Impact of charge order on the electronic properties of underdoped cuprates

Cyril PROUST

Laboratoire National des Champs Magnétiques Intenses Toulouse, France

Collaborations

M. Le Tacon

T. Loew

N. Barisic

M. K. Chan

N. Hussey

F. Laliberté	M-H. Julien	L. Taillefer	D. Bonn
W. Tabis	D. LeBoeuf	N. Doiron-Leyraud	B. Ramshaw
D. Vignolles			R. Liang
B. Vignolle			W. Hardy
S. Badoux			
S. Lepault	SOLID STATE SPECTROSCOPY MAX PLANCE INSTITUTE FOR SOLID STATE RESEAR	UNIVERSITY OF MINNESOTA Driven to Discover	University of BRISTOL
	B. Keimer	M. Greven	A. Carrington

Quantum oscillations in hole-doped cuprate

Topological change in Fermi surface

Ubiquity: Quantum Oscillations

Quantum oscillation in $YBa_2Cu_3O_y$:

- Observed in many probes: electrical / thermal transport, magnetization, ultrasound, TDO, thermoelectricity
- Observed in the **doping range** between 9 % and 15 %

Quantum oscillations in single layer $HgBa_2CuO_{4+\delta}$:

1.5 K 1.5 K 1.0 2.4 K 2.4 K 3.3 K FT amplitude (a.u.) 3.3 K 4.2 K 40 4.2 K R (mΩ) amplitude (a.u.) 2.0 0.5 dR / dB (a.u.) 20 t 0.0 2 6 T (K) 70 80 60 b ___0.0 0 0 └∠ 20 40 80 60 2 3 5 4 H (T) Frequency (kT) N. Barisic et al, Nature Physics (2013)

 $F = 840 \pm 30 \text{ T}$ and $m^* = 2.45 \pm 0.15 \text{ m}_e$

Reconstruction of the FS into electron (and hole) pockets below a critical doping p^{*}

Broken symmetry = charge order

High field NMR in underdoped YBCO

(M-H. Julien, LNCMI-Grenoble)

High energy x-ray diffraction in underdoped YBCO

2D charge fluctuations up to T=150 K with an incommensurate periodicity

Charge order detected between 8 % < p < 16 %

But also X-ray in Hg1201 (Q \approx 0.28)

Link between QO and CDW

Can we reconcile quantum oscillations and the transport properties in YBCO with the Fermi surface reconstructed by a biaxial charge order ?

Fermi surface reconstruction

Qualitative FSR by biaxial charger order

Other pockets ?

Effective mass / angle dependence

Connecting QO with FSR by charge order

Fermi surface reconstruction by a bond density wave

 \Rightarrow two-step process for the Fermi surface reconstruction: Pseudogap + CDW

The case for an extra hole pocket

 \Rightarrow Need for a two band model to explain the doping dependence of Seebeck

The "Thermodynamic police"

Electronic coefficient of the specific heat : $\gamma = (1.46 \text{ mJ K}^{-2} \text{ mol}) \sum_{i} (n_i m_i^*/m_0)$ $m_{electron}^* = 1.7 \pm 0.2 \text{ m}_0 \text{ and } m_{hole}^* = 0.45 \pm 0.1 \text{ m}_0$

 $\gamma^{\text{theo}} = 7.6 \pm 0.8 \text{ mJ.mol}^{-1}$.K⁻² for 1 electron + 2 hole pockets (+ bilayer)

Recent measurements in Grenoble: (C. Marcenat, T. Klein et al) YBCO p = 0.11 : $\gamma_{el} (B=30 T, T \rightarrow 0) = 7 \pm 1.5 \text{ mJ K}^{-2} \text{ mol}^{-1}$

Sound velocity measurements

Where does the thermodynamic phase transition take place ?

High fields sound velocity in YBCO

Threshold field

Conclusion / open questions

- Fermi surface reconstruction by biaxial charge order \Rightarrow electron + hole pockets
- Reconciliation of quantum oscillation and transport properties with x-ray results if pseudogap effect on the Fermi surface is taken into account
- Phase transition detected by ultrasound at low T and above a threshold field both in the field and temperature dependences of the sound velocity

Analogy with stripe ?
Fermi surface reconstruction produces electron pocket in criss-crossed stripe model

> CDW correlation length measured by x-ray versus cyclotron orbit of quantum oscillations