Changements de l'hydrologie et de la circulation: l'exemple de l'Atlantique Nord

H. Mercier

Laboratoire de Physique des Océans

Le transport de chaleur océanique

(positif vers le nord)

Trenberth and Caron (2001)

Ganachaud and Wunsch (2000)

Transport méridien de chaleur (Talley, 2003)

INTERGOVERNMENTAL PANEL ON CLIMATE CHANGE

Superposition d'un mode interne thermohalin à la circulation forcée par le vent (Stommel, 1958)

The future of the ocean conveyor belt

Slowing of the Atlantic meridional overturning circulation at 25° N

Harry L. Bryden¹, Hannah R. Longworth¹ & Stuart A. Cunningham¹

Nature (2005)

Figure 1 | **Station positions for transatlantic hydrographic sections taken in 1957, 1981, 1992, 1998 and 2004.** The 1957 and 1992 sections each went zonally along 24.5° N from the African coast to the Bahama Islands. Because of diplomatic clearance issues, the 1981, 1998 and 2004 sections angled

southwestward from the African coast at about 28° N to join the 24.5° N section at about 23° W. The 1998 and 2004 sections angled northwestward at about 73° W to finish the section along 26.5° N.

Erreur ~ 6 Sv 1 Sv $10^6 \text{ m}^3 \text{ s}^{-1}$

Variabilité de la convection profonde en mer du Labrador. Yashayaev et al. (2007)

Yashayaev and Loder (2009)

L'oscillation Nord Atlantique

Sarafanov 2009

Towards a MOC index at subpolar latitudes from sustained measurements ?

Circulation scheme across and North of the A25-OVIDE section

L'observation du champ de densité ne donne accès qu'au cisaillement vertical des vitesses géostrophiques perpendiculaires aux stations hydrologiques

Velocity field for OVIDE 2010

Before inversion

Method for absolute transport estimation

The absolute transports perpendicular to the section were estimated *for the month of the cruise* using a geostrophic inverse model that combines hydrography and ship-mounted ADCP measurements under an overall mass balance constraint (Lherminier et al. 2007)

SADCP data

SADCP data are quite reliable:

Pair 20 ADCP constraint: + 0.6 ± 2.2 cm/s between 198 et 406m

Velocity field for OVIDE 2010

Before inversion

After inversion

S-ADCP versus Altimetry constraints

Altimetry constraints

S-ADCP constraints

Gourcuff et al. (JAOT, 2011)

Main components of the $MOC\sigma$

Comparison with transports from a current meter array in the EGIC 0 Ovide 04 Ovide 06 Ovide 02 Mooorings 07/04 -5 Mooorings 05/06 Daniault et al. (2011) -10 Sverdrup 000 OVIDE -15 -200 AU HILL THIS -20 -25 59°N 43°W 42°W 41°W 40°W -3000 -2500 -2000 -1500 -1000 -500 0 -30 20 80 120 40 60 100 0 km

MOC_{σ} transport variability

A monthly MOC index from altimetry and Argo

• Geostrophic velocities referenced to the surface are computed from the ISAS mapped Argo T, S fields (F. Gaillard, LPO)

• Absolute surface velocities are from the AVISO mapped altimetry products

• The MOC index is the transport above $\sigma_1 = 32.15$ (available every month)

A monthly MOC index from altimetry and Argo

A MOC index from altimetry only

Linear trend : decline of 2 Sv since the mid 1990's

Relation avec la variabilité de la circulation de surface ?

Adapted from Hakkinen and Rhines (2004)

Main components of the $MOC\sigma$

MOC_{σ} and heat transport variability

Greenland-to-Portugal accumulated transport

	ΜΟϹσ	HF	HF _{MOC}	HFiso
4x97	18.5	0.69	0.64	0.05
ov02	16.2	0.44	0.41	0.03
ov04	16.4	0.50	0.42	0.08
ov06	11.2	0.29	0.33	-0.04
ov08	14.6	0.47	0.42	0.04
ov10	16.8	0.58	0.51	0.07
MOC in Sv; error ~ 2 Sv				
HF in PW; error ~ 0.05 PW				
< HF > = 0.45 PW				

Evolution du contenu thermique au nord de la section OVIDE

(a) SPG

De Boisséson et al. (2011), Hatun et al. (2005)

Evolution du contenu thermique au nord de la section OVIDE

 - L'advection des eaux d'origine subtropicale domine celle des eaux subpolaires en période NAO-

-Les pertes de chaleur du gyre subpolaire plus faible en période NAO – qu'en période NAO +

de Boisséson et al. (2011) Desbruyères et al. (2011)

Conclusions

- A decomposition based on in situ observations, allowed the derivation of a MOCσ index from Argo and Altimetry, compatible with hydrographic estimates and varying in the range 12-23 Sv. An energetic low-frequency variability (~ 8-9 years) is evidenced from the 1993-2009 MOC index (altimetry only). Useful benchmark for numerical models.
- A MOC decrease of 2Sv evidenced between 1995-2009 might be linked to NAO (decrease in convection intensity and surface circulation). Will it propagate southward ?
- What are the consequences in term of heat content variability North of Ovide Section ? Does the Labrador Sea matter ?