

<u>Thomas Schäfer</u> Head of Max Planck Research Group "Theory of strongly correlated quantum matter", MPI Stuttgart Seminar Collège de France, 25th May 2021

Theory of strongly correlated quantum matter (SCQM)

Fluctuation diagnostics: the collaboration

OPEN ACCESS IOP Publishing

J. Phys.: Condens. Matter 33 (2021) 214001 (18pp)

Thomas Schäfer^{1,2,*} and Alessandro Toschi³

Journal of Physics: Condensed Matie https://doi.org/10.1088/1361-648X/abeb44 PRL 114, 236402 (2015)

How to read between the lines of electronic spectra: the diagnostics of fluctuations in strongly correlated electron systems

Fluctuation Diagnostics of the Electron Self-Energy: Origin of the Pseudogap Physics

PHYSICAL REVIEW LETTERS

O. Gunnarsson,¹ T. Schäfer,² J. P. F. LeBlanc,^{3,4} E. Gull,⁴ J. Merino,⁵ G. Sangiovanni,⁶ G. Rohringer,² and A. Toschi²

PHYSICAL REVIEW B 93, 245102 (2016) Parquet decomposition calculations of the electronic self-energy

O. Gunnarsson,¹ T. Schäfer,² J. P. F. LeBlanc,³ J. Merino,⁴ G. Sangiovanni,⁵ G. Rohringer,^{2,6} and A. Toschi²

O. Gunnarsson

A. Toschi

G. Rohringer

TS

E. Gull

J. LeBlanc

G. Sangiovanni

J. Merino

Electronic correlations at the one-particle level: experimental spectra

(AR)PES, InvPES, (STM)

Electronic correlations at the one-particle level: how does the system become excited?

T. Yoshida, et al., J. Phys. Soc. Jpn. 81, 011006 (2012)

Electronic correlations at the one- and two- particle level: origin of fluctuations

 $\chi'' (\mu_B^2 \text{ eV}^{-1} \text{ f.u.}^{-1})$

50

100 150

What are possible strategies for a "fluctuation diagnostics" in theory?

A. Tamai, et al. Phys. Rev. X **9**, 021048 (2019) M.K. Chan, et al., Nat. Comm. **7**, 10819 (2016) S. Petit, EPJ Web of Conferences **155**, 00007 (2017)

Outline: diagnostics of fluctuations in correlated systems

Introduction

- Experimental spectra at the one- and two-particle level
- The Hubbard model
- Two-particle level quantities: linear response, vertex and Dyson-Schwinger equation of motion
- Two general approaches to tackle complex problems

Parquet decomposition

- Parquet equations and description of the method
- Examples
- Breakdown

Fluctuation diagnostics

- Partial sums of the Dyson-Schwinger equation of motion
- Examples

Conclusions, outlook and general perspective

 $G_{\sigma'}(k')$

Strongly correlated systems: a simple (?) modellization

In this talk: one band, (mostly) 2D, no symmetry broken phases [espc. SU(2)]

Results from:diagrammatic Monte Carlo (DiagMC)
dynamical mean-field theory (DMFT)
dynamical cluster approximation (DCA)
dynamical vertex approximation (DCA)
dual fermion approach (DF)
triply irreducible local expansion (TRILEX)Seminar of F. Šimkovic
RMP 68, 13 (1996)
RMP 77, 1027 (2005)
RMP 90, 025003 (2018)

J. Hubbard, Proc. Royal Soc. A, **276**, 238–257 (1963)

M. Qin, TS, et al., "The Hubbard model: a computational perspective", arXiv:2104.00064, submitted to Annual Reviews

Quantum field theoretical description of spectra: one-particle Green functions

Fourier transforms time-/translation invariance

k=(**k**, iv) four vector v = (2n+1)πT, n integer

Quantum field theoretical description of linear response: two-particle Green functions

Connecting one- and two-particle level: the Dyson-Schwinger equation of motion (DSE)

How can we tackle the complex problem of analyzing the DSE with F?

Strategies of tackling complex problems: rely on Latin mottos!

"teach everything" good start (however, not very constructive)

"divide and rule"

"change what has to be changed"

TS and A. Toschi, J. Phys.: Condens. Matter 33 214001 (2021), Special Issue: Emerging Leaders 2020

C. de Dominicis and P. C. Martin, J. Math. Phys. 5, 14/31 (1964)

"Divide et impera": the parquet decomposition of the self-energy

O. Gunnarsson, TS, et al., Phys. Rev. B 93, 245102 (2016)

Parquet decomposition: application 1 first DMFT and DCA calculations

Model: Hubbard model Techniques: DMFT, DCA with N_c=8

 $\Sigma = \Sigma_{\Lambda} + \Sigma_{pp} + \Sigma_{ch} + \Sigma_{sp}$

O. Gunnarsson, TS, et al., Phys. Rev. B **93**, 245102 (2016) TS and A. Toschi, J. Phys.: Condens. Matter **33** 214001 (2021)

Parquet decomposition: application 2 two magnetic regimes at weak coupling

Model: 2D Hubbard, n=1 (half filling), simple square lattice, U=2t

T. Schäfer, et al., Phys. Rev. X **11**, 01158 (2021) TS and A. Toschi, J. Phys.: Condens. Matter **33** 214001 (2021)

Parquet decomposition: application 2 two magnetic regimes at weak coupling

Model: 2D Hubbard, n=1 (half filling), simple square lattice, U=2t

Т 1 $\text{Im}\;\Sigma(\textbf{k},\,i\omega_n)$ 1 TQPN TOPAN 2 2 $\text{Im}\;\Sigma(\textbf{k},\,i\omega_n)$ 3 3 $\text{Im}\; \Sigma(\textbf{k},\,\text{i}\omega_n)$ 4 T.AN 5 T.N AF order

Magnetic correlation length exponentially growing!

Condition for **pseudogap** at weak coupling (Vilk criterion):

→ Footprints of spin fluctuations in all observables (on the one- and two-particle level)

Parquet decomposition: application 2 two magnetic regimes at weak coupling

Model:2D Hubbard, n=1 (half filling), simple square lattice, U=2tTechnique:DΓA (ladder in spin channel)

TS and A. Toschi, J. Phys.: Condens. Matter 33 214001 (2021)

Parquet decomposition: application 3 Hubbard nano rings

Model:1D Hubbard nano ring with four sites, n=1 (half filling), U=2tTechnique:DΓA (ladder in spin channel)

$$\Sigma = \Sigma_{\Lambda} + \Sigma_{pp} + \Sigma_{ch} + \Sigma_{sp}$$

A. Valli, TS, et al., Phys. Rev. B **91**, 115115 (2015) TS and A. Toschi, J. Phys.: Condens. Matter **33** 214001 (2021)

Parquet decomposition: application 4 current-current response functions

Model: 2D Hubbard, n=1, U=4t Technique: DΓA

 $\chi_r = \chi_0 - \chi_0 \Gamma_r \chi = \chi_0 - \chi_0 F \chi_0$ $F = \Lambda + \Phi_{
m pp} + \Phi_{
m ph} + \Phi_{\overline{
m ph}}$

A. Kauch, et al., Phys. Rev. Lett. **124**,047401 (2020) TS and A. Toschi, J. Phys.: Condens. Matter **33** 214001 (2021)

Parquet decomposition: application 4 current-current response functions

Model: 2D Hubbard, n=1, U=4t Technique: DΓA

A. Kauch, et al., Phys. Rev. Lett. **124**,047401 (2020) TS and A. Toschi, J. Phys.: Condens. Matter **33** 214001 (2021)

Parquet decomposition: from weak to strong coupling

Model: 3D Hubbard, n=1 (half filling), simple cubic lattice, T=0.19t Technique: DMFT

$$\Sigma = \Sigma_{\Lambda} + \Sigma_{pp} + \Sigma_{ch} + \Sigma_{sp}$$

O. Gunnarsson, TS, et al., Phys. Rev. B **93**, 245102 (2016) TS and A. Toschi, J. Phys.: Condens. Matter **33** 214001 (2021)

Parquet decomposition: from weak to strong coupling

Model: 3D Hubbard, n=1 (half filling), simple cubic lattice, T=0.19t Technique: DMFT

Reason: divergences of vertex parts of the parquet decomposition

O. Gunnarsson, TS, et al., Phys. Rev. B **93**, 245102 (2016)

TS, et al. Phys. Rev. Lett. 110, 246405 (2013), TS, et al., Phys. Rev. B 94, 235108 (2016), O. Gunnarsson et al., Phys. Rev. Lett. 119, 056402 (2017), ...

How to circumvent the divergences?

Bethe-Salpeter summations (well behaved dominant channel)

Different decomposition (not parquet, but, e.g. single boson exchange)

F. Krien, et al., Phys. Rev. B **100**, 155149 (2019)

O. Gunnarsson, TS, et al., Phys. Rev. B **93**, 245102 (2016) TS, et al. Phys. Rev. Lett. **110**, 246405 (2013), TS, et al., Phys. Rev. B **94**, 235108 (2016), O. Gunnarsson et al., Phys. Rev. Lett. **119**, 056402 (2017), ... J. Vučičević et al., Phys. Rev. B **97**, 125141 (2018),

Strategies of tackling complex problems: rely on Latin mottos!

"teach everything" good start (however, not very constructive)

"divide and rule"

"change what has to be changed"

TS and A. Toschi, J. Phys.: Condens. Matter 33 214001 (2021), Special Issue: Emerging Leaders 2020

"Mutatis mutandis": changing the representation of the DSE...

$$\begin{split} \Sigma(k) &- \frac{Un}{2} = \\ &= UT^2 \sum_{k',q} F_{\uparrow\downarrow}(k,k';q) \, G(k') G(k'+q) G(k+q), \\ &= -UT^2 \sum_{k',q} F_{\rm sp}(k,k';q) \, G(k') G(k'+q) G(k+q), \\ &= UT^2 \sum_{k',q} F_{\rm ch}(k,k';q) \, G(k') G(k'+q) G(k+q), \\ &= -UT^2 \sum_{k',q} F_{\rm pp}(k,k';q) \, G(k') G(q-k') G(q-k) \end{split}$$

Equivalent due to SU(2)-symmetry and crossing relations

Same result, if all sums are performed – what about partial sums?

O. Gunnarsson, TS, et al., Phys. Rev. Lett. 114, 236402 (2015)

"Mutatis mutandis": ... and performing partial sums...

$$\Sigma(k) - \frac{Un}{2} =$$

= $UT^2 \sum_{k',q} F_{\uparrow\downarrow}(k,k';q) G(k')G(k'+q)G(k+q)$

... omitting the sum over the transfer momentum ${\boldsymbol{\mathsf{Q}}}$

$$\begin{split} \tilde{\Sigma}(k)_{\mathbf{Q}} &- \frac{Un}{2} = & \rightarrow \text{histograms} \\ &= -UT^2 \sum_{k', i\Omega_n} F_{\mathrm{sp}}(k, k'; q) G(k') G(k'+q) G(k+q) \end{split}$$

... omitting the sum over the bosonic frequency $i\Omega_n$

$$\tilde{\Sigma}(k)_{i\Omega_n} - \frac{Un}{2} = \longrightarrow \text{ pie charts}$$
$$= -UT^2 \sum_{k',\mathbf{Q}} F_{sp}(k,k';q) G(k')G(k'+q)G(k+q)$$

Fluctuation diagnostics: application 1 The attractive Hubbard model

Model: 2D Hubbard, n=0.87, square lattice, T=0.1t, U=-4t Technique: DCA, N_c=8

Charge and pp fluctuations well-defined and long-lived!

Fluctuation diagnostics: application 2 The repulsive Hubbard model: origin of the pseudogap

Model: 2D Hubbard, n=0.94, square lattice, t'=-0.15t, T=0.067t, U=7t Technique: DCA, N_c =8

long-lived

short-lived

X. Dong, et al., Phys. Rev. B 100, 235107 (2019)

W. Wu, et al., Phys. Rev. B 96, 041105(R) (2017)

Fluctuation diagnostics: application 2
Origin of the pseudogap: what about d-wave pp-fluctuations

$$d\text{-wave pairing correlator}$$

$$\langle \Delta^{\dagger} \Delta \rangle = \sum_{\mathbf{K}, \mathbf{K}'} f(\mathbf{K}) f(\mathbf{K}') \langle c_{\mathbf{K}\uparrow}^{\dagger} c_{-\mathbf{K}\downarrow}^{\dagger} c_{-\mathbf{K}'\downarrow} c_{\mathbf{K}'\uparrow} \rangle - \sum_{\mathbf{K}} [f(\mathbf{K})]^2 \langle c_{\mathbf{K}\uparrow}^{\dagger} c_{-\mathbf{K}\downarrow} c_{-\mathbf{K}\downarrow} \rangle$$
with $f(\mathbf{K}) = \cos K_x - \cos K_y$
large if $\langle c_{\mathbf{K}\uparrow}^{\dagger} c_{-\mathbf{K}\downarrow}^{\dagger} c_{-\mathbf{K}'\downarrow} c_{\mathbf{K}'\uparrow} \rangle \sim f(\mathbf{K}) f(\mathbf{K}')$
fluctuation diagnostics
(in *pp*-representation, Q=0)
but, then ...

$$\frac{N}{U\beta} \sum_{\nu} [\Sigma(k) - \frac{Un}{2}]g(k) = \sum_{\mathbf{K}', \mathbf{Q}} \langle c_{\mathbf{K}\uparrow}^{\dagger} c_{\mathbf{X}\downarrow}^{\dagger} c_{-\mathbf{K}\downarrow} c_{-\mathbf{K}'\downarrow} c_{\mathbf{X}\uparrow\uparrow} \rangle - \sum_{\mathbf{K}'} \langle c_{\mathbf{K}\uparrow}^{\dagger} c_{\mathbf{K}\uparrow} \rangle \langle c_{\mathbf{K}\downarrow}^{\dagger} c_{\mathbf{K}\downarrow} \rangle$$
small !

O. Gunnarsson, TS, et al., Phys. Rev. Lett. 114, 236402 (2015)

Fluctuation diagnostics: application 3 Estimation of Fierz parameter

TRILEX: mixed fermionic-bosonic language

.0 -.2 Im 2[k] -.4

-.6

-.8

.9

.8

.7 .6 .5

.3

.2 .1

.0

(7.77) 10.1

 $-\mathrm{Im}\,\widetilde{\Sigma}_Q[k]$.4 0

K=(0,π)

K=(0,π)

(74,0) (74/2,74/2) (74/2,74/2)

10.01

10.1

4 0

2

v [eV]

$$egin{aligned} Un_{\uparrow}n_{\downarrow} &= rac{1}{2}U_{ ext{ch}}nn + rac{1}{2}U_{ ext{sp}}ec{ss} ec{s} & U = U_{ ext{ch}} - 3U_{ ext{sp}} \ U_{ ext{ch}} &= (3lpha-1)U \ U_{ ext{sp}} &= (lpha-2/3)U \ \end{aligned}$$

 $K = (\pi/2, \pi/2)$

2

v [eV]

spin

charge

particle

K=(π/2,π/2)

T. Ayral and O. Parcollet, Phys. Rev. B 92, 115109 (2015), Phys. Rev. B 93, 235124 (2016) TS and A. Toschi, J. Phys.: Condens. Matter 33 214001 (2021)

Conclusions and perspective

General strategies for insight in the origins of correlated spectra via the Dyson-Schwinger equation of motion

- Prerequisite: access to (unbiased) one- and two-particle Green function
- charge Parquet decomposition Im Σ(**K**,iv) [eV] Numerically heavier (parquet inversions) • -0.5 Unstable for increasing U ٠ parquet decomposition -1.5 Generalizable to response functions ٠ -2 0.5 1.5 1 v [eV] spin charge Fluctuation diagnostics ٠ Relatively lightweighed • K=(0,π) Κ=(π/2,π/2) Flexible / applicable everywhere • fluctuation diagnostics

- Symmetry-broken phases
- Cluster diagnostics, symmetry diagnostics