Atomic-scale Antagonism between d-Symmetry Cooper Pairs and d-Symmetry Density Waves in Underdoped Cuprates

Atomic-scale Antagonism between d-Symmetry Cooper Pairs and d-Symmetry Density Waves in Underdoped Cuprates

Electronic Structure of High-T_c Cuprates

k-Space Topology (B=0)

р

Symmetry Breaking

Blanco-Canosa *et al, Phys Rev B* 90:054513-1 (2014). Hucker *et al, Phys Rev B* 90:054514-1 (2014) 1.2

1

0.8

0.6

0.4

0.2

Interplay Pseudogap, Density Wave & Superconductivity?

Visualizing Cuprate Symmetry Breaking

SPECTROSCOPIC IMAGING STM

Rev. Sci. Inst. **70**, 1459 (1999).

Energy-resolved Visualization Real-Space Electronic Structure

Topograph

600

ADD ADD ADD ADD APPER OF THE STATE OF THE Analy Aller and a second + OPF PARE STOR PARE HADREN A THE APPENDER OF A STAND. HE ARAS STORES AND A STORES A THE CARD AND THE AND THE ADDRESS OF A COMPANY OF A CAMPANIA A PA AN AND FRANK MARK MARK MARK AND ARE A VALLAGE A CONTRACT A ANA TONY OF ALL OF A DAY OF A SURVEY AN ANA HIS THUS TONTO A PARAMAN SA TONTON & TANK 100.004 36.0044330.990 000009999 00466 00 00 O MARKER AND THE MARK MARK AND AN AR ARTHOUGH

g (r,V)

Energy-resolved *k*-Space Electronic Structure

g (q, **E)**

g (r,V)

Features of SI-STM Technique

g (q, **E)**

g (r,V)

- k-space & r-space simultaneously
- \blacktriangleright energy resolution ~ 30 μ V

- access both filled & empty states
- functions in high magnetic field

Low Energy: Bogoliubov signature of d-wave Cooper pairing

High Energy: Quasi-static Broken Symmetry States

Science 343, 393 (2013)

New SI-STM Modality: Phase Resolved Intra-unit-cell Imaging

Nature 466, 374 (2010); *NJP* 14, 053017 (2012); *J. Phys. Soc. Jpn* 82, 011005 (2011); *PNAS* 111, E3026 (2014)

New SI-STM Modality: Phase Resolved Intra-unit-cell Imaging

Information not possible from scattering probes

Nature **466**, 374 (2010); *NJP* **14**, 053017 (2012); *J. Phys. Soc. Jpn* **82**, 011005 (2011); *PNAS* **111**, E3026 (2014)

New SI-STM Modality: Phase Resolved Intra-unit-cell Imaging

 $C_{4v} \rightarrow C_{2v}$ (Nematic) :

Inversion Breaking :

Density Wave FF Symmetry : $\operatorname{Re} g(\boldsymbol{Q}_{A}) - \operatorname{Re} g(\boldsymbol{Q}_{B})$ $|\operatorname{Im} g(\boldsymbol{Q}_{A})| + |\operatorname{Im} g(\boldsymbol{Q}_{B})|$

To be described in this talk

Nature 466, 374 (2010); *NJP* 14, 053017 (2012); *J. Phys. Soc. Jpn* 82, 011005 (2011); *PNAS* 111, E3026 (2014)

FF Symmetry of Cuprate Density Wave State

Topograph

Electronic Structure

Incommensurate Q≠0: Density Wave

High-resolution Imaging Cuprate Broken-Symmetry States

 $Bi_{2.2}Sr_{1.8}$ (Ca,Dy)Cu₂O_y

High-resolution Imaging Cuprate Broken-Symmetry States

Q≠0 Trans. & Rot. Symmetry Breaking

Electronically Inequivalent Oxygen-sites within CuO₂ Unit Cell

Complex / Repeatable Patterns of IUC C₄ Breaking

$Ca_{1.88}Na_{0.12}CuO_2Cl_2$

150 mV, 4.2 K

Proposals for Cuprate *d*-Symmetry FF Density Waves

- J.-X. Li, C-Q Qu, and D.-H. Lee, *Phys Rev B* 74 184515 (2006)
- K. Seo, H.-D. Chen, J. Hu, *Phys. Rev.* B 76, 020511 (2007)
- D.M. Newnes & C.C. Tsuei, Nat. Phys. 3, 184 (2007)
- C. Honerkamp, H.C. Fu and D.-H. Lee *Phys. Rev. B* 75, 014503 (2007)
- M. Vojta and O. Rosch, *Phys. Rev. B* 77, 094504 (2008)
- M. A. Metlitski and S. Sachdev, *New J. Phys.* 12, 105007 (2010)
- T. Holder and W. Metzner, *Phys. Rev.* B 85, 165130 (2012)
- K. B. Efetov, H. Meier, and C. Pépin, *Nat. Phys.* 9, 442 (2013)
- S. Bulut, W. A. Atkinson, A. P. Kampf, *Phys. Rev. B* 88, 155132 (2013)
- S. Sachdev and R. La Placa, *Phys. Rev. Lett.* 111, 027202 (2013)
- D.-H. Lee & J.C. Davis *Proc. Nat. Acad. Sci.* 101, 17623 (2013)

CuO₂ Lattice

d-Symmetry Form Factor

d-Symmetry Form Factor Density Wave

O_y Modulates at Q_x

O_x Modulates at Q_x

 $\lambda = 2\pi/Q$

+

÷

Signature of dFF-DW

Unidirectional domains

 $O_x - O_y$

$S' = O_x + O_y$

Cuprate *d*-Symmetry FF Density Wave

Comin *et al arXiv* 1402.5415

Sublattice Phase-Resolved Electronic Structure

Sublattice Phase-Resolved Symmetry Measurements $S': (O_x(\mathbf{r})+O_y(\mathbf{r}))$ $D: (O_x(\mathbf{r})-O_y(\mathbf{r}))$

d-Symmetry FF DW Predominates

Real-space: Unidirectional *d*-Symmetry FF DW

d-Symmetry FF Density Wave & *k*-space Topology of Cuprates

Transition in *k*-space Electronic Structure

р

Evolution of Cuprate Broken-Symmetry States

Bi₂Sr₂CaCu₂O₈ *k*-space Topology from q₄

Bi₂Sr₂CaCu₂O₈ *k*-space Topology from q₄

 $k_{F} = q_{4}/2$

Bi₂Sr₂CaCu₂O₈ *k*-space Topology from q₄

Abrupt Transition in $Bi_2Sr_2CaCu_2O_8k$ -space Topology at $p=19\pm1\%$

Science 344, 612 (2014)

Coincides with disappearance of d-symmetry FF Effects at $\sim 19\%$

Simultaneous Symmetry & *k*-space Topology Transitions

Microscopic Electronic Structure of Cuprate *d*-Symmetry FF Density Wave

Mechanism of Cuprate d-Symmetry FF DW

PHYSICAL REVIEW B 90, 245136 (2014)

Density-wave instabilities of fractionalized Fermi liquids

Debanjan Chowdhury¹ and Subir Sachdev^{1,2} ¹Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA ²Perimeter Institute of Theoretical Physics, Waterloo, Ontario, Canada N2L 2Y5

PHYSICAL REVIEW X 4, 031017 (2014)

Amperean Pairing and the Pseudogap Phase of Cuprate Superconductors

Patrick A. Lee" Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA (Received 17 April 2014; published 29 July 2014)

Phys. Rev. B 90, 195207 (2014)

Pseudo-gap, charge order and pairing density wave at the hot spots in cuprate superconductors

C. Pépin¹, V. S. de Carvalho^{1,2}, T. Kloss³ and X. Montiel³ ¹IPhT, L'Orme des Merisiers, CEA-Saclay, 91191 Gif-sur-Yvette, France ²Instituto de Física, Universidade Federal de Goiás, 74.001-970, Goiânia-GO, Brazil and ³International Institute of Physics, UFRN, Av. Odilon Gomes de Lima 1722, 59078-400 Natal, Brazil

NJP 17, 13025 (2015) Charge order in the pseudogap phase of cuprate superconductors

W A Atkinson¹, A P Kampf² and S Bulut^{1,2}

- 1 Department of Physics and Astronomy, Trent University, Peterborough, Ontario K9J 7B8, Canada
- ² Theoretical Physics III, Center for Electronic Correlations and Magnetism, Institute of Physics, University of Augsburg, D-86135 Augsburg, Germany

Mechanism of Cuprate d-Symmetry FF DW

arxiv 1501.07287

Co-existence of charge-density-wave and pair-density-wave orders in underdoped cuprates

Yuxuan Wang,¹ Daniel F. Agterberg,² and Andrey Chubukov³

¹Department of Physics, University of Wisconsin, Madison, WI 53706, USA
²Department of Physics, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, USA
³William I. Fine Theoretical Physics Institute, and School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455, USA

arxiv 1408.6592

Charge Order Instability in Doped Resonating Valence Bond State and Magnetic Orbits from Reconstructed Fermi Surface in Underdoped Cuprates: A Phenomenological Synthesis

Long Zhang¹ and Jia-Wei Mei²

¹Institute for Advanced Study, Tsinghua University, Beijing, 100084, China ²Perimeter Institute for Theoretical Physics, Waterloo, Ontario, N2L 2Y5 Canada

Genesis of charge orders in high temperature superconductors

Wei-Lin Tu^{1,2} and Ting-Kuo Lee¹ ¹Institute of Physics, Academia Sinica, Nankang Taipei 11529, Taiwan ²Department of Physics, National Taiwan University, Daan Taipei 10617, Taiwan (Dated: February 9, 2015)

Experimental Challenges

- Determine if cuprate dFF-DW exhibits a characteristic energy gap ?
- Identify the k-space states contributing to dFF-DW spectral weight ?
- Symmetry relating DW modulations above/below Fermi energy ?

The wavefunctions of the density wave at $Q = k_1 - k_2$ that form bonding/antibonding states below/above the Fermi level are $e^{ik_1 \cdot r} \pm e^{ik_2 \cdot r}$

- (1) Densities of these states are maximum at $E^{\pm}\Delta_{CDW}$ edges.
- (2) Densities of filled/empty states are π out of phase $|e^{ik_1 \cdot r} \pm e^{ik_2 \cdot r}|^2 = 2(1 \pm Cos(\mathbf{Q} \cdot \mathbf{r}))$
- Checkerboard or domains of unidirectional dFF-DW ?
- Microscopic interplay pseudogap, density wave, superconductivity?

Real Space dFF-DW Domain Structure $D: (O_x(\mathbf{r})-O_y(\mathbf{r}))$

Real Space dFF-DW Domain Structure $(D_x(\mathbf{r})-D_y(\mathbf{r}))/(D_x(\mathbf{r})+D_y(\mathbf{r}))$

High

Low

+1.0

-1.0

THANKS!

Kazuhiro Fujita Cornell/ BNL

Mohammad Hamidian Cornell / BNL

Stephen Edkins St Andrews/Cornell

Michael Lawler Cornell / Binghamton

Eun-Ah Kim Cornell

Subir Sachdev Harvard