Bµφ contains a transposition, or else (ii) λ = µ and φ−1 ∈ AλBλ.

Proof. Alternative (i) says that there are two distinct elements (the ones interchanged by the
transposition) belonging to the same row of Yλ with images belonging to the same column of Yµ.
Assume this is not the case. Then in particular the images under φ of the elements of the first row
of Yλ belong to different columns of Yµ. Since Yµ has µ1 columns and λ1 ≥ µ1, this implies that
λ1 = µ1 and that we can compose φ with an element b1 ∈ Bµ (bringing these images up to the first
row of Yµ) and then a1 ∈ Aµ (permuting the elements of the first row of Yµ) so that the composite
a1b1φ : Yλ → Yµ is the identity on the first row. Now the same argument applied to the remaining
part of the diagrams shows that λ2 = µ2 and that there exist a2 ∈ Aµ and b2 ∈ Bµ such that a2b2φ
is the identity on the first two rows of Yλ. Continuing in the same way we finally obtain (ii). �

Corollary. The elements Aλ, Bλ, Xλ defined in (1) satisfy Aλ RλBλ = C ·Xλ ⊆ Rλ .

Proof. If x =
∑
xσ[σ] ∈ AλRλBλ, then axb = ε(b)x for all a ∈ Aλ, b ∈ Bλ, so xaσb = ε(b)xσ for

all σ. Thus xσ = ε(b)xe for σ = ab ∈ AλBλ. But xσ = 0 for σ 6∈ AλBλ, because the lemma (with
λ = µ, φ = σ−1) gives us transpositions a ∈ Aλ and b ∈ Bλ with aσb = σ, so that xσ = −xσ. �

Proof of the theorem. If V ⊆ Vλ is an irreducible subrepresentation, then XλV ⊆ XλRλXλ ⊆ CXλ.
Also XλV 6= {0} since RλXλV = VλV ⊇ V 2 = V . Hence CXλ = XλV ⊆ V , so Vλ ⊆ V .

Now suppose that λ > µ and that there is a bijection ψ : Yµ → Yλ such that Vλ and V ′
µ = ψVµψ

−1

are isomorphic subrepresentations of Rλ. The lemma applied to φ = σψ−1τ with σ ∈ SYλ
, τ ∈ SYµ

gives transpositions s ∈ Aλ and s′ ∈ Bµ with s′ = φsφ−1. Then Aλs = Aλ and s′Bµ = −Bµ, so
Aλφ

−1Bµ = 0. Hence AλRλψRµBµ = 0, so VλV
′
µ = 0 and Schur’s lemma implies Vλ 6≃ V ′

µ. �

Remark. Note that Vλ has a natural integral structure: Vλ = Lλ⊗ZC, where Lλ = Z[SYλ
]Xλ.

This gives another proof of the fact—otherwise proved by noting that any two elements of Sn

generating the same subgroup are conjugate—that the irreducible characters of Sn are Z-valued.


