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Summary of Last Week:
Chromatin memory: PcG and trxG protein complexes

- Polycomb and Trithorax proteins maintain developmental decisions & ensure transitions

- Roles of PcG proteins in maintenance of developmentally or environmentally programmed
expression states (X inactivation, vernalization)

- Mechanisms of PcG and trxG transmission during DNA replication and mitosis

- Aberrant PcG reprogramming can leads to inter-generational transmission...
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Chromatin: the physiological template of the genome
and as a carrier of cellular memory
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e Chromatin acts as an epigenetic barrier
e Chromatin memory can be dynamic (plasticity versus stability)
e Chromatin states are established and reprogrammed during development
e Is all chromatin memory erased at every generation?
If not, which epigenetic marks can be transmitted across generations?
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Chromatin inheritance and reprogramming during

development

» Prepare for development (epigenesis)

> Preserve some epigenetic marks
(parental imprints), erase others

Germ Line Reprogramming
 undo somatic program and
epigenetic “accidents”

* set up germ line program

> Prepare for the next generation

> Erase epigenetic history (both
programmed and accidental)

Adapted from Cantone and Fisher, 2013
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Zygotic Reprogramming
» undo gamete programs
* set up totipotency
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Chromatin inheritance and Zygotic Reprogramming

The germ cells are highly differentiated with very specialised chromatin states
that must be reprogrammed in preparation for totipotency
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Spermatogenesis involves dynamic chromatin changes to package,
protect (and mark?) the genome
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Core histones:
- H2A, H2B, H3, H4

Unstable nuclecsomes:

- Histone variants
= Histone

hyperacetylation

Transition proteins
wrap the DNA

Protamines tightly pack
DNA. Histones left only
at some areas of the
genome.

Residual Nucleosomes
Where are they?

What histone variants are they made of?
Do they play any role in development?
Do they resist the massive
reprogramming that occurs after
fertilisation enabling tabula rasa
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Chromatin inheritance and Zygotic Reprogramming

_ At fertilization the sperm genome is largely
Spermatogenesis « - .
repackaged” with maternal histones

Highly packaged paternal
genome: DNA + protamines
(1-15% histones; small amount of
RNA; other factors?)

Remarkably, the few paternal nucleosomes may
resist this dramatic remodeling and potentially

h carry epigenetic information?
(next week COURS V)
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Initial parental chromatin asymmetry followed by dynamic changes in
early pre-implantation development
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Fertilization triggers massive reorganization
of the paternal and maternal chromatin
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Setting up new chromatin states?

Constitutive Heterochromatin

Importance of the H3.3 Histone variant and expression of repeat (satellite) sequences

Germinal vesicle oocyte /ygote 2-cell stage 4-cell stage

At fertilzation, maternal genome is associated with H3K9me3
Paternal genome lacks this — establish constitutive heterochromatm state de novo..."
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Chromatin factors are critical for reorganizing the paternal and maternal
epigenomes & preparing the zygotic genome for transcription

@ fertilization @ PN1 @ PN2/3
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- Maternal PRC1 factors Ringl and Rnf2 required for early embryonic development beyond the two-
cell stage (Posfai et al, 2012)

» Maternal histone variants TH2A/TH2B required for paternal genome activation, which accompanies
H3K4me3 and DNA demethylation (Shinagawa et al, 2013)

* Maternal MII2 (TrxG) required for the acquisition and maintenance of H3K4 methylation in the
zygote and for normal embyonic gene activation (Andreu-Vieyra et al, 2010)

* Maternal PRC2-mediated H3.3 lys27me has a role in remodeling heterochromatin after fertilization

- Incorporation of H3.3 into paternal pericentric heterochromatin is important for the initial establishment of
pericentromeric heterochromatin through lysine 27. (Akiyama, Suzuki, Matsuda, & Aoki, 2011; Santenard et al., 2010).

- Mutation of Histone H3.3 lysine K27 to alanine results in a missegregation of chromosomes, developmental arrest and
mislocalization of HP1. Same mutation in H3.1 — no effect on HP1 localization or development. (Santenard et al., 2010).



MII2 (TrxG) 1s required for the acquisition and maintenance of H3K4
methylation in the zygote and for normal embryonic gene activation
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Establishing and maintaining early lineage decisions during
Mouse development

Totipotency in the mouse embryo up to ~4-cell stage

Egg cylinder

Late blastocyst
Epiblast Primitive
endoderm

Early blastocyst

Zygote 2 cell 4 cell
{©
O X0

* Progressive restriction of cellular plasticity from 4-cell stage

* Positional cues start to play a role at ~8-16 cell morula stage:
-inner cells tend to form inner cell mass (epiblast = soma + germ line; primitive endoderm)
embryo-proper  extra-embryonic
pluripotent ES Cells
-outer cells tend to form trophectoderm TE (extra-embryonic tissues)

» Key transcription factors are essential to determine cell fate and establish cell lineages of the
early embryo — chromatin factors are also important (eg histone modifiers CARMI1, SETDBI1,
PRC2 etc) to impose permissive (or non-permissive) environment for cell fate, and to predispose
a cell towards a particular lineage.

1 « Chromatin marks and DNA methylation also progressively lock in active and inactive states



Establishing and maintaining early lineage decisions during
Mouse development
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e First, permissive chromatin states for lineage determination are established by histone
modifications in a tight interplay with transcriptional regulators, including OCT4, NANOG,
SOX2, SALL4 as well as TEAD4, CDX2 and EOMES.

* Once lineages have been specified, DNA methylation of key loci, eg EIf5 and Stella, is then
required to restrict their differentiation potential and to establish lineage-committed cell
g populations, the fate allocation of which is stably inherited by all descendants



Multiple chromatin factors required for the establishment and
maintenance of the extra-embryonic lineages
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Developmental phenotypes due to mutation of chromatin modifiers :
many have one or more roles in development

Maternally ES Cell

tube defects; embryonic lethality at E14.5-E18.5

Modifier Function Mutant Phenotype Inherited  Derivation  Reference
Histone Modifications
Glp/Ehmt1  HMTase Severe growth retardation and lethality at E9.5; ND yes Tachibana
reduction of H3KSme1 and H3K9me2 in embryos et al. (2005)
G9a/Ehmt2 HMTase Loss of H3K9 methylation in euchromatin; yes yes Tachibana
developmental and growth arrest at E8.5 et al. (2002)
Eset/ HMTase Peri-implantation lethality (between E3.5 and E5.5); yes no Dodge
SETDB1 defects in ICM outgrowth et al. (2004
H3K9me = @009
Suv39ht HMTase Double knockout shows loss of H3K9 methylation ND yes Peters
pathways  suvagh2 in heterochromatin; polyploidy in MEF cells; et al. (2001)
chromosome pairing defects during
spermatogenesis; male sterility and death of some
double-mutant embryos at E14.5
Ezh2/ HMTase Growth defect of the primitive ectoderm; yes no O’Carroll
Enx-1 PRC2 peri-implantation lethality et al. (2001)
complex
Eed PRC2/3 Defective gastrulation; failure to maintain yes yes Shumacher
H3K27me complex inactive X in trophoblast cells et al. (1996)
pathways Suz12 PRC2/3 Early postimplantation lethality; gastrulation yes ND Pasini
complex defects et al. (2004)
YY1 PRC2/3 Defects in epiblast cell growth/survival; yes no Donohoe
interaction peri-implantation lethality et al. (1999)
Ring1b/ Ubiquitin Gastrulation defects; lethality by E9.5 yes ES Voncken
Rnf2 ligase PRC1 viable et al. (2003)
complex
DNA Methylation
DNA Dnmt1 DNA MTase Genome-wide demethylation; developmental yes yes Li et al.
arrest at E8.5 (1992)
me thy lation pnmtsa DNA MTase Malfunction of gut; spermatogenesis defects; yes yes Okano
p athw ays postnatal lethality (~4 weeks of age) et al. (1999)
Dnmt3b DNA MTase Demethylation of minor satellite DNA; mild neural yes yes Okano

et al. (1999)



Chromatin: enabling developmental transitions and
memorising activity states?
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Chromatin: enabling developmental transitions and
memorising activity states — balancing acts

Commitment Differentiation

©®@ > > @ - > «@w

pluripotent cell progenitor cell differentiated cell
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M
o Me 2 removal of individual repressive
OFF lineage Me ] 2 marks tolerable for silencing
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Bivalent state? [
OFF

H3K27me+H3K4me OFF

PcG proteins keep genes off in tissues where they should not normally be expressed.
TrxG complexes with histone demethylases, together with chromatin remodeling complexes
counteract PcG, to activate genes (in collaboration with TFs) in appropriate lineages.
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Dynamic chromatin memory during development:
removal of PRC-marked chromatin by UTX demethylase

>
H3K27me3

'y | BRG1
' Histone H: SWI/SNF
|\-"ethy|d1ed ‘v z."r roners uTx mpbx
lysine 27-* & :;'i s TEBXS C
SRF
NKX2-5
~ H3K4me3 GATA4
lical domai
Core cardiac
Unigque domain transcription factors
Catalytic domain \ 1
jsine BRG1
SWI/SNF .-
. . Sy TBX5
Both the catalytic domain (blue) complex  “gpr
and the unique domain (green) fit "‘"-——-*" NKX2-5

histone H3 (yellow) as in the ol

unique  lock-and-key model. /@K
domain
Dr.Shigeyuki Yokoyama (RIKEN) X\ >\Y

cardiac-specific genes

Helical
domain

10987654321
5’ -TCTCACACCTT-3'
3' -GAGTGTGGAAT-5'

Stirnimann et al, 2010

During cardiac development the UTX and BRG1 complexes are guided by the core cardiac
Transcription Factors NKX2-5, TBXS, GATA4 and SRF, to promote specific gene activation of ;
cardiac-specific genes (demethylation of H3K27me2/3 at promoter regions) 5



Dynamic chromatin memory during development
and 1n response to signals such as inflammation
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Stepwise recruiting model in which a H3K4 methyltransferase core complex devoid of
H3K27 demethylase activity is recruited first and subsequently exchanged by UTX/
JMJD3- containing Mll complexes?

Lee, M. G., Villa R., Trojer P., Norman J., Yan K. P., Reinberg D., Di Croce L. and Shiekhattar R., Demethylation of H3K27 regulates Polycomb recruitment and H2A

ubiquitination, Science 2007.

Dou, Y., Milne T. A., Ruthenburg A.J., Lee S., Lee J. W., Verdine G. L., Allis C. D. and Roeder R. G., Regulation of MLL1 H3K4 methyltransferase activity by its core

components, Nat Struct Mol Biol 13 (8), 713-719, 2006.
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Dynamic chromatin memory following vernalisation

Cold-induced Polycomb repression of the FLC locus (a repressor of flowering)
A strategy to allow proper coordination of plant development and appropriate flowering time

Mutant Partial resetting
| i—— .
Transmission to next
eneration...?
o, seneratl

FLC levels

e ELF6 has H3K27me3 demethylase activity — a single nucleotide mutation at a highly
conserved amino-acid reduced ELF6 enzymatic activity

* In next generation of mutant plants, H3K27me3 levels at the FLC locus stayed higher, & FLC
expression remained lower, than in the wild type.

 Early flowering phenotype was stable for at least three generations following vernalisation but
was not enhanced by a second vernalisation treatment in later generations.

Role for H3K27 demethylation in the reprogramming of epigenetic states in embryos, to
prevent transgenerational inheritance of ‘“‘acquired traits”



Chromatin memory across generations?

Inter and trans-generational memory:

Can chromatin retain any memory
(somatic, germ cell or environmental)
and resist developmental and germ line
reprogramming?
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In worms, H3K27me3 can be transmitted in the absence of PRC2
through cell division and even across generations

A Paternal: PRC2 + /H3K27me + B Paternal: PRC2 - /H3K27me
Maternal: PRC2 -/H3K27me - Maternal:

g g g J
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Inheritance and transmission of H3K27me3 in C.

elegans. The 1-cell embryo (left) shows H3K27me3 v -
(green) inherited on the sperm chromosomes but not Larval /%
on the oocyte chromosomes (pink) contributed by a Later ‘ a* Germline  [©.F )
PRC2 mutant mother. Errlrb.r\./omc U
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The 2-cell embryo (right) shows transmission of

H3K27me3 on the sperm-derived chromosomes in Adu'_t . A
each nucleus. Garne i

Gaydos et al, 2014 = H3K27m3-marked chromatin

R = H3K27m3 absent from chromatin

H3K27me3 Persistence and Pattern Maintenance in C. elegans Embryos and Germline Gametes
originating from germlines with (green-filled) or without (red-filled) MES-3 activity, an essential
E. Heard, February 23rd, 2015 PRC2 component in C..elegans



Chromatin memory across generations?

* In plants, unlike animals, there is no early separation of germline and soma thus epigenetic marks
acquired throughout their lifetime can be included in the gametes e.g. Peloric (Lcyc CpG me).

» Most plant developmental genes involve non-CpG DNA methylation which requires a
continuous remethylation cue and as such is continually reprogrammed

 Transposable elements (CpG methylation) are probably key targets for trans-generational effects
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Chromatin memory across generations?

Mammals: chromatin state are reprogrammed 1n the germ line (somatic marks, inactive
X, imprints) and during early development (after fertilisation and in the blastocyst)

Most eplgenetlc marks are erased at each generation. Except a few....?

Maintenance at some IAP
elements and rare single-copy loci
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Massive Reprogramming occurs in the Mammalian
Germ Line

PGC development

E7.5 E8.5 E10.5 Ell.5 E12.5 E13.5

1C specificatio initial chr atin chs og - .
PGC specification initial chromatin changes genital ridge
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SmC
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increase in nuclear volume

PAR -
XRCC1(bound) T
HI ¢ HHHHHHH
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Chromatin memory across generations?

Mammals: chromatin state are reprogrammed 1n the germ line (somatic marks, inactive
X, imprints) and during early development (after fertilisation and in the blastocyst)

Most epigenetic marks are erased at each generation. Except a few....?

—€— Global demethylation
Active and passive (paternal)
Passive (maternal)

DNA METHYLATION

Resistance of retrotransposons to
reprogramming may lead to
trans-generational epigenetic
effects in mammals?

-
e ‘s‘ Imprint establishment
oba N male germ line
“= remethylation s, ( - 7 J

Maintenance at some IAP
elements and rare single-copy loci

-------------------------

-
by ¢ Global demethylation
Ne and imprint erasure

remethylation
‘\ in migrating PGCs

\‘ Imprint establishment
Imprint erasure“s {female geon line)
-

Ectopic agouti expression

- A
B ]

outi

Developmental agouti expression n
e i

a

outi

Epigenetic control of transposons is critical in the germ line
(seminar D. Bourc’his)



Chromatin memory across generations?

Some organisms transmit epigenetic states
between generations (plants, worms, flies...)
(future course!)

Evidence in mammals that chromatin may retain
l[imited memory after developmental and germ line
reprogramming
=> Any contribution to phenotypic variation...?

Can changes in environmental conditions
such as nutrition, exposure to environmental pollutants
(e.g., endocrine disruptors, smoking)
or even parental care during early postnatal life
 induce chromatin changes
e affect development, physiology and fitness of subsequent
generations? BE FRANCE

1530
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Can the environment influence epigenomes and phenotypes
and can this then be transmitted to future generations?

= R R Ty E i RS AN AL UMNANG 5
- s v 2

~
oy .
R

Are we enslaved to our genes that we get

from our parents, or can we break free with
epigenetic change?

Can we influence our epigenomes and
those of our descendents?

Hauke Dressler/LOOK/-Getty Images

Is heredity “nothing but stored environment”?

L. Burbank

E. Heard, February 23rd, 2015




Chromatin modifications can occur all through life

* Living organisms and individual cells continuously adapt to changes in their environment.
* Changes are particularly sensitive to fluctuations in the availability of energy substrates.

e Cellular transcriptional machinery anﬁi its chromatin-associated proteins integrate environmental inputs

to mediate homeostatic responses through' gene regula

men
parental chromatin
marks required for

+) genamic imprinting
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| Egg ¢
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Chromatin modifications can occur all through life

* Living organisms and individual cells continuously adapt to changes in their environment.

* Changes are particularly sensitive to fluctuations in the availability of energy substrates.

* Cellular transcriptional machinery and its chromatin-associated proteins integrate environmental inputs
to mediate homeostatic responses through' gene regulation

ment o
Nutrition or metabolism parental chromatin

marks required for

{} genomic imprinting
g

Metabolites
SAM, FAD, NAD’, acetyl-CoA,
B-OHB, ATP, O-GIcNAc

Co-factors or . -
modulators of Zygote
I 5
onzymatic aciviy Active genome-wide

demethylation of

s paternal pronucleus
Writers Erasers
DNMTs, HMTs, KATs, TETs, KDMs, HDACs,
kinases, OGT phosphatases, OGA

Attachment {} Removal J Embryo

Somatic tissues
— !r g Changes in chromatin
.\ "—[?r H tat e . \  associated with loss of
- omeostatic £ 2 ® 1  pluripotency, lineage
transcriptional P

restriction and cell
differentiation

Gut and Verdin, Nature 2013 response

FETTTaarn enviToTmTe TIITOETTCOE

Can nutr1t10nal stress- induced chromatin changes be
inter-generationally inherited?

Is chromatin involved?
NEXT WEEK
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Can the environment influence chromatin states and phenotypes and
can this then be transmitted to future generations?

Can the environment induce germ line heritable epialleles (inter- or trans)generational)
- Very few well-controlled examples in plants or mammals
- Some recent examples, for example in Drosophila, C. elegans

Can the environment influence the propagation across generations of pre-existing
epialleles?

Substantial evidence for Inter-generational effects
Less evidence for Transgenerational effects (>F3)
Proof of trans-generational inheritance?

 Rule out direct exposure: epigenetic effect must pass
through sufficient generations (4™ generation from
mother, 3™ generation via father)

— Reproductive cells - 3rd generation

 Rule out the possibility of DNA sequence changes
* Rule out the possibility of behavioral/cultural effects

—_—

——— Mother - 1st generation

/ Fetus - 2nd generation

—
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CHAIRE EPIGENETIQUE ET MEMOIRE CELLULAIRE

Annéce 2014-2015 :
“Chromatine et Mémoire cellulaire”

2 mars, 2015

Cours V
“Stabilité versus plasticité chromatinienne en réponse aux
stress”™

E. Heard, February 23rd, 2015



