Chaire d'innovation technologique Liliane Bettencourt

Mécanismes d'allocation des ressources humaines et financières

Elias Zerhouni

21 février 2011

NIH: A Vision of Hope

"Scientific progress is one essential key to our security as a nation, to our better health, to more jobs, to higher standard of living, and to our cultural progress."

Science, The Endless Frontier.... (1945)

Vannevar Bush (1890 –1974)

NIH Mission

Uncover new knowledge that leads to better health for everyone by:

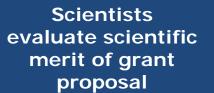
Conducting research in its own laboratories

Supporting research of non-Federal scientists in universities, medical schools, hospitals, and research institutions throughout United States and overseas

Help translate research into medical innovations

Helping train research investigators

Fostering communication of medical information


Researcher

Scientific Review Panel

Program Office

Main contact for applicant Helps interpret review results

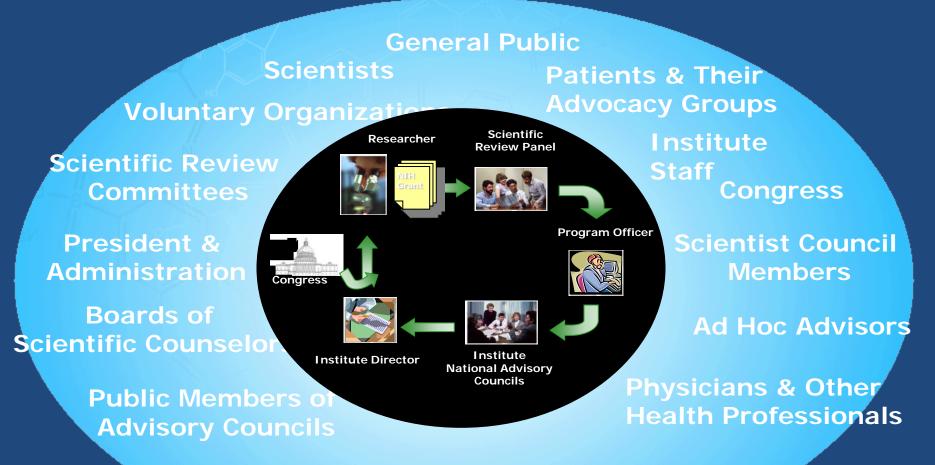
Initiates grant proposal:

- New project
- Continuing project

Congress

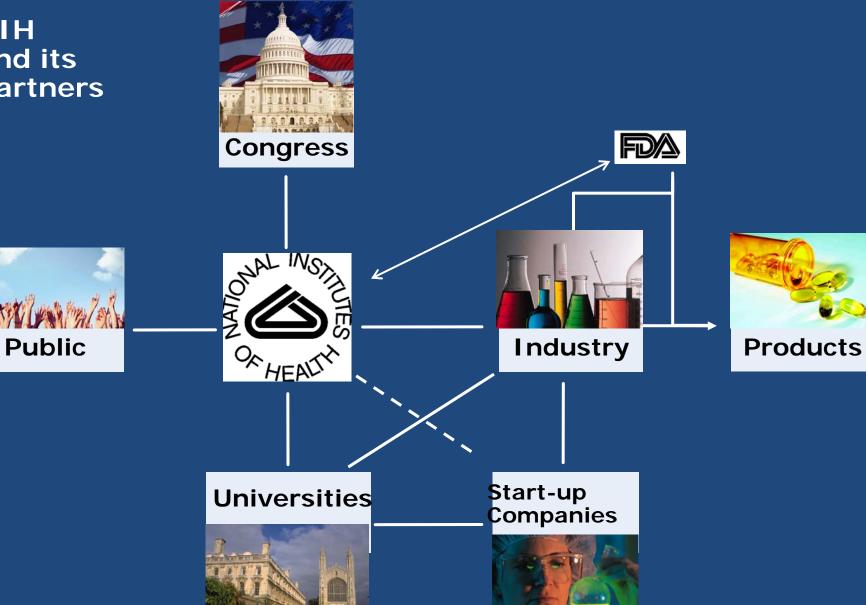
Institute
National Advisory
Councils

Assess programs
Approve applications
Public members

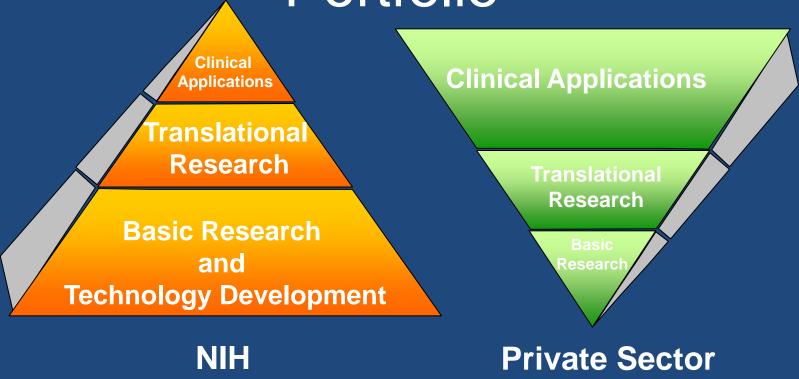

Important Characterisitics

- All grants are awarded to the principal investigator in name.
- In addition to the grant, institutions receive indirect costs (from 40 to 70% of the grant value for buildings, utilities and administration)
- The grants are fully transferable if the principal investigator goes to another institution
- Consequence: institutions compete for funded scientists by providing them a supporting environment

The Cornerstones of NIH


- World Class Peer-review Process (Congressionally mandated)
 - Independent- Conducted by outside reviewers
 - Competitive-
- Scientific and Public Advisory Structure
 - Each institute has a statutory council 2/3 scientists and 1/3 public representatives
 - Director NIH is advised by 2 separate committees: Council of public representatives, and the Advisory Council to the Director

Setting Research Priorities: Every Voice Counts



Professional Societies Industry Scientists
Industry Managers

NIH and its **Partners**

Balanced National Biomedical Research Portfolio

OTHER MECHANISMS

- The National Laboratories model:
 - CNRS
 - The US national laboratory system
- The academy model
 - Russian and Chinese academies
- The society model:
 - The Max Planck society, the Fraunhoffer
- The National Research Council model
- Government driven research programs

Government driven research programs

- All Governments use direct incentives to support research of national interest
- Defined national priorities: Examples
 - Nanotechnologies
 - New Energy
 - Material Sciences
 - Nuclear Engineering- ITER
- EU-Framework program

The Max Planck Society

- 1948: Successor to the Kaiser Wilhelm Society
- Funded through States and Federal government with core budget but with autonomy.
- Principles: Outstanding researchers in critical fields of Basic research
- Develop new fields not yet mainstream, and not funded by others
- interdisciplinary research
- Freedom to scientists but rigorous evaluation insuring highest sustained quality

CNRS

- Founded in 1939 by governmental decree, CNRS has the following missions:
- To evaluate and carry out all research capable of advancing knowledge and bringing social, cultural, and economic benefits for society.
- To contribute to the application and promotion of research results.
- To develop scientific information.
- To support research training.
- To participate in the analysis of the national and international scientific climate and its potential for evolution in order to develop a national policy.

The Russian Academy of Sciences

- The Academy was founded in Saint Petersburg by Peter the Great, inspired and advised by Gottfried Leibniz and implemented in the Senate decree of January 28, 1724
- The Russian Academy of Sciences consists of a network of scientific research institutes from across the Russian Federation as well as auxiliary scientific and social units like libraries, publishers and hospitals.
- The Academy is now incorporated as a civil, self-governed, non-commercial organization
- chartered by the Government of Russia. It combines members of RAS and scientists employed by institutions.

The National Research Councils

- Examples: UK, Sweden
 - Usually dedicated to a field of science
 - MRC in UK
 - Funding agencies mostly
 - Some councils also operate research centers
 - Mostly investigator initiated research

Characteristics

- Funding by Governments is essential
- Varying degrees of autonomy
- Combination of Targeted and Un-Targeted research
- Different modes of management and evaluation

Fundamental mechanims of resource allocation: Capital Expenditures

WHO PAYS?

- Direct pay of full capital expenses by government
- Indirect pay through Indirect costs recovery on grants

WHO OWNS?

- The government itself
- A chartered semi-autonomous entity
- An independent entity:

WHO OPERATES?

- The government itself thru functionaries
- Under a charter but employees are not functionaries
- Independent institution

OPERATING EXPENSES

- BUDGET AGREEMENTS; GRANTS IN AID OR CONTRACTS
- COMBINATION OF DIRECT RESEARCH COSTS AND INDIRECT COSTS
- THE MAJOR COSTS IS PERSONNEL COSTS
 - SCIENTISTS ARE FULL TIME EMPLOYEES OF THE FUNDING AGENCY
 - FULL TIME EMPLOYEES OF THE INSTITUTION RECEIVING THE GRANTS

SOME DATA

- HALF LIFE OF FUNDED RESEARCH PROJECTS?
 - 4 YEARS AT NIH
 - 50 percent renewed every 4 yrs
- HALF LIFE OF FUNDED RESEACH SCIENTISTS?
 - 8 years
 - Of 100 scientists about 10-15 % receive competitive funding for over 20 years
- Average duration of « creative » period for scientists
 - 17 years: publications and patent analysis
 - Need to manage careers across the life span and offer bridges from research to industry to education and back

Human resources management

- Key component of innovation system
- Core question: Are innovators given enough flexibility to explore different paths including career changes without prejudice?
 - Full Time employment systems that are not adapted tend to restrict innovation
 - Career MOBILITY between sectors seems essential for technological innovation to occur
 - Consultancy, leave of absence without loss of seniority or pension, going from education to research to business to administration

Converging Principles

- Separate funding from operating or executing science and innovation programs
- Keep accountability by independent and credible systems of evaluation
- Allow full autonomy with least administrative burden but for periods of time with full review
- Focus resources on scientists during « creative » period bt provide alternate career pathways
- Avoid rigid employment system
- Encourage interactions with educational and business sectors

FY 2005 NIH Extramural Grants by Research Institution

