Thermodynamics and Mantle Convection: The role during secular evolution

University College London

from space to core earthsciences

Origin of Heterogeneity

Preservation of Heterogeneity

Fig. 2. Some possible locations of mantle reservoirs and relationship to mantle dynamics. Convective features: blue, oceanic plates/slabs; red, hot plumes. Geochemical reservoirs: dark green, DMM; purple, high ³He/⁴He ("primitive"); light green, enriched recycled crust (ERC). (**A**) Typical geochemical model layered at 660 km depth (7). (**B**) Typical geodynamical model: homogeneous except for some mixture of ERC and primitive material at the base. (**C**) Primitive blob model (71) with added ERC layer. (**D**) Complete recycling model (83, 84). (**E**) Primitive piles model [developed from (85)]. (**F**) Deep primitive layer (86).

Tackley 2000

FT Estimates: Hofmann 1997

Layered Convection

Tackley 1993

Fig. 5. Cross-sectional slices of the superabiabatic temperature field predicted by one of the earliest 3D global-scale, isoviscous mantle convection simulations. (A) Whole-mantle convection obtained without phase changes switches to (B) intermittent layered convection when adding the post-spinel transition with a strongly negative Clapeyron slope (-4 MPa/K). Scale range from -780 K to +220 K and from -1050 K to +350 K in panels A and B, respectively. From (Tackley et al., 1993).

Phase Transitions and Convection

Faccenda and Dal Zilio 2016

$$\begin{split} \rho C_p \left(\frac{\partial T}{\partial t} + \mathbf{u} \cdot \nabla T \right) &- \nabla \cdot k \nabla T = \rho H \\ &+ 2\eta \left(\varepsilon(\mathbf{u}) - \frac{1}{3} (\nabla \cdot \mathbf{u}) \mathbf{1} \right) : \left(\varepsilon(\mathbf{u}) - \frac{1}{3} (\nabla \cdot \mathbf{u}) \mathbf{1} \right) \\ &+ \alpha T \left(\mathbf{u} \cdot \nabla p \right) \\ &+ \rho T \Delta S \left(\frac{\partial X}{\partial t} + \mathbf{u} \cdot \nabla X \right) \end{split}$$

Aspect Manual 2016

Mantle is multiphase

Stixrude and Lithgow-Bertelloni 2012 (AREPS)

Phase Transitions and Dynamics

Faccenda and Dal Zilio 2016

Stixrude and Lithgow-Bertelloni 2007

Thermodynamic Model

Na

MgO

Ca Al

- Bulk composition
- Pressure
- Temperature

- Phase Equilibria
- Physical Properties
- Self consistent

Bulk Composition

Physical Properties

 $\rho, \alpha, C_P, V_P, V_S, \dots$ (X, P, T)

HeFESTo

- Based on Fundamental Thermodynamic Relations
- Minimize Gibbs free energy over the amounts of all species

$$G(P,T,n_i) = \sum_{i=1}^{species} n_i [\mu_{0i}(P,T) + RT \ln a_i]$$

Subject to constraint of fixed bulk composition

$$s_{ij}n_j = b_i$$

Full Anisotropic Generalization

n

$$c_{ijkl} = \frac{1}{V} \left(\frac{\partial^2 F}{\partial E_{ij} \partial E_{kl}} \right)_{S'_{ij},T} + P \left(\delta_{ij} \delta_{kl} + \delta_{il} \delta_{jk} + \delta_{jl} \delta_{ik} \right)$$

- Many previous efforts, however
 - Full self-consistency between phase equilibria and physical properties (not only one or the other)
 - Anisotropic generalization and robust thermal extrapolation for shear properties

Physical properties

Importance for flow

Faccenda and Dal Zilio 2016

So does including full thermodynamics matter?

- Nakagawa et al. (2009)
- not much difference... not much induced layering for today's conditions
- But has this always been the case? (i.e. Allégre, 1997)
- If not, could there have been layering and help preserve heterogeneity as geochemistry suggests?
- Mass transfer may be recent (~ 1 Ga)
- Transition caused by cooling and reduction in Ra

Temperature Dependence

1-D temporal evolution

- 1D model of Earth (post-magma ocean)
- Examine thermal evolution of mantle and core
- Uses Hefesto to calculate mantle properties
- Model Tracks
 - State Variables (T(K) and P (Pa)
 - ρ , α , C_{ρ} from Hefesto
 - Thermal conductivity, k_c [W/m K] (5-10 for mantle, 40 for core) Viscosity, µ [Pa s] (Arrhenius form, with activation energy, volume and other constants from Ranalli, 2001)
- Core equation of state by fitting to PREM

Initial Conditions

Initial temperature profile

Adiabatic in core and mantle:

$$\frac{\partial T}{\partial r} = \left(\frac{\partial T}{\partial r}\right)_{S} = -T\left(\frac{\alpha g}{C_{p}}\right)$$

• Find initial state by iterating on P, g, T, ρ , α , etc.

Temperature Evolution-Mixing Length theory

Energy equation

$$\frac{\partial}{\partial t}\left(\rho C_{p}T\right) = \frac{1}{r^{2}}\frac{\partial}{\partial r}\left(r^{2}k_{c}\frac{\partial T}{\partial r}\right) + \frac{1}{r^{2}}\frac{\partial}{\partial r}\left(r^{2}k_{v}\left[\left(\frac{\partial T}{\partial r}\right) - \left(\frac{\partial T}{\partial r}\right)_{s}\right]^{2}\right) + \rho Q$$

To model in 1D, need to parameterise convection:

$$k_{v} = \begin{cases} \frac{\rho^{2} C_{\rho} g \alpha \ell^{4}}{18 \mu}, & \text{if } \left(\frac{\partial T}{\partial r}\right) < \left(\frac{\partial T}{\partial r}\right)_{S} \\ 0, & \text{otherwise,} \end{cases}$$

No convection if sub-adiabatic.

In uniform cartesian flow this is equivalent to:

$$\frac{\partial T}{\partial t} = \frac{\partial^2 T}{\partial x^2} + Ra \frac{\partial}{\partial x} \left(\ell^4 \left(\frac{\partial T}{\partial x} \right)^2 \right) + \frac{Ra_Q}{Ra}$$

Kimura et al 2009

Thermal Evolution in the Mantle

- Strength of convection depends strongly on mixing length, l
- Set l to distance to nearest boundary of fluid layer
- Can have single- or double-layer convection

Allow *e* to vary dynamically according to local flow criterion -> intermittent layering

Compressible Mantle

Need to account for compressibility

Energy equation solves for $\frac{\partial}{\partial t}(\rho C_p T)$, not $\frac{\partial T}{\partial t}$

Simple differentiation:

$$\begin{aligned} \frac{\partial}{\partial t} \left(\rho C_{p} T \right) &= \rho C_{p} \frac{\partial T}{\partial t} + T \frac{\partial \rho C_{p}}{\partial t} \\ &= \rho C_{p} \frac{\partial T}{\partial t} + T \frac{\partial \rho C_{p}}{\partial T} \frac{\partial T}{\partial t} \\ &= \left(\rho C_{p} + T \frac{\partial \rho C_{p}}{\partial T} \right) \frac{\partial T}{\partial t} \\ &= \beta (T, P) \frac{\partial T}{\partial t}. \end{aligned}$$

 $\beta(T, P)$ can be found from Hefesto data

きょう しょう きょう きょう しょう

- r = 1 6371, with $\Delta r = 10$ km
- Maximum ΔT per timestep is 0.1 K (average $\Delta t \approx 10^4$ years)
- 2nd order Runge-Kutta
- Three cases (choice of ℓ): single-layer, double-layer and intermittently layered

- $Q_{CMB} \sim 7 \text{ TW}$ (estimated 5±5)
- $Q_S \sim 35$ TW (estimated 47)

Consequence of ۲ Arrhenius rheology

- As mantle cools, geotherm passes through regions of different $(\partial T/\partial r)_S$
- Can prevent convection if $(\partial T/\partial r)_S \lesssim -2$ K/km, or > 0
- Ability to convect heat across transition zone will vary with time

Intermittent Layering

 $T_{p,0} = 2200 \text{ K}$

Layered state about ~80% of the time

Results

- Layering arises naturally from thermodynamics
- Doesn't depend on Ra
- Layering can preserve chemical reservoirs in lower mantle
- Some plumes may 'push through' despite being sub-adiabatic

How can we estimate effect of layering on heterogeneity preservation?

- Understanding effect of layering on chemical reservoirs requires information on isotopic flux
- Can estimate using MLT:

$$\frac{\partial \chi}{\partial t} = \frac{1}{\rho r^2} \frac{\partial}{\partial r} \left(\frac{r^2 \rho^2 C_p \alpha g \left[\left(\frac{\partial T}{\partial r} \right) - \left(\frac{\partial T}{\partial r} \right)_S \right] \frac{\partial \chi}{\partial r} \ell^4}{18\mu} \right)$$

How can we estimate effect of layering on heterogeneity preservation?

Can use $\partial \chi / \partial t$ to investigate:

- Mixing times
- Variation in bulk composition of mantle (e.g. proportion of depleted mantle)
- Volatile flux (effect of waterdependent rheology)

Conclusions and Future Goals

- Explore mass transfer evolution
- 3D convection with full thermo with secular cooling
 - Important to capture very sharp phase transitions
 - Adaptivity (i.e. ASPECT, Fluidity essential)
- Implications for Earth's geochemical evolution

Sharp Transitions

Mixing Length Theory

Theory outlined in Kimura et al. Size and compositional constraints of Ganymede's metallic core for driving an active dynamo, *Icarus*, 202, 216-224, 2009.

$$\frac{\partial}{\partial t} \left(\rho C_{p} T \right) = \nabla \cdot q^{\prime \prime} + H$$
$$= \frac{1}{r^{2}} \frac{\partial}{\partial r} \left(r^{2} k_{c} \frac{\partial T}{\partial r} \right) + \nabla \cdot q_{v}^{\prime \prime} + H$$

For convection, $q_v^{\prime\prime} \approx \rho C_p \Delta T U$

Assume U is stokes velocity

$$U = \frac{2\Delta\rho g (\ell/2)^2}{9\mu} = \frac{\Delta\rho g \ell^2}{18\mu}$$

Where

$$\Delta \rho = \rho \alpha \Delta T$$

$$\Delta T = \left[\left(\frac{\partial T}{\partial r} \right) - \left(\frac{\partial T}{\partial r} \right)_{S} \right] \ell$$

Combining, U, $\Delta \rho$, ΔT .

$$q_{v}^{\prime\prime} = \frac{\rho^{2} C_{p} \alpha g \left[\left(\frac{\partial T}{\partial r} \right) - \left(\frac{\partial T}{\partial r} \right)_{S} \right]^{2} \ell^{4}}{18\mu}$$

Mixing Length Theory: Mass flux

Conservation of mass

$$rac{\partial}{\partial t}\left(
ho\chi
ight)=
abla\cdot\dot{m}$$

For convection,

$$\dot{m} pprox
ho \left(\Delta \chi
ight) U$$
 $pprox
ho \left(rac{\partial \chi}{\partial r} \ell
ight) U$

Again,
$$U$$
 is stokes velocity

$$U = \frac{\Delta \rho g \ell^2}{18\mu} = \frac{\rho \alpha \left[\left(\frac{\partial T}{\partial r} \right) - \left(\frac{\partial T}{\partial r} \right)_{S} \right] \ell^3}{18\mu}$$

Combining, we get

$$\dot{m} = \frac{\rho^2 C_p \alpha g \left[\left(\frac{\partial T}{\partial r} \right) - \left(\frac{\partial T}{\partial r} \right)_S \right] \frac{\partial \chi}{\partial r} \ell^4}{18\mu}$$

Physical properties

