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Overview of Carcinogenesis
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Prevailing View of Carcinogenesis

(B. Vogelstein and others)

e Cancer is a genetic disease. It is caused by an accumulation of mutations in genes that control the birth,
growth, and death of the body’s cells.

e A cell must acquire multiple mutations before it becomes cancerous. It can take decades for cells to amass
these changes.

e Some genetic ‘errors’ are inherited, ie person is born with an increased susceptibility to cancer because
their cells have a mutational “head start” down the pathway to disease. Families in which individuals are
prone to develop a specific cancer have helped researchers identify the responsible genes (tumor
suppressors in particular).

e The majority of cancer-related mutations occur after birth, triggered, for example, by environmental
factors, such as sunlight or cigarette smoke.

e Alternatively, cancer-related somatic mutations are simply a result of “errors” depending on the number
of “stem” cell divisions (see Vogelstein, 2015)

e A tumor is a mass of cells that forms when a single cell acquires a mutation that gives it a slight growth
advantage over its neighbors. A tumor is considered cancerous when its cells begin to invade surrounding
tissue. Some of these cells may break free and establish additional tumors throughout the body, where they
can damage vital organs.

e Genes involved in cancer fall into three broad categories: genes that normally keep cell division in check;
genes that promote cell proliferation; and genes that repair damaged DNA. Mutations in any of these
processes can lead to cancer (Review by Vogelstein et al, 2013).
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Prevailing View of Carcinogenesis

Cancer Stem Cell (CSC)
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Cancer is a complex condition
Tumors are dynamic “ecosystems”, with evolving genotypes/phenotypes
And interactions between different cancer cells, the stroma,
the immune system, even bacteria...

Cancer cells seems to have inherent plasticity and evolvability?

E. Heard, 2016 Hanahan and Weinberg, Cell 2011
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Somatic Mutation Model for Cancer

The prevailing model for cancer development was that mutations in genes for tumor
suppressors and oncogenes lead to cancer.

Normal “Fach tumor seemed a unique experiment
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Was this view too simple?

- Different cancers seem to involve very different sets of genes (except for specific
hematological cancers)

- Rates of somatic mutation (~10®) do not easily explain the rapid evolution of many
tumors — (except where DNA repair genes are mutated)

- Model does not explain the many chromosomal aberrations typical of cancer cells

- Fails to explain the genetic diversity among cells within a single tumor

- Does not easily explain frequent resistance to therapies

Epigenetic models — Epimutations and/or global epigenetic changes based on DNA
Methylation (proposed by R. Holliday in the 1970’s, later by R. Feinberg, S.Baylin, P. Jones, S. Clark & others)

As well as chromatin proteins (eg Polycomb, Trithorax) - & non-coding RNAs (Cours 2015)



DNA Methylation is a classic “epigenetic” mark that may
have several roles in cancer
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Définition de I’eépigénétique (Holliday — Riggs)

L’étude des changements d’expression des genes transmissibles au travers des divisions
cellulaires (voire des générations), sans changement de la séquence de I’ADN

Epigénétique et Mémoire Cellulaire

Russo, V.E.A., R.A. Martienssen & A.D. Riggs Eds. 1996.
Cold Spring Harbor Laboratory Press.
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Chromatin-based States and Partners

Histone Variants and Histone Modifications are:
Mediators of chromatin accessibility

Platforms for binding proteins

Carriers of cellular memory  Histone modifying enzymes
wlean add or remove these

H4 E - ‘?“DAC"/ modifications

H2B C term
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'Histone

DNA methylation associated with repressed
state of some genes, repeats:

Self-templating, stable - but can be removed
(actively eg Tet-induced conversion to Shme;
passively during DNA replication)
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Epigenetic Models for Cancer

Evidence for DNA methylation changes in cancer
(pre-genome wide technologies)

¢ Global DNA hypomethylation in cancer cell lines (Dilala and Hoffman, 1982; Ehrlich, 1982)
¢ Local DNA hypomethylation at some oncogenes — eg Ras (Feinberg and Vogelstein, 1983)

e DNA hypermethylation of CpG islands of multiple tumor suppressor genes (reviewed by Jones and

Baylin, 2002)
First Hit Second Hit
(A)
Mutation | —
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Numerous examples of Promoter CpG island
Hypermethylation of Tumor Suppressor genes in cancer

E. Heard, 2016

Table 1 Selected genes that undergo CpG island hypermethylation in human cancer

Gene Function Location Tumor profile Consequences

Jg e Cyclin-dependent Kinase Inhibitor  9p21 Multiple Types Entrance in Cell Cycle
]')14’“‘{F M DM?2 inhibitor 9p21 Colon, Stomach, Kidney Degradation of p33
pls et Cyclin-dependent Kinase Inhibitor  9p21 Leukemia Entrance in Cell Cycle
hMLHI DNA mismatch repair 3p21.3  Colon, Endometrium, Frameshift Mutations

Stomach
MGMT DNA repair of 06-alkyl-guanine 10g26 ~ Multiple Types Mutations, Chemosensitivity
GSTPI Conjugation to Glutathione 11ql13 Prostate, Breast, Kidney Adduct Accumulation?
BRCAI DNA Repair, Transcription 17g21 Breast, Ovary Double Strand-Breaks?
p73 p53 Homologue 1p36 Lymphoma Unknown (Cisplatin?)
LKBI/STKI11 Serine/Threonine Kinase 19p13.3  Colon, Breast, Lung Unknown
ER Estrogen Receptor 6q25.1  Breast Hormone Insensitivity
PR Progesterone Receptor 1122 Breast Hormone Insensitivity
AR Androgen Receptor Xqll Prostate Hormone Insensitivity
RARf2 Retinoic Acid Receptor fi2 3p24 Colon, Lung, Head and Vitamin Insensitivity?
Neck

RASSFI Ras Effector Homologue 3p21.3  Multiple Types Unknown
VHL Ubiquitin Ligase Component Ip25 Kidney, Hemangioblastoma Loss of hypoxic response?
Rb Cell Cycle Inhibitor 13q14 Retinoblastoma Entrance in Cell Cycle
THBS-1 Thrombospondin-1, Anti-angiogenic 15q15 Glioma Neovascularization
CDHI1 E-cadherin, cell adhesion 16g22.1 Breast, Stomach, Leukemia Dissemination
HIC-1 Transcription Factor 17p13.3  Multiple Types Unknown
APC Inhibitor of f-catenin 5q21 Aerodigestive Tract Activation f-catenin Route
COX-2 Cyclooxigenase-2 125 Colon, Stomach Antinflamatory Resistance?
SOCS-1 Inhibitor of JAK/STAT Pathway 16p13.13 Liver JAK?2 Activation
SRBC BRCA I-binding Protein Ipl5 Breast, Lung Unknown
SYK Tyrosine Kinase 9q22 Breast Unknown
RIZ] Histone/Protein Methyltransferase  1p36 Breast, Liver Aberrant Gene Expression?
CDHI13 H-cadherin, cell adhesion 16q24 Breast, Lung Dissemination?
DAPK Pro-apoptotic 9q34.1  Lymphoma, Lung, Colon  Resistance to Apoptosis
TMSI1 Pro-apoptotic lopll Breast Resistance to Apoptosis
TPEF/HPPI Transmembrane Protein 2q33 Colon, Bladder Unknown

Source: CpG island hypermethylation in cancer
M Esteller, Oncogene 2002
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The Attraction of Epigenetic Models for Cancer

e Dosage may be a key consideration for some proteins’ selective advantage in cancer:

Most genetic changes lead to an all-or-nothing gene expression change

Epigenetic changes can lead to range of expression levels — & can be stable in this range
e Epigenetic changes can arise stochastically & be metastable: can explain tumor heterogeneity?
e Epigenetic changes can be reversed (eg 5-Aza-cytidine): therapeutic potential
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Epigenetic Models for Cancer

e Both genetic and epigenetic views ultimately involve abnormal gene expression.

e The expression state of a gene is determined by presence of TFs, chromatin remodelers
and modifying enzymes, and the packaging of its DNA regulatory landscape.

e DNA mutations of tumor suppressors and/or oncogenes cause either loss or gain of
function and abnormal expression.

e Do epigenetic pathways actually matter in cancer? Factors affecting chromatin structure,
DNA me, histone variants and modifications, nucleosome remodeling...

Histone post-translational Remodelling Histone MNon-coding
DMNA methylation modification complexes variants RNAs
= T 0 | |

Histones
Chromatin [ '@@ @M
|
DNA
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Epigenetic Models for Cancer

e Both genetic and epigenetic views ultimately involve abnormal gene expression.

e The expression state of a gene is determined by presence of TFs, chromatin remodelers
and modifying enzymes, and the packaging of its DNA regulatory landscape.

e DNA mutations of tumor suppressors and/or oncogenes cause either loss or gain of
function and abnormal expression.

e Do epigenetic pathways actually matter in cancer? Factors affecting chromatin structure,
DNA me, histone variants and modifications, nucleosome remodeling...

e Frequent global loss of 5mC, some cancers show a CpG island methylator phenotype
(CIMP) (Toyota et al., 1999), global changes in chromatin structure/state (by IHC, IF)

What are the genome-wide distributions of DNA methylation, nucleosome occupancy,

chromatin state profiles?

Mean methylation, 5-CpG windows
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Epigenomic Mapping in Cancer
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>28 million CpG sites in the human genome. Assessing
the methylation status of each of these sites will be
required to understand fully the role of DNA
methylation in health and disease. Except for whole-
genome bisulfite sequencing (WGBS), most commonly
used genome-wide methods detect <5% of all CpG sites.
WGBS studies are >> costly, require specialised
expertise and bioinformatics...
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Organisation of the genome into large
organised chromatin blocks

Large blocks of “silent” chromatin, spanning several hundreds of kilobases
often associated with nuclear lamina (LADs) exist in normal mammalian cells

Autosomal H3K27me3 domains
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Zhao et al., 2007

BLOCs (broad local regions of enrichment) in MEF cells

Pauler et al., 2007
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Courtesy of C. Vallot
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Disruption of genome organization occurs in
cancer

Regions corresponding to these blocks, spanning several hundreds of
kilobases, show coordinated aberrant repression or activation in cancer

Long-Range Epigenetic Silencing (LRES) BLADDER CANCER
alterations Stransky and Vallot et al,,

j Nat Genet 2006
COLON CANCER
Frigola et al., 2006
(¢ 0) swq( Qllom
/)

) )\\\Q\,

ON

BREAST CANCER
Novak et al., 2006

Integration of micro-array and CGH data to create
correlation maps and gene signatures PROSTATE CANCER
Coolen et al., 2010
Long-Range Epigenetic Silencing (LREA)

alterations
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Partially Methylated Domains (PMDs) are pervasive in cancer
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Breast
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- USEFUL BIOMARKERS FOR CLASSIFYING TUMORS
e - DO THEY SIMPLY REFLECT CELL (TISSUE) OF ORIGIN? e
(16 ENCODE cl e - WHAT ABOUT FUNCTION? AS THERAPEUTIC TARGETS? data
- EASY TO SPECULATE, DIFFICULT TO CONCLUDE!

Sproul et al, 2014 “Transcriptionally repressed genes become aberrantly methylated and distinguish tumors of different
lineages in breast cancer” doi: 10.1073/pnas.1013224108

Holm et al, 2016 “An integrated genomics analysis of epigenetic subtypes in human breast tumors links DNA
methylation patterns to chromatin states in normal mammary cells”. Breast Cancer Res. 2016;18(1):27

“Our results suggest that hypermethylation patterns across basal-like breast cancer may have limited influence on
tumor progression and instead reflect the repressed chromatin state of the tissue of origin. On the contrary,
hypermethylation patterns specific to luminal breast cancer influence gene expression, may contribute to tumor
progression, and may present an actionable epigenetic alteration in a subset of luminal breast cancers.”



How to Interpret Cancer Epigenomes?
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The Sequencing of the Human Genome

Human Genome
Timeline

104 50,

Structure of DNA,
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Proposed in 1985 and endorsed in 1988: large coordinated effort between 20 government-
sponsored research teams involving hundreds of people: “International Human Genome
Sequencing Consortium”. Government-funded groups = “the public project.”

In 1998, Craig Venter founded a private company “Celera Genomics” and announced that
his company planned to complete the sequence of the genome within 3 years, well ahead of
the public effort. By automating the entire sequencing process with robotics, a tremendous
amount of computing power, and the latest capillary sequencers. Competition between this
private venture and the public project became fierce. In 2001, both groups separately

published the “draft sequences”.
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The Sequencing of the Human Genome

15 Febrary 2001
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Deciphering the Human Genome

Understanding the genome... and how it is interpreted:
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From Human Genome to Epigenomes
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From Human Genome to Epigenomes

Mapping the Epigenome Reading the chart
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From Human Genome to Epigenomes

An integrated encyclopedia of DNA
elements in the human genome

The ENCODE Project Consortium®
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Nature, September 2012
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NIH Roadmap Epigenomics Program: to systematically characterize epigenomic
landscapes in primary human tissues and cells. Reference epigenomes are available for

more than 100 cell and tissue types.

111 reference human epigenomes generated as part of the programme, profiled for histone
modification patterns, DNA accessibility, DNA methylation and RNA expression. We establish
global maps of regulatory elements, define regulatory modules of coordinated activity, and their
likely activators and repressors. We show that disease- and trait-associated genetic variants are
enriched in tissue-specific epigenomic marks, revealing biologically relevant cell types for diverse
human traits, and providing a resource for interpreting the molecular basis of human disease.



Cancer: from Boveri to Venter
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* In 2007 - oligonucleotide ‘baits” to capture (enrich for) specific portions of the genome eg the
~2% of genomic DNA containing exons — protein coding portion (whole “exome” seq: WES):
widely used because cheaper — identified all the known and some new genes in cancer but missed

the “non-coding” part of the genome including regulatory regions and promoters, as well as
chromosomal events, epigenome —wide effects...

e Massive Parallel Sequencing (MPS) (see Bentley et al, 2008) - by 2012 > 600 billion bp/run...

* MPS enabled whole genome sequencing (WGS) and the use of a single technology platform for
all categories of genome analysis: detecting point mutations, structural variations, transcriptomes
(RNA Seq), DNA methylomes, chromatin structure (ChIP-Seq)

e Has been remarkable in centering efforts from various fields — but has also highlighted our basic

ignorance about cancer biology! .
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Cost of Sequencing Genomes

Cancer Genomics

nature
! The mouse

human
gerome:

AML

Small-cell lung
Breast

Lung (NSS)
Hepatocellular
Myeloma
Mouse AML
$1000 genome
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~10 years ~3 years ~4 months ~1month <1day ~1day

~$ 3 billion ~$ 20million  ~$ 1.5million $9,500 $1000 ? $100
Watson genome
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Sequencing Cancer Genomes

International Cancer Genome Consortium (ICGC), formed in 2008, to coordinate efforts to

sequence 500 tumors from each of 50 cancers. Total cost in the order of USS1 billion.

The ICGC included two older, large scale projects: the Cancer Genome Project, at the

Wellcome Trust Sanger Institute (UK), and the US National Institutes of Health’s Cancer

Genome Atlas (TCGA) (http://cancergenome.nih.gov/)

Canada Britain
* Pancreatic cancer  Breast cancer
(ER-, PR-, HER-) Germany

(ductal adenocarcinoma)
= * Breast cancer (lobular)
K 2 * Breast cancer (ER+, HER-)

- European Union sponsored

= 4
4’/@ ] United States | Spain /"’"
- Through the Cancer Genome Atlas » Chronic
* Ovarian cancer lymphocytic // —
= * Brain cancer leukaemia / | d /

(glioblastoma multiforme) T ndia {

* Lung cancer ® Oral cancer
(squamous-cell carcinoma) i France (gingivobuccal) 4

* Lung cancer * Breast cancer - —
(adenocarcinoma) (HER2 overexpressing)

* Acute myeloid leukaemia * Liver cancer Ita |y

* Colon cancer (alcohol-associated) * Rare pancreatic cancers
(adenocarcinoma) » Renal-cell carcinoma (enteropancreatic endocrine,

* Others - European Union sponsored pancreatic exocrine)

ALL TOGETHER NOW

Eleven countries have signed on to sequence DNA from 500 tumour samples for 4/_\ ?aunrzsftr ofe i
each of more than 20 cancer types for the International Cancer Genome Consortium. o/ being se}rfqienced
Each cancer type is estimated to cost nearly US$20 million to sequence. i

P=

— 4
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* Paediatric brain tumours
(medulloblastoma,
pilocytic astrocytoma)

China

» Gastric cancer

=

= 4

Japan
 Liver cancer
(virus-associated)

Australia

* Pancreatic cancer
(ductal adenocarcinoma)
® Ovarian cancer
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Analysing cancer genomes

“-omics” data

T New targets
‘_._._‘;l-_ Wiy DISCOVERY SCIENCE > and drugs

!

MOLECULAR DATABASE > ﬁ:.!:t:r:;;s

|

CLIHIEAL DATABASE » Outcomes

.

CLINICAL SCIENCE > I:;fif:;

Hypothesis-driven cancer research
* Novel clinically relevent cancer specific changes
* New signatures enabling tumour classification
* Targeted drug and therapeutic strategies
* Towards peronalised medicine

Biobank
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Analysing cancer genomes

E. Heard, 2016

“The Cancer Genome”
Michael R. Stratton, Peter J. Campbell & P. Andrew Futreal (2009)
Nature 458, 719-724
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Sequencing Cancer Genomes

CANCER GENOMES COMING FAST

A few examples of fully and partially sequenced cancer
genomes and their defining characteristics.

LUNG CANCER

Cancer: small-cell lung carcinoma

= Sequenced: full genome

# Source: NCI-H209 cell line
= Point mutations: 22,910

= Point mutations in gene regions: 134

= Genomic rearrangements: 58

= Copy-number changes: 334

Highlights:

Duplication of the CHD7 gene confirmed in two
other small-cell lung carcinoma cell lines.

Sowce: D Messance ef ol Nature £63, 184-190 (20100,

SKIN CANCER
Cancer: metastatic melanoma

= Sequenced: full genome

* Source: COLO-829 cell line
= Point mutations: 33,345

= Point mutations in gene regicns: 292
* Genomic rearrangements: 51

» Copy-number changes: 41

Highlights:

Patterns of mutation reflect damage

by ultraviolet light.

Source E D Plaasance of ol Matuw S63, W1-186 (20000

BRE&ST CANCER
Cancer: basal-like breast cancer

» Sequenced: full genome
® Source: primary tumour, brain

and tumours
into mice
= Point mutations: 27173 in primary, 51,710 in
is and 109,078 in

« Paint mutations in gene regions: 200 in primary,
225 in metastasis, 328 in transplant

= Genomic rearrangements: 34

« Copy-number changes: 155 in primary, 101 in
metastasis, 97 in transplant

Highlights:

The CTNNAT gene encodes a putative suppresser of

metastasis that is deleted in all tumour samples,

Sowce: L Ding of ol Nalure 464, 999-1005 (20100

i it &

BRAIN CANCER
Cancer: glioblastoma multiforme

- -

E.

» Sequenced: exome (no complete Circos plot)
= Spurce: 7 patient tumours, 15 tumours

transplanted into mice (follow-up saquencing
on 21 genes for 83 additional samples)

® Genesc ining at least one prot ltering
mutation: 685

® Genesc ing at least one protein-altering

jpoint mutation: 644
= Copy-number changes: 281
Highlights:
Mutations in the active site of IDHT have
been found in 12% of patients.
Souecel E R Mardia f sl N Engt 4 Med. 361, 1058-1066 (2009).

Heard, 2016
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Lessons from cancer genomes

MutationaISignatures: oo

Vogelstein et al,

E. Heard, 2016

Validated mutational signatures
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Lessons from cancer genomes
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For example, non-small-cell lung tumors (NSCLCs) from heavy cigarette
smokers display a preponderance of C > A transversions and significantly
more copy number gains and mutations compared with non-smokers
(Govindan et al., 2012; Huang et al., 2011; Pleasance et al., 2010)

Colorectal cancers with endogenous mismatch repair deficiency exhibit
an enrichment of C > T transitions, particularly at CpG sites, and generally
show low levels of chromosomal alterations.

g e o

. i ——— 05% OLLEGE
Vogelstein et al, |5 @ 03% E FRANCE
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E. Heard, 2016
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Lessons from cancer genomes
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COSMIC: exploring the world’s knowledge of somatic
mutations in human cancer

Simon A. Forbes’, David Beare, Prasad Gunasekaran, Kenric Leung, Nidhi Bindal,

Harry Boutselakis, Minjie Ding, Sally Bamford, Charlotte Cole, Sari Ward, Chai Yin Kok,
Mingming Jia, Tisham De, Jon W. Teague, Michael R. Stratton, Ultan McDermott and Peter
J. Campbell

Cancer Genome Project, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge,
UK, CB10 1SA.

COSMIC, the Catalogue Of Somatic Mutations In Cancer (http://cancer.sanger.ac.uk) is the world’s largest

Voaelster and most comprehensive resource for exploring the impact of somatic mutations in human cancer
ogelstein

E. Heard, 201



Lessons from cancer genomes

46 (intact) chromosomes
in healthy human cell

Telomere

Normal chromosome

59 (rearranged) chromosomes
in colorectal cancer cell

Centromere Telomere

!¢

> >

— = eS|

Highly rearranged chromosome
(Chromoanagenesis)

Chromo = chromosome
L Anagenesis = to be reborn J

E. Heard, 2016

l(}nunubomn shattering
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Double minute chromosomes

Mutation Rates — much more variable than
expected: from <0.1/Mb to ~100/Mb (in
mutagen induced tumors eg lung cancer
(tobacco smoke), melanoma (UV)

Mutation Spectra — wide array of mutational
patterns both across and within tumor types:

Chromosomal Gains & Losses — aneuploidy (as
expected from classic cytogenetics). Typical
tumor exhibits large gains/losses affecting 25%
of its genome plus 10% focal events (deletions,
amplifications — though driver gene often not yet
assigned definitively)

Chromosomal Shattering (chromothripsis) —
surprise discovery of catastrophic phenomena
producing tens/hundreds of rearrangement
affecting just one or a few chromosomes
(Stephens et al, 2011), in different tumor types —
bone, pediatric medulloblastoma,
neuroblastoma. Now know that is is sometimes
due to mis-segregated chromosomes in
micronuclei that undergo premature
condensation, pulverisation and rearrangement
and may then reincorporated at the next cell
cycle...) (Zhang et al, Nature 2015)

Chromplexy — copy neutral chromosomal chains
of rearrangements, in prostate cancers
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Chromothripsis: A New Mechanism for
Rapid Karyotype Evolution

From: Mitchell L. Leibowitz, Cheng-Zhong Zhang, and David Pellman Ann Rev Gen. 2015
ARTICLE
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“Look-Seq”: live cell
imaging followed by

genome sequencing

E. Heard, 2016
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Chromothripsis from DNA damage
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uke Cornils™**, Joshua M. Francis'-**, Emily K. Jackson™**, Shiwei Liv™*,

GFP-NLS FHIAX

Hogahist
=8

5

Nature 2015

wrged

COLLEGE

¥ & DE FRANCE

1530




Tumor Evolution?

Selective pressures —_Tx

a Ecosystem 1 Ecosystem 2 Ecosystem 4 b

/
L2

Recurrence

AN
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| T\ 0"

/r

‘\

Single
founder
cell (stem or
progenitor)

Ecosystern 3

Confined Diffuse
(CIS)

) . Subclones with unique Metastases

genotype / ‘driver’ mutations

Rather than the gradual appearance of mutations and natural
selection (Darwinian model), massive events such as chromothripsis
can also occur, generating several genomic lesions in one “big leap”

with potential to drive cancer
(macro-evolution)...

“Hopeful Monsters” — chromosomal rearrangements that usually
lead to death but occasionally give rise to something
“greater” (Goldsmith)

La théorie des monstres prometteurs % COLLEGE

Gerlinger et al. |
Nature Genetics
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Lessons from cancer genomes

Fraction of tumors (%)
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New Cancer Genes?

According to Vogelstein (Science 2013):

- ~140 genes that “drive” tumorigenesis

- Classified into 12 signalling pathways that regulate 3 core
processes: cell fate, cell survival and genome maintenance

- Typical tumor contains 2-8 such “driver” gene mutations

- Rest are just passengers...?

BUT - genes <20% mutated (“tails”) can be useful to identify
redundant mutations in a given signaling path, or else new
pathway...

Some cancers had no/few mutations in any known cancer
genes...

= Mutational screening may not be worthwhile?

= Non-coding sequence mutation -> aberrant activation and
silencing of cancer genes?

= Epimutations? (DNA methylation or chromatin change?)

=> In cis: may implicate regulatory elements and/or epimutations?
In trans: mutations or mis-targeting of Epigenetic Regulatory
factors....?

Number of driver gene mutations per tum _



Discoveries from the Non-Coding Cancer Genomes

Inherited cancer
risk variant

Somatic (acquired)
mutation

®
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G

Genetics of cancer.
Both inherited variants
(top) and acquired
mutations (bottom)
can contribute to
tumorigenesis.

E. Heard, 2016

Small-scale mutations

Cancer by super-enhancer

Tiny changes in our genomes can enhance oncogene
expression and contribute to tumorigenesis

~100 bp

@ TERT
CCCCTTCCGG —L

Small insertion

R } )

e i
H3K27ac® .H3K27ac H3K27ac [ TAH

— CACGGTTAGGAAACGGTA

An oncogenic super-enhancer formed
through somatic mutation of a
noncoding intergenic element

Mare B Mansour,"* Brian J, Abraham,™ Lars Anders,™ Alla Berezovskaya,'
Alejandro Gutierrez,"* Adam D. Durbin,' Julia Etchin," Lee Lawton,”

Stephen E. Sallan,"* Lewis B. Silverman,"* Mignon L. Loh,* Stephen P. Hunger,®
Takaomi Sanda,” Richard A. Young,>*{ A. Thomas Look™ %}

~7.5 kb

A Genomic rearrangements

Chromosomal translocation

Chr8 Chr2

IGKJ5 MYC
Chr2 _ Chr8
~125kb
Intrachromosomal deletion STIL
* ~80 kb
Focal amplification
e ~500 kb _
7 \ |—> MYC

Viral insertion
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Discoveries from the Non-Coding Cancer Genomes

régulation par
plusieurs ééments

régulation par
élément distal
(10-100kb)

régulation
co/post-
transcriptionnelle

régulation par
éément proximal

10-100 kb

régulation par
élément trés distal

{>1Mb)
;:’v;::leur actif, séquence transcrite

E promoteur inactif, séquence non transcrite

. fixation d'un facteur trans régulant linitiation de la transcription

LETTER

doi:10.1038/ nature 164590

Insulator dysfunction and oncogene activation in
IDH mutant gliomas

William A. Flavahan'?* _ Yotam Drier' > Brian B. Liau*3, Shawn M. Gillespie'*, Andrew S. Venteicher'#,
Anat O. Stemmer- Rachamimov', Mario L. Suvi'? & Bradley E. Bernstein'->*

IDH wild-type cells

IDH mutant glioma
Housekeeping gene

Enhancer

.. Mutant IDH
A(;,tmat 2-hydroxyglutarate

OMCO ‘eﬂrﬁﬁcp{TET inhibition
\_/\\

Inagtive insulator

A

ctive insulators
CpG

Insulated meCpG
oncogene T
5-Azacytidine,

CRISPR deletion, insulator restoration?

insulator loss?

Science

REPORTS

Cite as: D. Huisz ef al., Science
10.1126/science.aad9024 (2016).

Activation of proto-oncogenes by disruption of

chromosome neighborhoods

Denes Hnisz,™* Abraham S. Weintraub,"?* Daniel S. Day,! Anne-Laure Valton,* Rasmus O. Bak,*
Charles H. Li,"* Johanna Goldmann,! Bryan R. Lajoie,* Zi Peng Fan,* Alla A. Sigova,! Jessica Reddy,*
Diego Borges-Rivera,'? Tong Ihn Lee,! Rudolf Jaenisch,"> Matthew H. Porteus,* Job Dekker,>°

Richard A. Young"*¥

Nucleotide _E’_ > &_

substitution Proto-oncogene Oncogene

Gene E —EI— > —ED—

fusion Gene Proto-oncogene Fusion oncogene

Enhancer — > —a— B

hijacking  gnpancer Proto-oncogene Enhancer Active

oncogene

Focal —— o i

amplification Proto-oncogene Amplified oncogene
Cohesin ~ =

Disruptionof  CTCF Enhancer

insulated

neighborhoods

Active Enhancer
Oncogene

Proto-oncogene

Examples

KRAS (lung)
EGFR (NSCLC)
BRAF (melanoma)

BCR-ABL (CML)
MLL-AF9 (AML)
TMPRSS2-ERG E
(prostate)

L]
IgH-MYC (lymphoma)
TCR-LMO2 (T-ALL)

EGFR (GBM)
ERBB2 (breast) .
MYCN (SCLC) N
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Discoveries from the Non-Coding Cancer Genomes

Subtle mutations affecting regulatory or chromosome
structural elements, sometimes at very long distance
(100s kilobases) may be sufficient to activate
“oncogenes” or inactivate tumor suppressors

=M, COLLEGE
% DE FRANCE

1530

E. Heard, 2016



More Discoveries from Cancer Genomes

Table 2. Discoveries from Cancer Genome Characterization

Cellular Process Altered by Genomic Alterations

Examples of Cancer Genes Discovered (or Extended to New Cancers*) by Genomics

RTK signaling

MAPK signaling (oncogenes)
MAPK signaling (TSG)

PI3K signaling (oncogenes)

PI3K signaling (TSG)

Notch signaling (oncogene or TSG)
TOR signaling (TSG)
Whnt/B-catenin signaling (TSG)
TGF-B signaling (TSG)

NF-kB signaling (oncogene)

Other signaling

EGFR,® ERBB2,*® MET,*® ALK,*® JAK2,® RET,*® ROS,*® FGFR1,*® FGFR2?
PDGFRA,*® and CRKL®

KRAS,*® NRAS,*2 BRAF, ® and MAP2K 12
NF1*®

PIK3CA,? AKT1,2 and AKT3?

PTEN*® and PIK3R1°

NOTCH1,° NOTCH2,® and NOTCH3®
STK11,*P TSC1,*® and TSC2*P

APC*® and CTNNB1*?

SMAD2,*® SMAD4,*? and TGFBR2"
MYD88?

RAC1,2 RAC2,2 CDC42,2 KEAP1,” MAP3K1,® MAP2K4,® ROBO1.® ROBO2,® SLIT2,°
SEMA3A.® SEMASE.® ELMO1 .9 and DOCK24

Epigenetics DNA methylation

Epigenetics DNA hydroxymethylation

Chromatin histone methyltransferases

Chromatin histone demethylases

Chromatin histone acetyltransferases

Chromatin SWI/SNF complex

Chromatin other

Transcription factor lineage dependency or oncogene
Transcription factor other

DNMT3AP

TET2"

MLL,*® MLL2 P MLL3° EZH2,° NSD1,° and NSD3°

JARID1AP UTX,® KDMS5A,® and KDM5C®

CREBP ® and EP300°

SMARCAT1,*® SMARCA4.® ARID1A,° ARID2,° ARID1B,® and PBRM1®
CHD1.,° CHD2,® and CHD4"

MITF 2 NKX2-1,% SOX-2,2 ERG,* ETV1,? and CDX2®

MYC,*® RUNX1,° GATA3,® FOXA1,P NKX3.1,° SOX9,2 NFE2L2,® and MED12¢

Splicing SF3B1,° U2AF1,° SFRS1,% SFRS7,° SF3A1.° ZRSR2,® SRSF2 .9 U2AF2,°
and-PRPF400Y

RNA abundance DIS34

Translation/protein homeostasis/ubiquitination SPOP° FBXW?7,*® WWP1,*® FAM46C © and XBP1¢

Metabolism IDH1? and IDH2 #

Genome integrity
Telomere stability
Cell cycle (oncogene)
Cell cycle (TSG)
Apoptosis regulation

TP53,"® MDM2,2 MSH,*® MLH,*® and ATM*®
TERT promoter mutations®

CCND1*? and CCNET *2

CDKN2A,*® CDKN2B,*° and CDKN1B°
MCL1,2BCL2A1,? and BCL2L 12

#Activating mutation or amplification.
®|nactivating mutation or deletion.

°Both activating and inactivating genomic events observed.

dEffect of mutations on protein function unknown.

Eg high frequency of DNA
methylation associated
mutations in hematopoietic
malignancies:

DNMT3A mutations are
found in:

AML (30%)
Myeloproliferative neoplasia
(MPN) (7-15%)
Myelodysplastic syndrome
(MDS) (8%)

TET2 is frequently mutated in
myeloid disease:

AML (7-23%),

Chronic myelomonocytic
leukemia (CMML) (50%),
MDS (10-20%)

IDH1/2 mutations found in:
AML (16-19%),

MPN (2-9%)

MDS (3%)



Many Novel Cancer Genes are Involved in
Chromatin Functions

Both gain and loss of
function found

Already useful for
classifying specific tumors!

Affected genes/cell
functions still need to be

understood...
(Cours IV +V)

Targeted therapy already

underway
(Cours VI)

E. Heard, 2016 Shen et al, Cell 2013

H3F3A(K27
H3F3A(G34
H3

HIST;

HIST1H1C
HISTIHIE
HIST1H4B

CREBBP

ARID1A
ARID1B

0%

W Gain of function

30% 50%+

W . oss of function

/ Translocation

O Copy number

=
o
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&
g
e
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DNA
methylation
writers

& erasers

Histones

Histone
writers &
complexes

Erasers

Readers
See also: “dbEM: A database
of epigenetic modifiers
curated from cancerous and
normal genomes”. Nanda et
al, Scientific Reports 2016

Chromatin
remodelers

Insulator
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Specific Histone Variants & Modifications

Histone = Number of Cell-cycle Mutation and expression Tumorigenic consequences
gene copies expression pattern

H2AX 1 RI Reduced expression Increased cancer progression in
p53-knockout mice
H2A.Z 2 RI Over-expression; oncogene  Numerous cancers
MacroH2A 2 Possibly Rl Reduced expression; Melanoma and other cancers
tumour suppressor
H3.1 10 RD K27Min H3.1B Adult and paediatric gliomas,

including GBMs and DIPGs,
respectively

H3.3 2 RD andRI K27M, G34R and G34V in Adult and paediatric gliomas,
H3.3A including GBMs and DIPGs,
respectively
K36Min H3.3B Chondroblastoma

G34W and G34L in H3.3A Giant cell tumours in bone

CENP-A 1 RI Over-expression; oncogene  Numerous cancers

From Maze et al, NRG, 2014

24 15 26 27 28 29
HistoneH3: A A R 3 a

=

H3.3 Lys 27-to-methionine (K27M)
mutation in one of two alleles leads to
very specific gliomas. This mutation
reprograms epigenetic landscape and
gene expression: see genome wide loss
in H3K27me3 but specific aberrant
enrichment at several hundred genes.

This may drive tumorigenesis.
Chan et al, Genes Dev , 2013

K27

| 24 25 26 27 28 29 24 25 26 27 28 29
HistoneM3.3: A A R 8 2 and A A R[] = A

‘ PRCZ ]
/// K27
V4

inhibited

KT
g e




Chromatin remodeling proteins, Histone
Modifiers and DNA Methyltransferases/demethylases

o cd

g K9 K27 h

7o

Ka K36 Nucleosome
CH, H3
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Compacted chromatin

E. Heard, 2016



IDH1/2 mutations inhibit Tet2 (and other enzymes)
and affect DNA demethylation

(EYI
Citrate \ 3
( TCA Cycle
Isocitrate

@u-KG/

IDH mutants no longer
produce o-ketoglutarate: a-KG

essential for enzymatic :
actiity of TETs, HMTases, Cancer £
and KDMs @ |

Instead theY produce the (B) ] {C) : Hypermethylation of CGl and shores
oncometabolite: ;

2-Hydroxyglutarate 2HG

| 1

Y { Hypermethylation of enhancers
CH3 CHS CHS CHy CH, Exon—Intron boundaries
’ 8- >
£
Cl M P E;i:.-"'f"e"'l'l!!ll Tytosne PO Cas g e -\hi/ ...........
égﬁc

Balance of de novo DNA methyltransferase and DNA demethylase seems to be critical .. .

Absence of either one leads to widespread changes in the epigenome, .
its overall organisation and at gene regulatory elements and repeats... ES}RLAN%E

1530

E. Heard, 2016 (More next week!)



More Discoveries from Cancer Genomes

Nucleosome
(Remodelling and
positioning)
» SNF5
Histone 3 — * ARID1A
(Modifications DNA methylation * PBRM1
and variants) e TET2
e MLL * IDH1 and IDH2
e EZH2 . DNMTBA
e UTX

\
P IPRPYT W?W? e

Deacetylated Acetylation
= b Jf 'l =
Closed promoter chromatin Loosening of chromatin

as seen in CDKN2A and VHL

Enhancer Insulator

Bylin and Jones, 2011

_1C]
@

, SmC blocks
CTCF binding

LMR
variable
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anticorrelated
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5mC alters

G°"° bOdY splicing
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Cancer genomes and the epigenomes

* Mutation of
epigenetic regulators

* Cis-sequence effects
on epigenetic state

GENOME

* Chromosomal aberrations * Long-range hypomethylation

* 5mC deamination

¢ Chromatin effects on
mutation
& recombination

= Epigenetic silencing , P cing
of DNA repair genes 4 >

e Copy number changes

* Focal hypermethylation s

- = Epigenetic activation

Deregulating cellular energetics Evading growth suppressors

T ST T JTT o AT ST AT 4

Resisting cell death Avoiding immune destruction

Genome instability & mutation Epigenomic disruption

Inducing angiogenesis Enabling replicative immortality

Activating invasion & metastasis Tumor-promoting inflammation

EGE

DE FRANCE
1530

Sustaining proliferative signaling

E. Heard, 2016



CHA

E EPIGENETIQUE ET

CMOIRE CELLULA

"Controle épigénétique des genes et des génomes

"Epigenetic control of genes and genomes 1n cancer

E. Heard, 2016

Annee 2015-2016 :

“Epigénctique et

Cancer”

14 mars, 2016

Cours 111

dans le cancer »
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