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Fig. 2. Some possible locations of mantle reservoirs and relationship to mantle dynamics.
| Convective features: blue, oceanic plates/slabs; red, hot plumes. Geochemical reservoirs: dark green, §
IDMM; purple, high 3He/*He (“primitive”); light green, enriched recycled crust (ERC). (A) Typical |
eochemical model layered at 660 km depth (7). (B) Typical geodynamical model: homogeneous S
| except for some mixture of ERC and primitive material at the base. (C) Primitive blob model (77) B
M with added ERC layer. (D) Complete recycling model (83, 84). (E) Primitive piles model [developed
from (85)]. (F) Deep primitive layer (86).
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|_ayered Convection

Fig. 5. Cross-sectional slices of the superabiabatic temperature field predicted by one of the earliest 3D global-scale, isoviscous mantle convection simulations. (A) Whole-mantle
convection obtained without phase changes switches to (B) intermittent layered convection when adding the post-spinel transition with a strongly negative Clapeyron slope
(—4 MPa/K). Scale range from — 780 K to + 220 K and from — 1050 K to +350 K in panels A and B, respectively. From ( il




Phase Transitions and Convection
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Phase lransitions and Dynamics

A

Hot

eEe3 @@= 44 ==

A 3
B Px = Grt g bi
| 9 -
> -
A 5 S
%2)
Grt = Mg-Pv+Ca-Pv qc) K.
] ~
X ¥
Post-garnet
Hol
| o T YV |
200 400
‘ Depth (km)
“ - Stixrude and Lithgow-Bertelloni 2007
Grt = Mg-Pv+Ca-Pv

. vy

Post-garnet Y 4

tte
HARZB !)é = = 0o )
PYROL K\ ..‘.0.‘

Faccenda and Dal Zilio 2016



Thermodynamic Model

ulk Composition
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HeFESTOo

Based on Fundamental Thermodynamic Relations

Minimize Gibbs free energy over the amounts of all species
Nn. species

G(P.T.n)= Y n[u,(P.T)+RTna,]

i=1

Subject to constraint of fixed bulk composition

SN ; = b.

Full Anisotropic Generalization

1( 9°F
+ P(8,0, +8,0, +0,5,)

S;; T
Many previous efforts, however

Full self-consistency between phase equilibria and
physical properties (not only one or the other)

Anisotropic generalization and robust thermal
extrapolation for shear properties

Cikt = <
" V\JEE,




Phvsical properties
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lmportance for flow




So does including full
thermodynamics matter?

 Nakagawa et al. (2009

* not much difference... not much induced layering for today’s
conditions

e But has this always been the case? (i.e. Allégre, 1997




Tlemperature Dependence
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1-D temporal evolution

1D model of Earth (post-magma ocean

e Examine thermal evolution of mantle and core
e Uses Hefesto to calculate mantle properties
e Model Tracks

* State Variables (T(K) and P (Pa




Initlal Conditions

Initial temperature profile

Lower Mantle

ATcoyp = 1400 K

T, = 2000 K
Thermal 7

B.layer
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r |km]

Adiabatic in core and mantle:

o1 (3_T

r r

e Find Initial state by iteratingon P, g, T, p, o, etc.




Kimura et al 2009

Temperature Evolution-
Mixing Length theory

Energy equation

)i (7 [(F)- ()] )

To model in 1D, need to parameterise convection:

2 4 .
k, — {p Clpsiae i (55) < (57)s

0, otherwise,

No convection if sub-adiabatic.

In uniform cartesian flow this is equivalent to:

OT 02T 8 [ ,(0T\°\ Rag
m—w+Ram<f (ax>>+Ra




Thermal Evolution In the

Sinéle—Layér Convection

@ Strength of — Double—Layer Convection
convection depends
strongly on mixing
length, £

¢ [km]
[
)
)
o

Set ¢ to distance to
nearest boundary of
fluid layer

Tt
)
-]

,;}.\
+
o0
a
<B)
—
0
=
Ra
=

Can have single- or

double-layer | | s |
Convection 1000 2000 379(\)1(<)m| 4000 5000 6000

e Allow ¢to vary dynamically according to local flow criterion ->
intermittent layering




Compressible Mantle

Need to account for compressibility
Energy equation solves for 2(pC,T), not 2L

Simple differentiation:

0 B oT 0pC,
P (pCpT) = PCPE T 57
oT 0pC, 0T
— 4+ T P
PCp Ot OT Ot

_ (,OCP+ T@pCp> oT

oT Ot

oT

B(T,P) can be found from Hefesto data




Some validation

* Forinitial 7o = 2000 K

- —PREM
— Single-Layer
— Double-Layer
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o r =1— 6371, with Ar =10 km

e Maximum AT per timestep is 0.1 K ot QCMB et 7 TW (eStImated 5i5)
(average At ~ 10* years)
e Qs ~ 35TW (estimated 47)

e 2"d order Runge-Kutta

e Three cases (choice of /):
single-layer, double-layer and intermittently layered



Double — Layer, T\,,; = 2000K

Evolution
6000F u
@ Upper mantle cools 5000f
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N —t = 0 Myr

—t = 1500 Myr
©—1t = 3000 Myr|

sl @l E\volution

3000 4000

@ As mantle cools, geotherm passes through regions of different
(8T/8r)5
@ Can prevent convection if (0T /0r)s < —2 K/km, or > 0

@ Ability to convect heat across transition zone will vary with
time




Intermittent Layering

1,0 = 2200 K

[y | h VARV l I/_.\\MK\/

]
500 1000 1500 2000 2500 3000 3500 4000 4500

_x

R —

] ] | ] ] ] | ]
500 1000 1500 2000 2500 3000 3500 4000 4500
t |Myr]

* [ ayered state about ~80% of the time




Results

Layering arises naturally from thermodynamics
Doesn’t depend on Ra

Layering can preserve chemical reservoirs in lower mantle

Some plumes may ‘push through’ despite being sub-adiabatic




How can we estimate eftect of layering
on heterogeneity preservation”

e Understanding effect of layering on chemical reservoirs requires
information on isotopic flux

e Can estimate using MLT:




How can we estimate eftect of layering
on heterogeneity preservation”

Can use 0x/0t to [t — 0 Myr

investigate: T30 v

t = 500 Myr

@ Mixing times
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Conclusions and Future
Goals

 Explore mass transter evolution

e 3D convection with full thermo with secular
cooling




Sharp Transitions







Mixing Length Theory

Theory outlined in Kimura et al. Size and compositional constraints of Ganymede's metallic core for driving an
active dynamo, Icarus, 202, 216-224, 2009.

0
— (pCp T
8t(Pp)

For convection, q"/’ ~ pCp,ATU

Assume U is stokes velocity
20pg(£/2)*  Apgl?

V) 181

Ap = paAT

- [(5) - (5

Combining, U, Ap, AT.




Mixing Length Theory: Mass flux

Conservation of mass

O (ox) =V - i
- — - m
ath

For convection,

m= p(Ax)U

Again, U is stokes velocity

Combining, we get
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