Q=0 Magnetic order in the pseudogap state of cuprates superconductors

Philippe Bourges

Laboratoire Léon Brillouin, CEA-Saclay

Using polarized neutron diffraction: 4F1 (LLB-Saclay) & D7 (ILL-Grenoble)

Magnetic order in the pseudogap state of high-Tc cuprates in 4 different families: YBCO, Hg1201, LSCO, Bi2212

There is a broken symmetry below T* which does not break the translation symmetry (Q=0) but breaks Time reversal symmetry

Intra unit cell antiferromagnetism (2 antiparallel moments) Local Cu spins not enough → another source of magnetism

Outline:

1) Introduction

- 2) Short range correlations near optimal doping
- *3) Tilt of the moment: In-plane and out-of-plane Magnetic components*
- 4) Phase diagrams: Q=0 magnetic order in the pseudogap state, CDW and nematic order

Pseudo-Gap

- Mysterious phase which appears below T*
- Anomalous magnetic and charge properties
 Common line at T*

(Tallon & Loram)

Phase transition? Which broken symmetry?

Heavy fluctuations around QCP Superconducting mechanism?

Motivation: CC-loop order, Intra-unit-cell magnetic order

C.M. Varma, PRB 1997; PRB 2006 Breaks Time-reversal symmetry

Staggered orbital moments Q=0 AFM order 4 States/Domains

Need for a polarized monochromatic neutron beam

 $p=(1-1)/(1+1) \sim 96\%$

P//Q to maximize magnetism in the Spin-flip channel

NSF: $\frac{d\sigma}{d\Omega} = |F_N|^2$ SF: $\frac{d\sigma}{d\Omega} = |F_M|^2 + |F_N|^2/R$

Underdoped YBCO_{6.6}: Long range Intra unit Cell magnetic order

Order in the PG state (match T* resistivity)

Other reports of a phase transition at T* in YBCO :

- Resonant ultrasound spectroscopy A. Shekhter, et al, Nature,497, 75 (2013)
- Uniform magnetic susceptibility B. Leridon et al EPL, 87 17011, (2009)

- Optical birefringence Y. Lubashevsky, Phys. Rev. Lett. 112, 147001, (2014)

- Polar Kerr effect (µrad) at T_K J. Xia, et al, PRL, 100, 127002 (2008)

Intra-unit cell nematicity by STM in Bi2212

M.J. Lawler et al Nature 2010

different electronic density on both oxygens: Ox and Oy

 → No evidence in magnetic local probes (µSR, NQR, NMR) Time-scale ?
 LSCO: Mac Dougall, PRL (2008)
 YBCO: Sonier, PRL (2008), Wu (2014)
 Y124: Strassle PRL (2011)
 Hg1021: Mounce, PRL (2013)

Outline:

- 1) Introduction
- 2) Short range correlations near optimal doping
- *3) Tilt of the moment: In-plane and out-of-plane Magnetic components*
- 4) Phase diagrams: Q=0 magnetic order in the pseudogap state, CDW and nematic order

L. Mangin-Thro et al, ArXiv 1501.04919

Magnetic intensity on Q=(100) and Q=(101) (4 times weaker than YBCO6.6)

Multi-detectors diffratometer: D7 (ILL)

- Polarized neutron with 120 detectors → H-scan
- XYZ polarization analysis → magnetic intensity
- Range of correlations ($\lambda \sim 5$ Å, cold neutrons, good q-resolution)

YBCO_{6.85}: Short range magnetic order

L. Mangin-Thro et al, ArXiv 1501.04919

H-integrated intensity

200

Temperature (K)

300

120

100

80

60

40

20

0

-FT-

100

hardly correlated along c T=100K: Δq =0.65 rlu, $\xi_c \sim 0.5$ c

0.4

L (r.l.u.)

0.6

0.8

0.2

0.4

0.2

0

0

L. Mangin-Thro et al, ArXiv 1501.04919

Doping dependence of the peak intensity

Magnetic intensity vs Tmag

L. Mangin-Thro et al, Phys. Rev. B 89, 094523 (2014)

Outline:

- 1) Introduction
- 2) Short range correlations near optimal doping
- *3) Tilt of the moment: In-plane and out-of-plane Magnetic components*
- 4) Phase diagrams: Q=0 magnetic order in the pseudogap state, CDW and nematic order

YBCO_{6.6} : H.A. Mook et al, PRB 020506(R) (2008).

P//Q

PLQ

(101)_

(201) 1.79

1.77

1.75

1.73

1.71

1.75

1.73

1.71

1.69

1.67

Polarization analysis: Bi₂Sr₂CaCu₂O_{8+δ}

Angle (M,c*) ~ 20 ± 20 deg

L. Mangin-Thro et al, Phys. Rev. B 89, 094523 (2014)

YBCO_{6.85}: Polarization analysis D7/H-integrated intensity

L. Mangin-Thro et al, ArXiv 1501.04919

Diffuse scattering

Q ~ (0.9,0,0)

« Critical behaviour »

Tilt why ?

• Loop order

V. Aji & C.M. Varma, PRB 78, 094421 (2008).

Quantum superposition of the 4 states

Y. He & C.M. Varma, PRB 86, 035124 (2012).

- Loop order on the CuO₆ octaedra
 C. Weber et al, PRL 102, 017005 (2009)
 S. Lederer & S. Kivelson PRB85, 155130 (2012)
 not ok: tilt=0 for L=0
- Neutron cross-section:

Parity odd operators (broken inversion) Magnetic quadrupole

S.V. Lovesey et al, ArXiv 1408.5562

Outline:

- 1) Introduction
- 2) Short range correlations near optimal doping
- *3) Tilt of the moment: In-plane and out-of-plane Magnetic components*
- 4) Phase diagrams: Q=0 magnetic order in the pseudogap state, CDW and nematic order

YBCO phase diagram: comparison with CDW

YBCO phase diagram: comparison with CDW

Bourges and Sidis, C.R. Physique (2011) and J. Phys. Conf. Ser 449 012012 (2013)

Pseudogap ? Mind the oxygen !.....

STM IUC- charge order (Q=0) Electronic nematic state

PRB 2011, PRB 2012

Fischer & Kim,

Davis & DH Lee

Polarized Neutron IUC- magnetic order (Q=0) Orbital magnetism

C.M. Varma, PRB 2006

A.S. Moskvin, JETP Lett. 2012

Spin-fermion model (Sachdev, Chubukov, Efetov et al)

Quadrupolar Charge order on CuO bonds

K. B. Efetov, H. Meier, and C. Pépin, Nature Physics 2013

Multi-band model

Y. Sidis (CNRS) L. Mangin-Thro (PHD:12-) B. Fauqué (PHD:05-08), V. Balédent (PHD:08-11) (Laboratoire Léon Brillouin - Saclay)

- D. Haug, T. Loew, V. Hinkov (MPI Stuttgart)
- X Chaud (CRETA, Grenoble), L.P. Regnault (CEA Grenoble)
- A. Wildes (ILL-Grenoble)
- H.A. Mook (Oak Ridge, USA)

HgBa₂CuO_{4+x}

• Mun Chan (University Minnesota), Yuan Li (Peking Univ)

- Guichuan Yu, Yang Tang M. Greven (University Minnesota)
- P. Steffens (ILL-Grenoble)

La_{2-x}Sr₂CuO₄

•K. Conder, E. Pomjakushina (PSI) N. Christensen (Riso), J. Mesot (PSI, Switzerland)

Bi₂Sr₂CaCu₂O_{8+x}

I. Laffez, F. Giovanneli (IUT-Blois, France),
S. De Almeida-Didry(PHD: 08-11)

