1. Representation theory of finite groups

Notation: Let G be a finite group, \mathfrak{C} the set of conjugacy classes of G, and $\left\{\pi_{i}\right\}_{i \in I}$ a full set of non-isomorphic irreducible representations of G. For $i \in I$ and $g \in C \in \mathfrak{C}$ we write $\chi_{i}(g)$ or $\chi_{i}(C)$ for the trace of g on π_{i} and set $n_{i}=\chi_{i}(1)=\operatorname{dim} \pi_{i}$.

1 (Schur's lemma). For any $i, j \in I, \operatorname{Hom}_{G}\left(\pi_{j}, \pi_{i}\right)$ is $\mathbb{C} \cdot \operatorname{Id}_{\pi_{i}}$ if $i=j$ and $\{0\}$ if $i \neq j$. This is obvious since any non-zero G-map $\pi_{j} \rightarrow \pi_{i}$ is an isomorphism and any linear map $\pi_{i} \rightarrow \pi_{i}$ has an eigenvalue.

2 (First orthogonality relation). Applying the general identity $|G|^{-1} \sum_{g \in G} \operatorname{Tr}(g, V)=$ $\operatorname{dim}\left(V^{G}\right)$ to $V=\pi_{i} \otimes \pi_{j}^{*}(i, j \in I)$ and using 1. gives $\sum_{C \in \mathfrak{C}}|C| \chi_{i}(C) \bar{\chi}_{j}(C)=|G| \delta_{i j}$.

3 (Complete reducibility). Any finite-dimensional representation V of G is a direct sum of irreducible representaions. This follows by induction on the dimension, since if π is any subrepresentation of V then V splits as the direct sum of π and the orthogonal complement to π with respect to a non-degenerate G-invariant scalar product (which we can obtain by starting with any positive-definite Hermitian form on V and summing its translates under G).
4. For V as in 3. we have canonically $V \cong \bigoplus_{i \in I} \operatorname{Hom}_{\mathbb{C}}\left(\operatorname{Hom}_{G}\left(V, \pi_{i}\right), \pi_{i}\right)$ (as G-modules), the map $V \rightarrow \operatorname{Hom}_{\mathbb{C}}\left(\operatorname{Hom}_{G}\left(V, \pi_{i}\right), \pi_{i}\right)$ being given by $v \mapsto(\phi \mapsto \phi(v))$. Indeed, this holds for $V=\pi_{j}$ by 1 . and in general by 3 .
5. For any representation V of G, $\operatorname{Hom}_{G}(\mathbb{C}[G], V) \cong V$ as G-representations, since $\phi \in$ $\operatorname{Hom}_{G}(\mathbb{C}[G], V)$ is uniquely determined by $\phi(1) \in V$, which is arbitrary.
6. Applying 4. to $\mathbb{C}[G]$ and using 5. gives a canonical G-module isomorphism

$$
\begin{equation*}
\mathbb{C}[G] \cong \bigoplus_{i \in I} \operatorname{Hom}_{\mathbb{C}}\left(\pi_{i}, \pi_{i}\right)=\bigoplus_{i \in I} \operatorname{End}_{\mathbb{C}}\left(\pi_{i}\right) \tag{1}
\end{equation*}
$$

which sends $[g]$ to $\left(\pi_{i}(g)\right)_{i \in I}$. This equation is the central statement of the theory.
7. Comparing dimensions in (1), we find that $|G|=\sum_{i \in I} n_{i}^{2}$.
8. Since (1) is also an algebra homomorphism, $\mathbb{C}[G] \cong \prod_{i} M_{n_{i}}(\mathbb{C})$ as an algebra. Comparing the dimensions of the centers, we find that $|I|=\operatorname{dim} Z(\mathbb{C}[G])=|\mathfrak{C}|$, since clearly a basis for $Z(\mathbb{C}[G])$ is given by the elements $e_{C}=\sum_{g \in C}[g] \quad(C \in \mathfrak{C})$.

9 (Second orthogonality relation). Since a left inverse of a square matrix is also a right one, 2. and 8. imply $\sum_{i \in I} \chi_{i}\left(C_{1}\right) \bar{\chi}_{i}\left(C_{2}\right)=|G|\left|C_{1}\right|^{-1} \delta_{C_{1}, C_{2}} \quad\left(C_{1}, C_{2} \in \mathfrak{C}\right)$.
10. The isomorphism (1) is right G-equivariant, so $\mathbb{C}[G]=\sum_{i} \pi_{i}^{*} \otimes \pi_{i}$ as a $G \times G$-representation. Computing the trace of $\left(g_{1}, g_{2}\right) \in C_{1} \times C_{2}$ on both sides of (1) gives another proof of $\mathbf{9}$. (and hence also of 2.), since (g_{1}, g_{2}) acts on $\mathbb{C}[G]$ by $[g] \mapsto\left[g_{1} g g_{2}^{-1}\right]$.
11. Comparing traces on each π_{i}, we find that the image of e_{C} under the isomorphism $Z(\mathbb{C}[G]) \cong$ \mathbb{C}^{I} of 8. is $\left\{n_{i}^{-1}|C| \chi_{i}(C)\right\}_{i \in I}$. On the other hand, if A and B are two conjugacy classes then clearly $e_{A} e_{B}=\sum_{C \in \mathbb{C}}|C|^{-1} N\left(A, B, C^{-1}\right) e_{C}$, where $N(A, B, C)$ denotes the number of triples $(a, b, c) \in A \times B \times C$ with $a b c=1$. Multiplying this out and using 9. we find Frobenius's formula

$$
\begin{equation*}
\frac{N(A, B, C)}{|A \times B \times C|}=\frac{1}{|G|} \sum_{i \in I} \frac{\chi_{i}(A) \chi_{i}(B) \chi_{i}(C)}{\chi_{i}(1)} \quad(A, B, C \in \mathfrak{C}) . \tag{2}
\end{equation*}
$$

2. Explicit construction of the irreducible representations of \mathfrak{S}_{n}

A Young diagram is a finite union of sets of the form $\{0,1, \ldots, a\} \times\{0,-1, \ldots,-b\} \subset \mathbb{Z}^{2}$. We systematically identify the set \mathcal{Y}_{n} of Young diagrams of cardinality n with the set \mathcal{P}_{n} of partitions $\lambda=\left(\lambda_{1} \geq \lambda_{2} \geq \ldots\right)$ of n by $\lambda \mapsto Y_{\lambda}=$ Young diagram with row-lengths λ_{i}. We will construct pairwise distinct isomorphism classes of representations V_{λ} of \mathfrak{S}_{n} indexed by $\lambda \in \mathcal{P}_{n}$; since $\left|\mathcal{P}_{n}\right|$ is equal to the number of conjugacy classes of \mathfrak{S}_{n}, this solves the problem. (Actually, the space V_{λ} will be a specific representation of the group $\mathfrak{S}_{Y_{\lambda}}$ of permutations of the elements of Y_{λ}. Since Y_{λ} has cardinality n, this group is isomorphic to \mathfrak{S}_{n}, but the isomorphism, and hence the representation of the fixed group \mathfrak{S}_{n} on $V_{Y_{\lambda}}$, is unique only up to conjugacy.) The idea of the construction we describe goes back to van der Waerden and von Neumann. Our presentation is a slight simplification of the one in the very nice book Invariant Theory, Old and New by J. Dieudonné and J. Carrell.

Denote by \mathcal{A}_{λ} (resp. \mathcal{B}_{λ}) the subgroup of $\mathfrak{S}_{Y_{\lambda}}$ leaving invariant the rows (resp. columns) of Y_{λ}. Clearly $\mathcal{A}_{\lambda} \cap \mathcal{B}_{\lambda}=\{e\}$. Define three elements $A_{\lambda}, B_{\lambda}, X_{\lambda}$ of the group algebra $\mathcal{R}_{\lambda}=\mathbb{C}\left[\mathfrak{S}_{Y_{\lambda}}\right]$ by

$$
\begin{equation*}
A_{\lambda}=\sum_{a \in \mathcal{A}_{\lambda}}[a], \quad B_{\lambda}=\sum_{b \in \mathcal{B}_{\lambda}} \varepsilon(b)[b], \quad X_{\lambda}=A_{\lambda} B_{\lambda}=\sum_{(a, b) \in \mathcal{A}_{\lambda} \times \mathcal{B}_{\lambda}} \varepsilon(b)[a b] \tag{1}
\end{equation*}
$$

$(\varepsilon(b)=$ sign of the permutation $b)$, and set $V_{Y}=\mathcal{R}_{\lambda} X_{\lambda} \subseteq \mathcal{R}_{\lambda}$, a representation of $\mathfrak{S}_{Y_{\lambda}}$.
Theorem. The representations $V_{\lambda}\left(\lambda \in \mathcal{P}_{n}\right)$ are irreducible and pairwise non-isomorphic.
The key to the proof is the following lemma, in which the elements of \mathcal{P}_{n} have been ordered lexicographically (i.e. $\lambda>\mu$ if $\lambda_{1}=\mu_{1}, \ldots, \lambda_{i-1}=\mu_{i-1}$ and $\lambda_{i}>\mu_{i}$ for some i).
Lemma (J. von Neumann). Let $\lambda, \mu \in \mathcal{P}_{n}$ with $\lambda \geq \mu$, and let ϕ be any bijection from Y_{λ} to Y_{μ}. Then either (i) $\mathcal{A}_{\lambda} \cap \phi^{-1} \mathcal{B}_{\mu} \phi$ contains a transposition, or else (ii) $\lambda=\mu$ and $\phi^{-1} \in \mathcal{A}_{\lambda} \mathcal{B}_{\lambda}$.

Proof. Alternative (i) says that there are two distinct elements (the ones interchanged by the transposition) belonging to the same row of Y_{λ} with images belonging to the same column of Y_{μ}. Assume this is not the case. Then in particular the images under ϕ of the elements of the first row of Y_{λ} belong to different columns of Y_{μ}. Since Y_{μ} has μ_{1} columns and $\lambda_{1} \geq \mu_{1}$, this implies that $\lambda_{1}=\mu_{1}$ and that we can compose ϕ with an element $b_{1} \in \mathcal{B}_{\mu}$ (bringing these images up to the first row of Y_{μ}) and then $a_{1} \in \mathcal{A}_{\mu}$ (permuting the elements of the first row of Y_{μ}) so that the composite $a_{1} b_{1} \phi: Y_{\lambda} \rightarrow Y_{\mu}$ is the identity on the first row. Now the same argument applied to the remaining part of the diagrams shows that $\lambda_{2}=\mu_{2}$ and that there exist $a_{2} \in \mathcal{A}_{\mu}$ and $b_{2} \in \mathcal{B}_{\mu}$ such that $a_{2} b_{2} \phi$ is the identity on the first two rows of Y_{λ}. Continuing in the same way we finally obtain (ii).

Corollary. The elements $A_{\lambda}, B_{\lambda}, X_{\lambda}$ defined in (1) satisfy $A_{\lambda} \mathcal{R}_{\lambda} B_{\lambda}=\mathbb{C} \cdot X_{\lambda} \subseteq \mathcal{R}_{\lambda}$.
Proof. If $x=\sum x_{\sigma}[\sigma] \in A_{\lambda} \mathcal{R}_{\lambda} B_{\lambda}$, then $a x b=\varepsilon(b) x$ for all $a \in \mathcal{A}_{\lambda}, b \in \mathcal{B}_{\lambda}$, so $x_{a \sigma b}=\varepsilon(b) x_{\sigma}$ for all σ. Thus $x_{\sigma}=\varepsilon(b) x_{e}$ for $\sigma=a b \in \mathcal{A}_{\lambda} \mathcal{B}_{\lambda}$. But $x_{\sigma}=0$ for $\sigma \notin \mathcal{A}_{\lambda} \mathcal{B}_{\lambda}$, because the lemma (with $\lambda=\mu, \phi=\sigma^{-1}$) gives us transpositions $a \in \mathcal{A}_{\lambda}$ and $b \in \mathcal{B}_{\lambda}$ with $a \sigma b=\sigma$, so that $x_{\sigma}=-x_{\sigma}$.
Proof of the theorem. If $V \subseteq V_{\lambda}$ is an irreducible subrepresentation, then $X_{\lambda} V \subseteq X_{\lambda} \mathcal{R}_{\lambda} X_{\lambda} \subseteq \mathbb{C} X_{\lambda}$. Also $X_{\lambda} V \neq\{0\}$ since $\mathcal{R}_{\lambda} X_{\lambda} V=V_{\lambda} V \supseteq V^{2}=V$. Hence $\mathbb{C} X_{\lambda}=X_{\lambda} V \subseteq V$, so $V_{\lambda} \subseteq V$.

Now suppose that $\lambda>\mu$ and that there is a bijection $\psi: Y_{\mu} \rightarrow Y_{\lambda}$ such that V_{λ} and $V_{\mu}^{\prime}=\psi V_{\mu} \psi^{-1}$ are isomorphic subrepresentations of \mathcal{R}_{λ}. The lemma applied to $\phi=\sigma \psi^{-1} \tau$ with $\sigma \in \mathfrak{S}_{Y_{\lambda}}, \tau \in \mathfrak{S}_{Y_{\mu}}$ gives transpositions $s \in \mathcal{A}_{\lambda}$ and $s^{\prime} \in \mathcal{B}_{\mu}$ with $s^{\prime}=\phi s \phi^{-1}$. Then $A_{\lambda} s=A_{\lambda}$ and $s^{\prime} B_{\mu}=-B_{\mu}$, so $A_{\lambda} \phi^{-1} B_{\mu}=0$. Hence $A_{\lambda} \mathcal{R}_{\lambda} \psi \mathcal{R}_{\mu} B_{\mu}=0$, so $V_{\lambda} V_{\mu}^{\prime}=0$ and Schur's lemma implies $V_{\lambda} \nsucceq V_{\mu}^{\prime}$.

Remark. Note that V_{λ} has a natural integral structure: $V_{\lambda}=L_{\lambda} \otimes_{\mathbb{Z}} \mathbb{C}$, where $L_{\lambda}=\mathbb{Z}\left[\mathfrak{S}_{Y_{\lambda}}\right] X_{\lambda}$. This gives another proof of the fact-otherwise proved by noting that any two elements of \mathfrak{S}_{n} generating the same subgroup are conjugate - that the irreducible characters of \mathfrak{S}_{n} are \mathbb{Z}-valued.

