Planetary Accretion Models and the Mineralogy of Planetary Interiors

Dan Frost & Dave Rubie – Bayerisches Geoinstitut

John Hernlund – Earth-Life Science Institute, Institute of TechnologyTokyo

Alessandro Morbidelli & Seth Jacobson – Observatoire de la Cote d'Azur, Nice, France

Rebecca Fischer & Andy Campbell – University of Chicago

Structure and dynamics of Earth-like planets

Model incorporates:-

-Partitioning of siderophile elements

-Dynamic/ astrophysical constraints on accretion processes

-Constrain success of the model by comparison with Earth mantle composition

- Provide robust indicators for ranges of plausible conditions

Heterogeneous Formation of Earth and Moon

Complicated- can it really be tested?

O'Neill (1991) GCA 55, 1159.

Homogeneous accretion: Metal segregation at the base of a deep magma ocean

Constrain a single set of P,T and fo_2 for core formation

(Li & Agee, 1996; Righter & Drake 1997)

Model of continuous core formation with step-wise increases in fo₂

Terrestrial Accretion under oxidising conditions

Concentration in

5

0

0

40

20

60

80

P (GPa)

100 120

— V

$$\bigcirc$$

$$Oxidized accreting material X_{FeO} = 0.21 \longrightarrow X_{FeO} = 0.06$$

Siebert et al. (2013)

"N-body simulations" dynamic system of particles, under gravity

<u>25-125 embryos</u> (0.05-0.1*M_e*),

1000-5500 planetesimals (0.0003-0.002 M_e)

(e.g. O'Brien et al., 2006; Walsh et al., 2011)

Location and composition of final terrestrial planets

Combine N-body simulations with Core/mantle differentiation for each accretion event

Earth depleted in volatiles like all chondrites relative to CI

Volatile depletion based on models for condensation

Preferred composition-distance model

Rubie et al. 2014

Mass balance approach to core formation modeling

1) bulk composition of accreting material – solar system (CI) ratios of non-volatile elements but with oxygen contents varying over a radial gradient

2) Determine equilibrium compositions of co-existing silicate and metal liquids at high *P-T*:

[(FeO)_x (NiO)_y (SiO₂)_z (Mg_u Al_m Ca_n)O] + [Fe_a Ni_b O_c Si_d] silicate liquid metal liquid

3) Maintain a mass balance- no assumed oxygen fugacity

Proportion of a target's mantle/magma ocean that equilibrates with the impactor's core

$$\phi = \left(\frac{r_0}{r}\right)^3 = \left(1 + \frac{\alpha z}{r_0}\right)^{-3}$$

where Φ is the volume fraction of metal in the metal-silicate mixture

Fraction of equilibrating mantle:

- 0.35-1.7% for planetesimal impacts
- 2-10% for embryo impacts

(Deguen et al., 2011, EPSL)

Metal/Silciate partition coefficents at high P/T

Laser heated diamond anvil cell

Multianvil

Up to 100 GPa

Multistage Homogeneous Core formation

Accretion history of Grand Tack simulation

Each accretion event (collision) results in an episode of core formation

Core formation and the evolving mantle and core chemistry are modelled in all the terrestrial planets simultaneously

Homogeneous accretion models

Evolution of Earth's mantle composition based on two homogeneous accretion models

Location and Composition of Final Terrestrial Planets

H₂O content of the mantle

$H_2O + Fe \rightarrow FeO + H_2$

(Deguen et al., 2011, EPSL)

Composition of Venus

Simulation:	4:1-0.5-8	4:1-0.25-7	8:1-0.8-8	8:1-0.25-2	i-4:1-0.8-4	i-4:1-0.8-6	
Heliocentric distance	0.623 AU	0.594 AU	0.650 AU	0.608 AU	0.530 AU	0.572 AU	
Mass	0.979 Me	0.745 Me	0.987 Me	0.766 Me	0.701 Me	0.808 Me	
Mantle compositions							
SiO ₂	45.7	46.0	47.2	46.5	46.1	47.1	
FeO	7.38	8.25	4.52	7.13	7.92	5.92	

H ₂ O ppm	824	1190	884	1515	580	773	
Mass % accreted from	0.27 %	0.31 %	0.29 %	0.50 %	0.20 %	0.27	
H ₂ O-bearing bodies							
Core compositions and mass fractions							

0	3.14	2.08	2.66	0.73	1.47	1.27
Si	9.11	7.29	8.26	7.57	7.61	7.45

Composition of Martian Mantle

Simulation:		4:1-0.5-8 "Mars 2"	4:1-0.25-7 "Mars-1"	4:1-0.25-7 "Mars-3"	8:1-0.8-8	i-4:1-0.8-6			
HD of origin: Final HD: Mass:	1.52 AU 0.107 M _e	1.14 AU 1.79 AU 0.064 M _e	1.13 AU 1.31 AU 0.035 M _e	1.16 AU 1.85 AU 0.032 M _e	1.53 AU 1.76 AU 0.081 M _e	1.58 AU 1.90 AU 0.064 M _e			
Martian mantl	Martian mantle compositions								
	Taylor (2013)								
SiO ₂	43.7 (1.0)	50.5	47.3	49.5	47.2	42.3			
FeO	18.1 (1.0)	4.94	6.71	6.80	11.8	20.2			
Ni ppm	330 (109)	102	170	168	331	568			
Co ppm	71 (25)	17.3	29.4	28.5	51.2	92			
Nb ppb	501 (7)	621	258	569	696	644			
Ta ppb	27.2 (1)	40	37	39	38	34			
Nb/Ta	19.9 (0.06)*	15.4	7.0	14.5	18.4	18.8			
V ppm	60-105 (R&C)	112	75	109	121	113			
Cr ppm	4990 (420)	3534	2437	3415	4651	4653			
H ₂ O ppm		1786	2225	4769	399	0			
Mass % accreted from H ₂ O- bearing bodies		0.57%	0.68%	1.51%	0.13%	0.0%			

Evolution of a layered structure – results of 100 N-body simulations

Summary

- Combining N-body accretion and core formation models enables the evolution of core and mantle compositions to be modelled
- H₂O could have been accreted relatively early
- Using this approach, the cores of Earth and Venus are predicted to contain 7 wt% silicon and 3 wt% oxygen
- Partitioning of oxygen and silicon into liquid Fe is enhanced by high temperature and batches of core-forming metal contain high concentrations of these elements during late accretion
- Development of a density stratification is inevitable in Earthmass planets but may be destroyed by a giant impact
- The lack of a magnetic field on Venus may indicate a stratified core which has survived due to an absence of late giant impacts

Evolution of the concentration of light elements in Earth's core

Simulation:		4:1-0.5-8	4:1-0.25-7	8:1-0.8-8	8:1-0.25-2	i-4:1-0.8-4	i-4:1-0.8-6
Heliocentric distance		0.969 AU	0.907 AU	1.18 AU	0.936 AU	0.79 AU	0.88 AU
Mantle compositions							1
	Earth PM						
SiO ₂	45.40 (0.30)	45.4 (0.1)	45.3 (0.1)	45.5 (0.1)	45.6 (0.1)	45.5 (0.1)	45.8 (0.1)
FeO	8.10 (0.05)	8.09 (0.01)	8.09 (0.01)	8.10 (0.01)	8.12 (0.01)	8.08 (0.01)	8.10 (0.01)
Ni ppm	1860 (93)	1820 (321)	1810 (404)	1750 (265)	1705 (222)	1770 (295)	1714 (294)
Co ppm	102 (5)	108 (19)	106 (23)	115 (15)	112 (14)	110 (18)	108 (19)
Nb ppb	595 (119)	557 (35)	578 (38)	567 (42)	553 (31)	572 (28)	576 (25)
Ta ppb	43 (2)	40 (1)	41 (1)	41 (1)	40 (1)	40 (1)	40 (1)
Nb/Ta	14.0 (0.3)*	13.8	14.2	13.95	13.85	14.19	14.25
V ppm	86 (5)	89 (27)	87 (29)	84 (30)	85 (28)	88 (26)	90 (28)
Cr ppm	2520 (252)	2980 (426)	2900 (415)	2730 (452)	2805 (433)	2958 (424)	2940 (449)
H ₂ O ppm	1160 (232)	1010	1000	793	806	1066	1013
Mass % accreted from H ₂ O-		0.38 %	0.34 %	0.26 %	0.27 %	0.37 %	0.36 %
bearing bodies							
Core compositions and mass fractions					1	1	1
Fe		81.7	81.3	82.4	82.9	81.6	82.3
Ni		5.14	4.99	5.23	5.28	5.16	5.23
Со		0.24	0.23	0.24	0.24	0.24	0.24
0		3.59	3.71	2.89	2.58	3.85	3.81
Si		8.65	9.03	8.51	8.23	8.40	7.73
Nb ppb		557	532	533	562	514	500
Ta ppb		5.7	5.1	5.0	6.2	5.5	4.6
V ppm		118	127	128	125	118	113
Cr wt%		0.70	0.74	0.75	0.74	0.69	0.70
H ppm		58	28	14	22	34	40
Core mass fraction	0.32	0.312	0.306	0.313	0.311	0.314	0.311

Metal/Silciate partition coefficents at high P/T

Evolution of Earth's mantle composition based on preferred composition-distance model

Final core composition: 82 wt% Fe, 5 wt% Ni, 9 wt% Si, 3 wt% O, 48 ppm H

Evolution of mantle compositions of Mercury and Mars based on preferred composition-distance model

Constraints on core-formation modeling

Earth-mantle concentrations of the non-volatile siderophile elements:

Fe, Si, Ni, Co, Nb, Ta, V and Cr + Nb/Ta

(FeO contents of mantles of Mars & Mercury)

2-5 least-squares fitting parameters:

- 1-4 parameters that define the composition of primitive bodies as a function of their heliocentric distances of origin
- Metal-silicate equilibration pressure as a fraction of a proto-planets's CMB pressure (typically 0.5-0.6).

Cause of oxidation

- Oxygen fugacities of a solar gas are orders of magnitude more reducing than the intrinsic oxygen fugacities at which the terrestrial planets formed but are consistent with the region of highly-reduced compositions at <1.3 AU postulated here. Thus oxidation is required.
- Due to the inward net flow of material in the solar nebula, icecovered dust moves inwards from beyond the snow line.
- Inside the snow line, water ice sublimes, adding H₂O to the vapor phase. As temperatures continue to rise and material continues to move inward, H₂O-rich vapour reacts with Fe-bearing dust, resulting in oxidation.
- Inward still, vapour is H₂O-poor because the products of sublimed water ice have not mixed all the way to the inner-most solar system. Here Fe remains largely free of oxidation.

Evolution of the concentration of light elements in Earth's core

Tested composition-distance models for primitive bodies

Lower mantle seismic observations

Karason & van der Hilst 2000

A peridotitic lower mantle

BSE e.g McDonough & Sun 1995

72 mole % (Mg,Fe)(Al,Si)O₃Bridgmanite

22 mole % (Mg,Fe)O Ferropericlase

6 mole %CaSiO₃ Perovskite

Murakami et al. 2012

•Laser light interacts with phonons and is scattered with Doppler shifted frequency $\Delta \omega$

 $V_i = \Delta \omega \lambda / 2n^* \sin(\theta/2)$

Diamond anvil cell and Brillouin scattering

Brillouin scattering X-ray diffraction lab

$MgSiO_3$ Bridgmanite- room temperature

$(Mg_{0.96}Fe_{0.04})SiO_3$ Bridgmanite- room temperature

Ultrasonic measurements at high pressure and temperature

Chantel et al. (2012) GRL 39,L19307

Thermo-elastic properties of mantle end-members

densities as a function of pressure and temperature in the transition zone and lower mantie.										
Phase	Formula	V_0 (cm ³ /mol)	K ₇₀ (GPa)	К' _{то}	θ. (K)	γ_{\circ}	q _o	G ₀ (GPa)	G ₀ ′	η_{s0}
Wadsleyite	Mg_2SiO_4	4.052	169	4.3	853	1.21	2	112	1.4	2.6
Wadsleyite	Fe ₂ SiO ₄	4.28	169	4.3	719	1.21	2	72	1.4	1.1
Ringwoodite	Mg_2SiO_4	3.949	185	4.2	891	1.11	2.4	123	1.4	2.3
Ringwoodite	Fe ₂ SiO ₄	4.186	213	4.2	652	1.26	2.4	92	1.4	1.8
Ca- Perovskite	CaSiO ₃	10.98	236	3.9	802	1.89	0.9	157	2.2	1.3
Stishovite	SiO ₂	1.402	314	3.8	1055	1.35	2.9	220	1.9	4.6
Perovskite	MgSiO ₃	2.445	250.3	4.02	901	1.44	1.4	176. 8	1.75	2.6
Perovskite	FeSiO ₃	2.54	250.3	4.02	765	1.44	1.4	162. 8	1.5	1.9
Perovskite	FeAIO ₃	2.54	220	4.1	765	1.44	1.4	132	1.7	1.9
Perovskite	AIAIO ₃	2.549	228	4.1	886	1.44	1.4	157	1.7	2.8
Periclase	MgO	1.124	161	3.9	772	1.48	1.6	130	2.3	2.3
Wüstite	FeO	1.226	149	4.9	454	1.54	1.6	47	0.7	0.6

Thermo-elastic paramaters of the mantle phases used for calculating the sound wave velocities and densities as a function of pressure and temperature in the transition zone and lower mantle.

values in italics are taken from Stixrude and Lithgow-Bertelloni (2011); values for perovskite are from Boffa Ballaran et al. (2012); Chantel et al. (2012); Kurnosov et al. (in preparation)

72 mole % (Mg,Fe)(Al,Si)O₃Bridgemanite

22 mole % (Mg,Fe)O Ferropericlase

6 mole %CaSiO₃ Perovskite

 $[K_{\rm D} = ({\rm Fe}/{\rm Mg})_{\rm Mg-Pv}/({\rm Fe}/{\rm Mg})_{\rm Mw}]$

Irifune et al. 2010

Mineral-physics model for a BSE deep mantle

High ferric iron in Bridgmanite

Fe3+/TFe

Irifune et al. 2010

Fe³⁺ content of Bridgmanite in equilibrium with Fe metal

FeO Disproportionation- constant BSE bulk oxygen

Mineral physics model with constant BSE bulk oxygen

- This model does not include AI in perovskite- however previous ultrasonic measurments indicate a limited influence which is currently being tested with Brillouin measurments.

- Vs and Vp estimated for a BSE composition mineral assemblage in the top 1000 km of the lower mantle match seimsic observations.

- Seismic properties of LLSVPs do not match Fe enrichment in a perovskite dominated mineral assemblage.

Conclusions

- Combining N-body accretion and core formation modeling provides new constraints on both processes.
- Accretion of Earth and Venus was heterogeneous
- For Earth, Mars and Venus, excellent results are obtained when embryos and planetesimals that form close to the Sun, at <1-1.5 AU, are highly reduced and bodies that form further from the Sun are partially- to fully-oxidized. Other composition-distance models fail badly.

- H_2O -bearing bodies in the SA154_767 model originate at >8.5 AU and result in ~1000 ppm H_2O in the mantle
- Results are based on impactor cores equilibrating completely, but with a very limited fraction of a proto-planet's mantle, at average pressures of 50-60% of CMB pressures.

Accretion, heating & metal delivery by impacts

Core formation and accretion are multistage processes that cannot be separated

Grand Tack accretion model

- Classical models (e.g. O'Brien et al 2006) consistently result in a model Mars that is too massive
- The Grand Tack model (Walsh et al., 2011) is based on the inward and then outward migration of Jupiter and Saturn that truncates the planetesimal disk at ~1 AU and results in a realistically small mass for Mars.

Modeling planetary accretion

- Late stage accretion of terrestrial planets is modeled using "N-body simulations". The "Grand Tack" model (Walsh et al., 2011) has been especially successful in reproducing the small size of Mars.
- Start with ~<u>40 embryos</u> (0.07 M_e) and ~<u>1500</u> planetesimals (0.0003-0.0035 M_e), initially dispersed between 0.7 AU and 13 AU, and collide/accrete to form larger bodies.
- Combine core-mantle differentiation with N-body accretion models

Accretion history of Grand Tack simulation SA154_767

Here we consider that each accretion event (collision) results in an episode of core formation and we thus model core formation and evolving mantle and core chemistry in all the terrestrial planets simultaneously

Model for the influence of a spin transition in ferropericlase

Wu et al. 2013

