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Two approaches to cuprate physics

Revel in the 
specifics

Identify the 
essentials

This talk: focus on (what I conceive 
of as) the essential behavior— 
!
superconductivity and pseudogap
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Key features of high-Tc cuprates

Mott insulating phase, giving rise (on hole but not electron 
doping) to an anomalous normal state characterized by 
important differences between zone-diagonal and zone face 
states, leading to a pseudogap unstable at lower T to a dx2-y2 
symmetry superconducting state
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The Hubbard Model

H = �
�

ij

ti�jc
†
i�cj� + U

�

i

ni�ni�

1988: P.W. Anderson said 
The 2d square-lattice Hubbard model 
captures the essential features of the 
physics of the cuprates
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2015: We have good 
reason to believe 
Anderson was correct. 
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More specifically
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We have reasonable confidence that

The 2d square-lattice Hubbard model has  
!
• momentum space differentiation 

(anisotropic scattering) 
• dx2-y2 superconductivity in a 

superconducting dome with Tc of the 
correct order of magnitude 

• a pseudogap producing many of the 
features observed in the cuprates

In the Hubbard model the pseudogap and 
superconductivity are competing phenomena
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We believe, but don’t have complete and 
convincing evidence, that the 2d Hubbard 
model lacks, at least in any strong form 
!
• CDW order (independent of spin stripes) 
• nematicity  

IMPLICATION: CDW order and nematicity are 
`epiphenomena’: things that occur, and are 
interesting, but are not fundamental to the physics 
of the cuprates
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?Why do we believe this?
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Dynamical Mean 
Field Theory 

(DMFT)A. Georges
G. Kotliar

DMFT: approximation to electron self energy

⌃(k,!) =
X

a=1...N

fa(k)⌃
a(!)

The f

a(k) determine the ‘flavor’ of DMFT

The ⌃

a(!) come from solution of auxiliary

problem plus self-consistency condition

N ! 1 recovers exact solution
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Identify interesting 
physics and 
approximations that 
express it

Two approaches 
(related; both important)

Attempt to determine 
properties of N->infinity 
solution

Approach taken 
in this talk
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There is a long story about ‘flavors’ of DMFT 
and number of approximants (N) needed

N=1: extensive entropy 
midgap states

x=

N=2,4: (over?)emphasis 
on singlet physics; PG 
just a DOS suppression

Here: present results which (we believe) are 
generic, representative of N->infinity limit
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Momentum space version of DMFT
M. H. Hettler, M. Mukherjee, M. Jarrell, and H. R. Krishnamurthy 
Phys. Rev. B 61, 12739 (2000)

tile Brillouin zone: choose N momenta Ka, draw 
an equal area patch around each one 

2 4 4* 8 161
�p(�)� �approx

p (�) =
�

a

�a(p)�a(�)

�a(p) = 1 if p is in the patch
containing Ka and is 0 otherwise

Find ⌃a from N-site

quantum impurity model

+ self consistency condition
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Obvious undesirable feature: 
Momentum-space discontinuities

!
!
My view: interpolations that might smooth out 
the discontinuities are dangerous: potential for 
introducing new (and possibly wrong) physics.  
!
But see T. Maier and T. Schulthess: DCA+ 
Phys. Rev. B 88, 115101 (2013)

Alternative (CDMFT) approach: 
break translational invariance. 
`Periodization’ needed. Kotliar, 
Tremblay. Civelli. Sakai
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Mott 
insulator

t’ =-0.15t

P. Werner, E. Gull, O. Parcollet and A. J. Millis, Phys. Rev. B 79, 045120  (2009)!
E. Gull, O. Parcollet, P. Werner, and A. J. Millis, Phys. Rev. B 80, 045120 (2009).!
Emanuel Gull, Michel Ferrero, Olivier Parcollet, Antoine Georges, Andrew J. Millis, 
Phys. Rev. B82 155101  (2010).

Phase diagram: Mott insulator separated 
from fermi liquid by pseudogap for hole but 

not electron doping
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Momentum selective phase:  
partially gapped fermi surface 

t’ =-0.15t

A

DC
BE
F

We see: gap opens in 
momentum sector C but 
not in  B
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Momentum selective phase:  
partially gapped fermi surface 

t’ =-0.15t gap opens around zone 
face
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Intermediate phase:  
partially gapped fermi surface 

t’ =-0.15t
but not along zone 
diagonal
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The pseudogap does NOT connect 
smoothly to the Mott gap

(8 sites, U=7 )

2�
Mott

⇡ 2

2�PG ! 1

as x ! 0

but

2
�

P
G
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Momentum selective phase:  
partially gapped fermi surface 

 critical point:

t’ =-0.15t

Clear separation of PG 
transition from Mott 
transition (except in 4 
site CDMFT)



Copyright A. J. Millis 2015 Columbia University

Pseudogap: marked by appearance of 
pole in  self energy (N>4)

Phys. Rev. B 82, 045104 (2010)

As far as we can tell 
(have looked down to 
T=T/80 at half filling, 
N=8) transition to PG 
state is smooth (second 
order) for 8 and 16 site 
clusters. First order 
transition found in 4-site 
CDMFT is peculiar to 
that approach.
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!
Order parameter: gap in (0,Pi) sector 

sharply defined only at T=0

A

DC
BE
F

T=0: sharp transition 
T>0: crossover

0.00 0.05 0.10 0.15 0.20
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

T

x

Crossover

Sharp T=0 
transition



Copyright A. J. Millis 2015 Columbia University

!
Order parameter: gap in (0,Pi) sector 

sharply defined only at T=0

A

DC
BE
F

T=0: sharp transition 
T>0: crossover

0.00 0.05 0.10 0.15 0.20
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

T

x

Crossover

Sharp T=0 
transition

Crossover: reasonably 
sharp change in 
physical properties.  
!
We find that the T=0 
transition is second 
order for N>4. If it 
were weakly first 
order, nothing 
important would 
change
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Pseudogap associated with enhanced 
antiferromagnetic  spin correlations
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Pseudogap associated with enhanced 
antiferromagnetic  spin correlations

These are equal-time impurity-model correlations. 
We are working on getting the real dynamical 
correlations (vertex corrections needed).
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Spin correlations at other 
wavevectors not enhanced
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No charge `nematicity’

NO enhancement of inter-patch 
density fluctuations is visible
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However,  sensitivity to breaking C4 
symmetry

Transition can happen in 
one node before the 
other=>large anisotropy

See Okamoto, Senechal, 
Civelli and Tremblay, 
arXiv:1008.5118
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Pseudogap Summary
• Intrinsic property of 2D Hubbard 

model 
• Not directly connected to Mott gap 
• Within `DCA’ theory 

– Phase transition at T=0 
– Crossover at T>0 
– Associated with pole in self 

energy 
– Associated with spin correlations 
– No obvious charge nematic 

fluctuations; coupling to 
hopping anisotropy
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Now: superconductivity
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SC in DMFT
Pioneeers: (2x2 cluster) 
!
--Lichtenstein, Katsnelson PRB 62, R9283 (2000). 
--Maier, Jarrell, Pruschke, Keller, PRL 85, 1524 (2000).

Lots of subsequent work (mainly 2x2 clusters): 
!
--S. S. Kancharla, B. Kyung, D. S én échal, M. Civelli, M. Capone, G. Kotliar and A.-
M. S. Tremblay, Phys. Rev. B 77, 184516 (2008).!
--T. A. Maier, D. Poilblanc, and D. J. Scalapino, Phys. Rev. Lett. 100, 237001 
(2008).!
--M. Civelli, M. Capone, A. Georges, K. Haule, O. Parcollet, T. D. Stanescu, and G. 
Kotliar, Phys. Rev. Lett. 100, 046402 (2008).!
--M. Civelli, Phys. Rev. Lett. 103, 136402 (2009).!
--G.Sordi,P. Śemon,K.Haule,andA.-M.S.Tremblay, Phys. Rev. Lett. 108, 216401 
(2012).!
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Large clusters: Superconductivity established
T. A. Maier, M. Jarrell, T. Schultheiss, P. Kent and 
J. White, Phys. Rev. Lett. 95, 237001 (2005) 

High T susceptibility: clusters up to N=26 at 
x=0.1 U=4t (too small for Mott phase) 

MJSKW point
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Our work: construct the sc state 
and determine some properties

• E. Gull, O. Parcollet and A. J. Millis, Phys. 
Rev. Lett. 110 216406 (2013) 

• E. Gull and A. J. Millis, Physical Review 
B86 241106 (2012). 

• Emanuel Gull, Andrew J. Millis. Phys. Rev. 
B88, 075127 (2013). 

• E. Gull and A. J. Millis,Phys. Rev. B90, 
041110 (2014). 

• E. Gull and A. J. Millis,  Physical Review 
B91, 085116 (2015). 
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Phase diagram, different clusters 
T=t/40
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N=4 a bit of an outlier. 8 and 16 differ at small U 
but have similar doping dependence at larger U

U=6.5

U=4.5

superconductivity 
only near 
insulator, cut off 
by pseudogap
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Transition temperature and gap

t~0.3eV=>Tcmax~170K
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Transition temperature and gap
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Transition temperature and gap

Superconductivity cut off by pseudogap. 
Transition is strongly first order
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Some other physical properties
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Raman scattering

Calculation

Data  
Sacuto et al 
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Temperature dependence of kinetic 
energy

Pseudogapped 
regime

Fermi liquid 
regime

This trend in KE change is observed 
in optics: Santander-Syro, Lobo, 
Bontemps arXiv:0404.2901
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Temperature dependence of kinetic 
energy

Pseudogapped 
regime

Fermi liquid 
regime
SC and PG are competing ``phases’’.  
PG reduces kinetic energy: SC weaks 
PG, allows KE magnitude to rise
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Superconductivity and the pseudogap

SC Gap smaller than PG
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Simulated ARPES Spectra 
Fermi Liquid (no pseudogap)
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Simulated ARPES Spectra 
PG regime

New states created 
inside gap. Existing 
peak moved up in 
energy

Note: ‘peak-dip-hump’ structure
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Evolution of photoemission Spectra

Fermi liquid regime
margins of pg regime

Transition regimes Pseudogap regime
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Physics of the ``hump’’

Standard interpretation: 
``shakeoff”

(!,k)

(⌦B,q)

(! �⌦B,k� q)

Leading edge of ``hump’’ is 
interpreted as a threshold for 
creating an excitation
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Mathematically

Two sources of peak in A 
!
Shakeoff: onset of structure in imaginary 
part with real part non-zero (off resonance)

A(k,!) = Im [G(k,!)] =
⌃(2)(!)

�
! � "k �⌃(1)(!)

�2
+

�
⌃(2)(!)

�2

THIS IS NOT WHAT HAPPENS 
IN THE HUBBARD MODEL

Alternative: resonance
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We find: ‘hump’ is a resonance coming from a 
zero crossing of the real part of the self

⌃(2)(!)
�
! � "k �⌃(1)(!)

�2
+

�
⌃(2)(!)

�2

’hump’ when
! �Re⌃(!) = 0
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Pairing mechanism
Distinguish normal (N) and anomalous (A) 
components of self energy. Split normal part into 
Matsubara-frequency odd and even parts

Define gap function

�(i!n) =
⌃

A(i!n)

1� ⌃N

o

(i!
n

)
!

n

=

Z
dx

⇡

�

(2)(x)

i!n � x
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In conventional superconductors

Scalapino, Schreiffer, 
Wilkins, PBR 148 263 1966  

Lead
Imaginary part of gap 
function peaked at 
frequencies of pairing 
phonons
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In the Hubbard model

All the pairing comes from low frequencies; 
most from very low frequencies

Inset: experimental estimate of pairing boson spectral 
function Dal Conte et al, Science, 335 6067 (2012)
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Can see this in raw data

Our results Civelli 09 4 site 
CDMFT. ED solver
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Can see this in raw data

Our results Civelli 09 4 site 
CDMFT. ED solver

Note: Maier, Poilblanc, Scalapino: 20% or more of pairing 
comes from high frequencies ~U. 
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Our results Civelli 09 4 site 
CDMFT. ED solver

Note: Maier, Poilblanc, Scalapino: 20% or more of pairing 
comes from high frequencies ~U. If this were right, would 
see it in our raw data

�(i!n) =
⌃

A(i!n)

1� ⌃N

o

(i!
n

)
!

n

=

Z
dx

⇡

�

(2)(x)

i!n � x
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Many years ago,  
D. J. Scalapino asked:
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Many years ago,  
D. J. Scalapino asked:

Does the two 
dimensional Hubbard 
model have 
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Many years ago,  
D. J. Scalapino asked:

Does the two 
dimensional Hubbard 
model have 

(i.e. can it  account for the 
essential aspects of the low 
energy physics of the high-Tc 
cuprates)
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The answer is YES

I hope that this talk has persuaded you that

Implication: the pseudogap and 
superconductivity are basic phenomena of 
strong correlation physics. 
!
Charge order, nematicity, etc are extra 
things ``along for the ride’
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Issues
1. We have nice numerical results—

but what is the physics?? 
2. Limit: U~7, N ~ 16 is not as good as 

we would like. 
A. Stronger coupling? 
B. Larger N—are the N=8, 16 

results really representative of 
Hubbard physics 

3. Stripes and other ordered states are 
(presently) beyond the reach of this 
approach. What is their 
importance?
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Coda: SDW order and fluctuations in Iron 
Arsenide Superconductors. 

With Abhay Pasupathy & Rafael Fernandes
NaFeAs: `stripe’ (0,Pi) order below 43K 
    `nematic’ order below 54K                

Park…Inosov PRB 86 024437
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SDW rearranges the Fermi surface

Calculations

Data:
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Quasiparticle Interference Reveals the 
Reconstruction

N. Phys. 10 225 (2014)
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Structure in QPI reveals fermi surface
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As you raise the temperature, expect 
the SDW-derived features to go away

T<TN~43K TN<T<Tnematic

Here I  show you joint DOS for simplicity.  
Full QPI calculations give the same physics

Tnematic<T
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This is not what happens
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More easily visualized as a line cut

Key Result: SDW-like features 
persist to high T, in fact up to T=2TN 
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Model 
‘Lee-Rice-Anderson’ ansatz

⌃(!,k) =
�2

! � "k+Q � i
⇠

This is broadened backscattering (no 
`coherence factors in normal state)



Copyright A. J. Millis 2015 Columbia University

Model QPI Calculations

The short ranged SDW calculations use 
the standard QPI formula but with the 
Lee-Rice-Anderson G in a simplified 3-
band approximation to the pnictide bands
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Vary correlation length

⌃(!,k) =
�2

! � "k+Q � i
⇠

To get peaks in line cuts need to keep 
Delta at approximately the T=0 value., 
have correlation length not too short.
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In other words
Data imply large amplitude, slow fluctuations  
of density wave order, persisting up to ~2x observed 
transition temperature

Paramagnetic phase has hidden structure
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Poetically
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Poetically
We used to think of the fermi sea as a 
(relatively) placid lake with modest ripples 
(RPA fluctuations). 
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(relatively) placid lake with modest ripples 
(RPA fluctuations). 
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Poetically
Pasupathy’s results suggest an alternative 
picture
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Poetically
Pasupathy’s results suggest an alternative 
picture
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Poetically
Pasupathy’s results suggest an alternative 
picture: A stormy sea with giant amplitude, 
slowly moving waves. 
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Poetically
Pasupathy’s results suggest an alternative 
picture: A stormy sea with giant amplitude, 
slowly moving waves. 

Which picture is correct. If large amplitude density wave 
fluctuations are present, how do we surf on them




