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The long-term carbon cycle in a tectonic context

Total carbon storage in ocean crust: 2160-2650 Mt
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All carbon fluxes represent minima and
maxima from 230 Ma to present-day.

Through a series of chemical reactions and tectonic activity, carbon takes up to 100-200 million years to move
between the deep Earth, ocean, and atmosphere in the slow carbon cycle.

On average, 10—100 million metric tons of carbon move through the slow carbon cycle every year. In comparison,
human emissions of carbon to the atmosphere are on the order of | billion tons per year.

Earth’s degassing is driven by tectonics and volcanism. Can tectonic models help constrain the slow carbon cycle?



Traditional vs. next generation plate models
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Traditional global plate tectonic models often reflect “motorboat tectonics”, with
continents floating on a mantle sea like boats on a lake, without plate boundaries
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® Deep-time Geographic Information
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® Modeling: plate tectonics and plate
deformation with continuously
closing plate boundaries

® Visualization: surface and deep Earth
in 4D — seismic tomography,
geodynamic model outputs
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GPlates - Building a Virtual Earth Through Deep Time
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Holdouts: Tajikistan, Djibouti, Guinea, Western Sahara,
Burundi, Vatikan, North Korea



Evolving plate topologies in GPlates

» Plate tectonics requires connected network of plate boundaries globally
* In GPlates they are called Continuously Closing Plate Polygons (CCP)
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Gurnis et al. Comp. Geosci (2012, 2018); Miiller et al. AREPS (2016)



How to build deforming meshes in GPlates embedded in plate boundary topologies
A M B o

®
®3 ‘

w0
b
L J
A
O
j
——
wU
o

()50

Gurnis et al. (Comp.
Geosci., 2018)

Red dots represent dynamically computed intersections between plate boundaries. Black dots are deformation points, RB=rigid
block, D1=deforming region 1, P1=plate 1. A) Geological data and concepts used in the reconstruction B) Computer representation
of this information.

Implementation of the deforming region must be consistent with the concepts of a continuously closed plate. The continuous
deformation is represented by a triangular mesh, formed by Delaunay triangulation algorithms..



Defining the extent of the deforming region:
outer boundary, inner boundary

We define the extent of the deforming regions from combining geophysics and geology

Stratigraphy Seismic data
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Define age range of deformation from geological data (stratigraphy, thermochronology)



Crustal thinning factors (1 — 1/beta)
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Syn-rift subsidence is linearly
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Modelled present-day crustal thickness of Australia’s Southern Margin

0 Ma

Scale:

Crustal
. Thickness (km)
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Based on an initial crust thickness of 40 km
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Magnetic Anomaly Identifications

>100,000 magnetic anomaly identifications in public repository, Seton et al. (G-cubed, 2014)
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Magnetic Anomaly Identification Age (Ma) based on timescale of Gee and Kent (2007)

The Global Seafloor Fabric and Magnetic Lineation Data Base Project http:/www.soest.hawaii.edu/PT/GSFML/
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Constraining the slow carbon cycle
with plate tectonic models

Degassing along rifts (Brune et al., 2017)

Degassing and weathering of large igneous provinces (Kent and Muttoni, 2013; Johansson
et al., 2018)

Degassing at subduction zones (van der Meer et al. 2014; Lee et al. 2013; Pall et al., 2018)
Degassing at mid-ocean ridges (Keller et al. 2016)
Seafloor weathering (Gillis and Coogan, 2011; Muller and Dutkiewicz, 2018)

Back
Continent  Arc Arc Ocean Island MOR

-

Dasgupta & Hirschmann (2010)
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PUBLISHED ONLINE: 18 JANUARY 2016 | DOI: 10.1038/NGEO2622

Massive and prolonged deep carbon emissions
associated with continental rifting

Hyunwoo Lee™, James D. Muirhead?, Tobias P. Fischer', Cynthia J. Ebinger?, Simon A. Kattenhorn?#,
Zachary D. Sharp' and Gladys Kianiji®

(http://earth.imagico.de)



Slow carbon release from rifts well documented,
but long-term variations unknown

East African Rift
- Eastern Branch (Hutchison et al., 2016)
- Western Branch (Lindenfeld et al., 2012)

Basin and Range (Jolie et al., 2016)

Eger Rift (Weinlich et al., 1999)
Rio Grande Rift (Smith, 2016)

Central Italy (Chiodini et al., 2008)

New Zealand (Seward and Kerrick, 1996)
High CO, flux along rift faults

Muirhead et al. (2016)
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Brune, Williams, Muller
(Nature Geoscience, 2017)



—— Rift from reconstruction @)  Rift from geological record
(Sengor & Natal'in, 2001)

190 Ma

Brune, Williams, Muller
(Nature Geoscience, 2017)



—— Rift from reconstruction @)  Rift from geological record
(Sengor & Natal'in, 2001)

180 Ma

Brune, Williams, Muller
(Nature Geoscience, 2017)
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(Sengor & Natal'in, 2001)

170 Ma

Brune, Williams, Muller
(Nature Geoscience, 2017)



—— Rift from reconstruction @)  Rift from geological record
(Sengor & Natal'in, 2001)

160 Ma

Brune, Williams, Muller
(Nature Geoscience, 2017)



—— Rift from reconstruction @)  Rift from geological record
(Sengor & Natal'in, 2001)

150 Ma

Brune, Williams, Muller
(Nature Geoscience, 2017)
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(Sengor & Natal'in, 2001)

140 Ma

Brune, Williams, Muller
(Nature Geoscience, 2017)



—— Rift from reconstruction @)  Rift from geological record
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130 Ma

Brune, Williams, Muller
(Nature Geoscience, 2017)
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120 Ma

Brune, Williams, Muller
(Nature Geoscience, 2017)
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110 Ma

Brune, Williams, Muller
(Nature Geoscience, 2017)
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100 Ma

Brune, Williams, Muller
(Nature Geoscience, 2017)
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90 Ma

Brune, Williams, Muller
(Nature Geoscience, 2017)
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80 Ma

Brune, Williams, Muller
(Nature Geoscience, 2017)
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70 Ma

Brune, Williams, Muller
(Nature Geoscience, 2017)



—— Rift from reconstruction @)  Rift from geological record
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60 Ma

Brune, Williams, Muller
(Nature Geoscience, 2017)
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50 Ma

Brune, Williams, Muller
(Nature Geoscience, 2017)
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40 Ma

Brune, Williams, Muller
(Nature Geoscience, 2017)
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30 Ma

Brune, Williams, Muller
(Nature Geoscience, 2017)
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20 Ma

Brune, Williams, Muller
(Nature Geoscience, 2017)
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10 Ma

Brune, Williams, Muller
(Nature Geoscience, 2017)
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0 Ma

Brune, Williams, Muller
(Nature Geoscience, 2017)



(a) Rift length from tectonic reconstruction and geological record
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Rift length and atmospheric CO,

Global rift length history
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Tectonic CO, release rates through time
show that rift-related CO, degassing
rates reached more than 300% of
present-day values

Two prominent periods of enhanced
rifting 160 to 100 million years ago and
after 55 million years ago coincided with
greenhouse climate episodes, with
elevated atmospheric CO,
concentrations

Continental fragmentation and long-
term climate change may be causally
linked via massive CO, degassing in
rift systems
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RESEARCH LETTER The Interplay Between the Eruption and Weathering of Large
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107023/201 7007069 Igneous Provinces and the Deep-Time Carbon Cycle
Key Points: Louis Johansson' (", Sabin Zahirovic' |, and R. Dietmar Miiller' )
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and subsequent movement of 'EarthByte Group, School of Geosciences, University of Sydney, Camperdown, New South Wales, Australia, *Sydney
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Silicate weathering

® CO, dissolved in rainwater reacts with silicate
minerals, forming new minerals, consuming CO,

® CaSiO; + 2CO, + 3H,0 = Ca2* + 2HCO;~ + H,SiO,

The increased flux of sediments into the oceans
during mafic rock weathering enhances carbon
burial, sequestering CO, via biogenic processes
involving various creatures making their shells or
skeletons from calcium carbonate

Ca.2++ 2HCO3_ = CaCO3 + CO2 + H2O

2007 Pearson Education Inc., publishing as Pearson Addison-Wesley
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Distribution of LIPs reconstructed using the Matthews et al. (GPC, 2016) plate
reconstruction based on a pure paleomagnetic reference frame (no hotspot
tracks used) and the paleogeographies of Cao et al. (Biogeosciences, 2017)

402 Ma Initial effect of LIP emplacement is
CO, degassing

Wavelet analysis reveals significant
correlations between the eruption of
the Emeishan LIP (259 Ma), the
Siberian Traps (251 Ma), the
Central Atlantic Magmatic Province
(CAMP) (201 Ma), the High Arctic
LIP (130 Ma), the Deccan Traps (65
Ma) and the North Atlantic Igneous
Province (55 Ma) withshort-term
perturbations in atmospheric CO..

I Central Atlantic Magmatic Province [ Afar Arabian LIP [ Other Continental LIPs
B Deccan Traps [ Siberian Traps 3 Oceanic LIPs

Light green: equatorial humid zone https://www.youtube.com/watch?v=m9MDIb8V7S8
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A cross-wavelet analysis reveals
a relationship between the
weathering of the Central
Atlantic Magmatic Province
(CAMP) (~200-100 Ma), the
Deccan Traps (50-35 Ma) and
the Afar Arabian LIP (30-0 Ma)
and atmospheric CO, drawdown.



Remobilization of crustal carbon may
dominate volcanic arc emissions

Emily Mason, Marie Edmonds,* Alexandra V. Turchyn

Volcanic arc
Large fluxes of CO,

. g

Incorporation hydrothermal or
biological components

Inorganic (~0%o)
and organic carbon
Sediments (40 to -20%o)
_— ., o — X
Oceanic crust — — Accretion
carbonate
. platforms

Carbon may be remobilized from the slab by
Assnmlllatlon | metamorphic decarbonation or by
cusialcabonate, 0% mawre dissolution into ionic supercritical fluids or

tinental
e may be returned to the deep mantle.

Oceanic mantle ‘ e Bl ' :
ithosphere N, . On ascent through the crust, magmas may
- Seeitl interact with crustal carbonate incorporated

mantle lithosphere | . .

into the crust e.g. by accretion of limestone
platforms or switching of a passive to an
active margin, assimilating CO,-rich fluids,
N, e which then outgas during ascent and
Return of carbon to deep mantle erupti on at the surface
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N Carbonate dlSSO|UtI0n "~ Asthenosphere

Asthenosphere

Science (2017)



Clim. Past, 14, 857-870, 2018

https://doi.org/10.5194/cp-14-857-2018 Climate ¢ ¢
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The influence of carbonate platform interactions with
subduction zone volcanism on palaeo-atmospheric
CO, since the Devonian

Jodie Pall', Sabin Zahirovic', Sebastiano Doss!, Rakib Hassan!2, Kara J. Matthews'->, John Cannon',
Michael Gurnis®, Louis Moresi’, Adrian Lenardic®, and R. Dietmar Miiller!

'EarthByte Group, School of Geosciences, University of Sydney, Sydney, NSW 2006, Australia
2Geoscience Australia, GPO Box 378, Canberra, ACT 2601, Australia

3 Arctic institute of North America, University of Calgary, Calgary, Alberta T2N 1N4, Canada
4Seismological Laboratory, California Institute of Technology, Pasadena, California 91125, USA
>School of Earth Sciences, University of Melbourne, Melbourne, Victoria 3010, Australia
6Department of Earth Science, Rice University, Houston, Texas 77005, USA



(@) Subduction
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Digitise carbonate
platforms through time
from Kiessling et al.
(2003)

Compute intersections
between subduction
zones and carbonate
platforms on overriding
plate since 410 Ma.
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Carbonate platform duration (Myr)
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Carbonate Platform Duration [Myr]

https://www.voutube.com/watch?v=8JeSHiIPrCCA&t=4s

Plate reconstructions with plate boundaries (black),
subduction zones (purple) and distributions of
carbonate platforms, colour-coded by the duration
of carbonate platform activity.

We set Precambrian and early Phanerozoic
carbonate occurrences to appear at the beginning of
the model at 400 Ma.



Atmospheric CO, concentration (ppm)

Subduction zone — carbonate platform intersections
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Woavelet analysis

Cross-wavelet transform (XWT; top) and wavelet
transform coherence (WTC; bottom)

WTC indicates significance level of cross-spectral
power (XWT) between atmospheric CO, and
subduction zone intersecting carbonate platforms

Generally poor correlation, with the exception of
Paleogene (~60-40 Ma)

Possible connection to Eocene hothouse climate, but
increased CO, emissions from rifting dominant

Main signal is a long-term increase in subduction zone
intersecting carbonate platforms after the breakup of
Pangea, explaining Mason et al.’s (2017) observations
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(a) XWT: CISZ lengths
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° THE UNIVERSITY OF e _
Conclusions SYBNEY @ Eartheute

o Plate tectonic reconstructions can be used to constrain time-
dependent models of rift degassing, LIP volcanic degassing and
weathering, and subduction fluxes of carbon

o Seafloor weathering can also be constrained (see our recent
paper in Science Advances)

RESEARCH ARTICLE GEOCHEMISTRY

Oceanic crustal carbon cycle drives 26-million-year
atmospheric carbon dioxide periodicities

R. Dietmar Miiller""2* and Adriana Dutkiewicz'
+ See all authors and affiliations

Science Advances 14 Feb 2018:

Vol. 4, no. 2, eaaq0500
DOI: 10.1126/sciadv.aaq0500
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A full-plate global reconstruction of the Neoproterozoic
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Resources to build a virtual planet

EarthByte Group: www.earthbyte.org (published plate models and data
downloadable)

GPlates and pyGPlates software: www.gplates.org

GPlates Portal for interactive virtual globes: portal.gplates.org

1,000.00 Ma




