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The early stages of planetary evolution

Early stages = Initial condition ➪ long term evolution

Massive early
atmosphere

MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMoooooooooooooooooooooooooooooooooooooddddddddddddddddddddddddddddddddddddddddddddddddeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeerrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaattttttttttttttttttttttttttttttttttttttttttttmosphereContinental crust

Lithospheric mantle
M

ag
m

a
oc

ea
n

Solid

pactp tpactpImpImpImm
gassingngggsassgagdegdeddegg

Degassing

Atmosphere–
magma ocean
equilibration

Today<4.44 billion years agogogogogogoagoagoagoagoagoagoagoago agos agos agos agos agos agos agors agors agors agors agoars agoars agoars agars agars agars agears agears aears aears a444

Hydrodynamic
gas loss

Mid-ocean
ridge

Convecting
mantle

Ocean
islandUndegassed

material? Core

65
64
63
62
61
60
59
58
57
56
55
54
53
52
51
50
49
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10

9
8
7
6
5
4
3
2
1

1247

By applying current concepts in
metabolic regulation to the study of scal-
ing, Darveau et al. are left to conclude that
most previous attempts at understanding
the mouse-to-elephant curve were simply
red herrings. If their approach holds up to
the intense scrutiny that it will no doubt
receive, their contribution will fan studies

of Kleiber’s “f ire of life,” as would a
breath of fresh air.
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S C I E N C E ’ S C O M P A S S

Recent advances in seismic tomogra-
phy and dynamic modeling of
Earth’s interior have reopened the

question of how Earth’s mantle has
evolved. Did the mantle evolve as a chem-
ically layered system, or has it always con-
vected as a whole? And what are the con-
sequences for the preservation and loca-
tion of its geochemical components? 

Noble gases trapped in the silicate man-
tle may hold the key to resolving this ques-
tion. These volatile, unreactive, and silicate-
incompatible elements give us information
about the origin of terrestrial volatiles and
the processes and conditions in early Earth
history that have incorporated these ele-
ments into the silicate mantle (rather than
partitioning them into the atmosphere).
They further constrain how much of the
mantle’s volatiles have escaped to the atmo-
sphere over Earth’s history, and they pre-
serve a record of volatile-rich regions still
existing in the mantle today. 

The noble gases He, Ne, Ar, Kr, and Xe
produced by radioactive decay (mostly
from U, Th, and K) differ in their isotopic
composition from the original or “primor-
dial” noble gases. Primordial noble gases
in today’s Earth originate either directly
from the solar nebula or from volatiles
trapped in accreting material (such as me-
teorites hitting the early Earth). Compared
with these sources, the primordial noble
gases in today’s terrestrial atmosphere are
enriched in their heavy isotopes.

The enrichment may be a result of the
loss of an early, dense atmosphere in the
first 100 million years of Earth’s history (1).
During a high-energy phase of the early
Sun, hydrogen streamed from this atmo-
sphere into space, carrying with it lighter
volatile elements and isotopes (2). However,
different noble gases have varying degrees
of enrichment that cannot be caused by a
single event. Differential release of noble

gases from the mantle into the atmosphere
because of their different solubilities in
magma, combined with various stages of at-
mosphere loss, may provide the answer (3).

Noble gases trapped since accretion are
still degassing from the mantle into the atmo-
sphere today. The ratio of primordial to radio-
genic noble gas isotopes in mantle material,
for example, 3He/4He, reflects the ratio of
noble gas to U and Th. Basalts from mid-
ocean ridges, which sample the upper mantle,
have a remarkably uniform 3He/4He ratio. In
contrast, 3He/4He ratios of ocean island
basalts may be lower or higher than at the
ridges. Major ocean island “hot spots,” such
as Hawaii and Iceland, have a higher 3He/4He
ratio than mid-ocean ridges, an observation
that has been a cornerstone of the “layered
mantle” model that has dominated mantle

geochemistry for the last 20 years. In this
model, ocean island volcanoes sample a low-
er, more volatile-rich layer that has been pre-
served over Earth’s lifetime below the seis-
mic discontinuity at 670 km depth.

This model has recently come under
scrutiny. Tomographic images have pro-
vided evidence for subducted material
passing through the 670-km discontinuity
(4). And numerical models of mantle con-
vection show that neither the high viscosi-
ty of the lower mantle nor the phase
change at 670 km can preserve layering or
large-scale geochemical heterogeneity in
the deep mantle (5). The models also show
that the observed mass balance of radio-
genic noble gas between atmosphere and
mantle is not unique to a layered mantle
(5). This presents us with a fundamental
problem: How and where are primordial
noble gases preserved in the mantle?

The problem is compounded by the fact
that a large portion of ocean island basalt
stems from material that has been subduct-
ed and recycled into the mantle (6). Recy-

P E R S P E C T I V E S : G E O C H E M I S T RY

Tiny Tracers Tell Tall Tales
Chris J. Ballentine

The author is in the Department of Earth Sciences,
University of Manchester, Manchester M13 9PL, UK.
E-mail: cballentine@fs1.ge.man.ac.uk

www.sciencemag.org SCIENCE VOL 296 17 MAY 2002

Then and now. During accretion, large bodies are efficiently degassed on impact (left), yet noble
gas measurements suggest that reservoirs within Earth’s mantle remain volatile-rich today (right).
Possible causes include equilibration between a magma ocean and an early massive atmosphere, or
incorporation of undegassed material into the mantle, perhaps from an early stage of accretion.
Any model describing the evolution of the mantle must account for why different regions in the
mantle preserve distinct geochemical signatures in a dynamic convecting regime.

[Ballentine, 2002]
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Early differentiation: Core Formation
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✓ Metallic core present on several terrestrial bodies 
✓ Core formation:  First major differentiation event in terrestrial planets

What are the constraints?
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Constraints on core formation: Summary

✓Hf/W  chronometry 
➪ Fast process: t <100 Myrs  

✓ Overabundance of siderophile elements (Ni, Co...) in mantle 
➪ Requires time for Fe-Si equilibration 

✓High T process (”Si-Fe” separation)  
➪ Melting 
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How did it happen?



Several possible core formation scenarios

detail by Karato and Murthy (1997). When liquid iron ponds
as a layer at the base of a magma ocean (Figure 8), gravita-
tional instabilities develop due to the density contrast with the
underlying silicate-rich material and cause diapir formation.
Their size and rate of descent through the mantle depend on
the initial thickness of the metal layer and the viscosity of the
silicate mantle. Clearly, gravitational heating will be important
and will facilitate diapir descent by reducing the viscosity of
the adjacent mantle. In contrast to magma ocean segregation,
there will be no significant chemical exchange between metal
and silicate, chemical disequilibrium will result, and sidero-
phile element abundances in the mantle cannot be a conse-
quence of this mechanism (Karato and Murthy, 1997; see also
Chapter 9.02).

Liquid iron ponded at the base of the magma ocean may
also, under the right conditions, sink rapidly toward the Earth’s
core by diking. Although it may be supposed that the hot, but
nevertheless crystalline, mantle underlying the magma ocean
cannot support brittle cracks, numerical studies summarized in
Rubin (1995) indicate that dikes can still form, so long as the
contrast in viscosity between the fluid in the dike and the
surrounding host rocks is greater than 1011–1014. With a vis-
cosity around 10!2 Pa s, liquid iron is thus expected to form
dikes if the viscosity of the host rock exceeds 109–1012 Pa s.
Given that the viscosity of the asthenosphere today is around
1019 Pa s, it is not unreasonable to expect the iron to reach the
core via narrow dikes rather than as diapirs. In this case, even
less time is required for the rapidly descending iron to reach
the core and thus less time for the iron to chemically equili-
brate with the surrounding mantle. Indeed, even in the present
Earth, Stevenson (2003) has proposed that masses of molten
iron as small as 108 kg (which would fill a cube about 25 m on
a side) could travel from the Earth’s surface to the core in about
1 week.

9.03.2.3.4 Summary and implications for chemical
equilibration
A schematic illustration of how the various differentiation
mechanisms might operate together is shown in Figure 8.
Liquid metal separates rapidly from liquid silicate in a deep
magma ocean and accumulates as ponded layers at the rheo-
logical base of the magma ocean. The ponded iron then
migrates through the largely crystalline underlying mantle
toward the protocore by either percolation, diapirism, or
diking. According to experimental results summarized earlier,
percolation is unlikely to be a completely efficient mechanism,
even when catalyzed by shear deformation, but the mechanism
may at least contribute to core formation. Whether the diking
mechanism shown in Figure 8 is dominant or the iron
descends in diapirs initiated by Rayleigh–Taylor instabilities
depends upon poorly known material properties, such as vis-
cosity, that make it difficult to make definite inferences about
the mechanism. What seems to be clear is that, once liquid iron
accumulates in large masses on the floor of the magma ocean,
it then descends rapidly to the Earth’s core without further
chemical interaction with the underlying silicate.

Despite the rapid transit times associated with falling iron
drops and the somewhat longer timescales of percolative flow,
the inferred length scales are small enough that complete
chemical equilibration is expected. Conversely, descending
iron diapirs are sufficiently large that chemical equilibrium is
expected to be negligible (Karato and Murthy, 1997). Thus, the
different differentiation mechanisms have very different chem-
ical consequences. However, the magnitude of these chemical
effects also depends on the relative abundances: a late passage
of 1% core material through the mantle may well have a strong
effect on mantle siderophile element abundances (e.g., W or
Pt) but will have little effect on major element concentrations
(e.g., oxygen) simply because the core material will become
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Figure 8 (a) Schematic diagram showing the various processes of metal–silicate segregation that could have operated during Earth accretion and core
formation. The rheological base of the magma ocean is defined as the point at which the melt fraction drops below "60% (Solomatov, 2000).
(b) Schematic illustration of the temperature structure in the early Earth, adapted from Walter MJ and Tronnes RG (2004) Early Earth differentiation.
Earth and Planetary Science Letters 225: 253–269. The solidus curve in the lower mantle is based on Boehler (2000), but according to more recent
determinations (Fiquet et al., 2010; Andrault et al., 2011; Liebske and Frost, 2012), solidus temperatures are considerably lower (e.g., "3200 K at
60 GPa). The 60% melt fraction line is schematic.
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Focus on negative diapirism in: 
✓ partially molten proto-mantle 
✓ fully molten magma ocean

Do diapirs breakup? 
Timing for fragmentation? 

Consequences for Fe-Si equilibration? 
Consequences for Fe-Si heat partitioning?

1. Setup and parameter space 

2. Influence of the parameters 

3. Implications 



Fluid dynamics description of negative diapirism
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Modelling approach

J.-B. Wacheul et al. / Earth and Planetary Science Letters 403 (2014) 236–245 241

Fig. 4. Successive snapshots with a fixed time interval !t = 0.18 s for a 30 mm initial radius diapir falling through pure glycerol, corresponding to Rea = 37, Wea = 64 and a 
viscosity ratio of 500. One can notice that the mean speed of the front of the diapir is rather constant.

breakup of metal diapirs does not create droplets of one single 
size but a whole distribution of equivalent radii, in agreement with 
the simulations of Ichikawa et al. (2010). Because the formation of 
drops results from the generic process of ligament rupture, their 
size distribution is well fitted by a Gamma distribution, whose 
probability density function p writes:

p(x) = xk−1e−x/θ

θkΓ (k)
, (6)

where k is the shape of the Gamma distribution, θ its scale, and 
Γ (k) is the Gamma function evaluated at k. Such a Gamma distri-
bution of droplet sizes is similar to the one obtained in the case of 
water drops in the air (Villermaux and Bossa, 2009). Note however 
that in this last case, the viscosity ratio is reverse (i.e. the more 
viscous fluid is inside) and the shapes of the obtained drops are 
very different. Our distribution is tightened around a mean radius 
of 4 mm. This value can be related to a breakup criterion, now 
understood in a statistical sense: surface tension sets the charac-
teristic length scale of the distribution, the mean radius. Using our 
experimental results, the critical Weber number corresponding to 
this radius is Wec ≃ 1. The distributions obtained for diapirs with 
different initial sizes are similar to the one shown in Fig. 6, and so 
is the measured mean radius, provided that these diapirs are large 
enough to create a distribution of sizes that converges statistically. 
This condition is verified for the 4 biggest classes of diapirs that 
we have produced.

Fig. 7 shows series of snapshots from 4 experiments with the 
same initial diapir but different viscosity ratios. With our present 
set-up, because a large number of drops are superimposed on the 
video images, it was not possible to detect their individual con-
tours for a viscosity ratio smaller than 50. Hence we could not 
perform a systematic quantitative study of the sizes distribution 
as a function of rµ . But relying on direct observation, we see that 
there is a clear tendency for large viscosity ratios to stabilize big-
ger drops, as already noticed in Section 4 for single structures. In 

all cases, we expect to systematically recover a Gamma-type dis-
tribution for the equivalent radii. This means that the distributions 
always have the same shape, with a peak at a small scale corre-
sponding to Wec ≃ 1, and an exponential tail. But we expect the 
slope of this tail to be significantly more gentle when the vis-
cosity ratio increases. This corresponds to a decreasing value of 
the shape of the Gamma distribution: for instance, Villermaux and 
Bossa (2009) found a shape value of 4 for the breakup of water in 
the air (viscosity ratio 2 × 10−2), while we find a shape of 2.2 for 
a viscosity ratio of 50, as shown in Fig. 6.

6. Simultaneous distributions of sizes and velocities

The interactions between the droplets lead to a wide range of 
sizes and velocities in our experiments. Fig. 8 shows the distribu-
tion of sizes and speeds for a viscosity ratio rµ = 50 and a diapir 
with an initial radius of 23 mm, using the values obtained from a 
space–time diagram at a distance of 140 cm from the initial posi-
tion of the center of mass of the diapir. It is plotted in the same 
way as in Ichikawa et al. (2010). The fact that velocities are calcu-
lated from the travel time through the tank averages out a large 
part of the variability due to raw turbulence and allows us to then 
consider the mean structure of the flow. Interestingly, the drops’ 
velocities do not follow a Newtonian scaling based on their indi-
vidual radius, even when adjusting the pre-factor (see Fig. 8). This 
result seems to validate the entrainment hypothesis described by 
Deguen et al. (2011, 2014): after the breakup, the drops fall as an 
interacting cloud whose velocity is determined by the inertia of 
the whole flow, related to the initial mass of the diapir. Additional 
fluctuations are related to the turbulent mixing and interactions 
between drops.

7. Typical equilibration length

We can estimate a rough length scale of equilibration following 
the same reasoning as in Samuel (2012), but using the distribution 

[Wacheul et al., 2014]
[Villermaux, 2007]

[Samuel, 2012]
[Ichikawa et al., 2010]
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Modelling approach

“A theory is something nobody believes, except the person 
who made it. An experiment is something everybody 
believes, except the person who made it.”  —Albert Einstein

J.-B. Wacheul et al. / Earth and Planetary Science Letters 403 (2014) 236–245 241

Fig. 4. Successive snapshots with a fixed time interval !t = 0.18 s for a 30 mm initial radius diapir falling through pure glycerol, corresponding to Rea = 37, Wea = 64 and a 
viscosity ratio of 500. One can notice that the mean speed of the front of the diapir is rather constant.
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Modelling approach

“A numerical experiment is something nobody believes, except 
the person who made it. A laboratory experiment is something 

everybody believes, except the person who made it.”

J.-B. Wacheul et al. / Earth and Planetary Science Letters 403 (2014) 236–245 241

Fig. 4. Successive snapshots with a fixed time interval !t = 0.18 s for a 30 mm initial radius diapir falling through pure glycerol, corresponding to Rea = 37, Wea = 64 and a 
viscosity ratio of 500. One can notice that the mean speed of the front of the diapir is rather constant.
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Γ (k) is the Gamma function evaluated at k. Such a Gamma distri-
bution of droplet sizes is similar to the one obtained in the case of 
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that in this last case, the viscosity ratio is reverse (i.e. the more 
viscous fluid is inside) and the shapes of the obtained drops are 
very different. Our distribution is tightened around a mean radius 
of 4 mm. This value can be related to a breakup criterion, now 
understood in a statistical sense: surface tension sets the charac-
teristic length scale of the distribution, the mean radius. Using our 
experimental results, the critical Weber number corresponding to 
this radius is Wec ≃ 1. The distributions obtained for diapirs with 
different initial sizes are similar to the one shown in Fig. 6, and so 
is the measured mean radius, provided that these diapirs are large 
enough to create a distribution of sizes that converges statistically. 
This condition is verified for the 4 biggest classes of diapirs that 
we have produced.

Fig. 7 shows series of snapshots from 4 experiments with the 
same initial diapir but different viscosity ratios. With our present 
set-up, because a large number of drops are superimposed on the 
video images, it was not possible to detect their individual con-
tours for a viscosity ratio smaller than 50. Hence we could not 
perform a systematic quantitative study of the sizes distribution 
as a function of rµ . But relying on direct observation, we see that 
there is a clear tendency for large viscosity ratios to stabilize big-
ger drops, as already noticed in Section 4 for single structures. In 

all cases, we expect to systematically recover a Gamma-type dis-
tribution for the equivalent radii. This means that the distributions 
always have the same shape, with a peak at a small scale corre-
sponding to Wec ≃ 1, and an exponential tail. But we expect the 
slope of this tail to be significantly more gentle when the vis-
cosity ratio increases. This corresponds to a decreasing value of 
the shape of the Gamma distribution: for instance, Villermaux and 
Bossa (2009) found a shape value of 4 for the breakup of water in 
the air (viscosity ratio 2 × 10−2), while we find a shape of 2.2 for 
a viscosity ratio of 50, as shown in Fig. 6.

6. Simultaneous distributions of sizes and velocities

The interactions between the droplets lead to a wide range of 
sizes and velocities in our experiments. Fig. 8 shows the distribu-
tion of sizes and speeds for a viscosity ratio rµ = 50 and a diapir 
with an initial radius of 23 mm, using the values obtained from a 
space–time diagram at a distance of 140 cm from the initial posi-
tion of the center of mass of the diapir. It is plotted in the same 
way as in Ichikawa et al. (2010). The fact that velocities are calcu-
lated from the travel time through the tank averages out a large 
part of the variability due to raw turbulence and allows us to then 
consider the mean structure of the flow. Interestingly, the drops’ 
velocities do not follow a Newtonian scaling based on their indi-
vidual radius, even when adjusting the pre-factor (see Fig. 8). This 
result seems to validate the entrainment hypothesis described by 
Deguen et al. (2011, 2014): after the breakup, the drops fall as an 
interacting cloud whose velocity is determined by the inertia of 
the whole flow, related to the initial mass of the diapir. Additional 
fluctuations are related to the turbulent mixing and interactions 
between drops.

7. Typical equilibration length

We can estimate a rough length scale of equilibration following 
the same reasoning as in Samuel (2012), but using the distribution 

[Wacheul et al., 2014]
[Villermaux, 2007]

[Samuel, 2012]
[Ichikawa et al., 2010]
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Influence of inertia vs. viscous effects (Re)

We→∞

Large Re (small viscous effects) favour breakup 
Post-breakup diapir sizes decrease with increasing Re

(no surface tension)
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Influence of surface tension (We)
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Newtonian rheology:  Influence of the Fe-Si viscosity contrast
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Rheological transitions & non-Newtonian rheology for partially 
molten silicates

case, breaks down due to the anisotropic wetting
behavior of the olivine+MORB system [1,3,36–39].
Therefore, calculation of ϕRCMF using this model is
complex.

1.2. The grey area between the solid-dominated and
fluid-dominated flow behavior

Due to anisotropy in wetting behavior, a fraction of
the solid grains remains in contact above the theoretical
value of the RCMF. However, for all partially molten
rocks with ϕ>0.35, the molten phase is presumed to
dominate the behavior of the rock as most of the solid
grains are surrounded by fluid, removing the majority of
the solid–solid grain contacts [40–43]. At melt fractions
just below this disaggregation point but above the steep
drop in viscosity at the RCMF, the solid material still
contributes enough to the rock strength that the viscosity
differs from that of the fluid phase. For viscosity
measurements on samples with ϕ>0.35, experimental
results indicate that the bulk rock viscosity (e.g., [44]) is
reasonably well described by the Einstein–Roscoe
equation [45]:

grock ¼ gliqð1:35/−0:35Þ
−2:5 ð4Þ

Based on Eq. (4), the viscosity of a rock composed of
olivine +50% MORB is only about an order of
magnitude larger than the melt viscosity.

The value for the RCMF is used in the determination of
time scales in the evolution of an early planetary mantle
from a cooling magma ocean [15,16]. As a magma ocean
cools and the crystal fraction (and hence the viscosity) in
the primordial mantle increases, the vigor of convection
(as determined by the Rayleigh number) decreases by
orders of magnitude. This drop in convective vigor will

contribute to chemical differentiation as well as to the
formation and thickening of the crust due to a decrease in
basal erosion of the lithosphere. If ϕRCMF=0.40, a time
span of a few hundred to a thousand years would be
required for a completely molten mantle in a terrestrial
planetary body (magma ocean) to form a partially
crystallized and chemically fractionated mantle [16]. A
smaller value for ϕRCMF would decrease this time due to
efficient cooling by convection.

1.3. Motivation for our experiments

Previously published work on partially molten
peridotite has yielded a flow law for the olivine
+MORB system over the range 0≤ϕ<0.15 [3,6,26].
Data are lacking for the larger melt fractions needed to
describe the flow behavior of highly molten environ-
ments. In this paper, we present experimental results
from creep tests on partially molten peridotites with
0.15≤ϕ≤0.30 and further refine the empirically
derived flow law to encompass this extended range in
melt fraction.

2. Experimental details

2.1. Sample preparation

We fabricated peridotite samples from dried powders
of San Carlos olivine (∼Fo90) and dried powders of a
quenched glass of tholeiitic basalt (MORB). We used
two categories of samples in our study, (1) fine-grained
olivine (d≈10 μm) for deformation experiments
primarily in the diffusion creep regime and (2) coarser
grained olivine (d≈50 μm) to reduce the contribution of
diffusion creep and increase the contribution of
dislocation creep.

Fig. 1. Sketch of the change in microstructure anticipated as ϕ increases from below to above the RCMF in a texturally equilibrated partially
molten rock. With peridotite as an example, olivine is represented by light grey hexagonal grains and basalt by dark grey. Initially, melt is present
in three-grain junctions. With an increase in melt fraction, the melt pockets expand to meet the neighboring triple junctions at ϕRCMF. Modified
from [34].

179T. Scott, D.L. Kohlstedt / Earth and Planetary Science Letters 246 (2006) 177–187

[Scott et.al, 2005]
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non-Newtonian rheology influence is 
stronger for smaller Re values

non-Newtonian rheology favours 
breakup

Newtonian (n=1) vs. Non-Newtonian rheology (n=3.5) 
stability diagrams
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Viscous heating and heat partitioning
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Viscous heating and heat partitioning

Rheology and dynamical history have a strong influence on Fe-Si heat partitioning
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Conclusions

1. Negative diapirism in a fully liquid or partially molten silicate magma ocean 
✓ Stability favoured for small Re and  We and Newtonian rheology 
✓ Low viscosity diapirs favour breakup at low Re but prevents breakup at high Re 
 ➪ Characterised via scaling laws  

2. Equilibration silicate magma ocean on a proto-earth 
➪ Fully Terrestrial magma ocean: most likely achieved  
➪ Partially Terrestrial magma ocean: unlikely / uncertain 

3. Viscous heating and heat partitioning 
✓ Maximum viscous dissipation (thus temperature increase) @  interface 
✓ Negative diapirism favors higher lower mantle temperatures  
✓ Small diapirs lead to hotter core (“stronger” dynamos) 
✓ Silicate rheology has a strong influence on heat partitioning: non-Newtonian (partially 
molten) viscosity favours hotter silicates and colder metal diapirs

Core formation has an huge influence on Earth evolution



What next?

Need better constraints on the rheology of silicates 
Partially molten case ➪ σT=f(melt fraction, pressure, composition) 
Fully molten case ➪ η=f(melt fraction, pressure, temperature,composition)

Future/ongoing investigations 
➪ Effect of turbulence on heat partitioning 
… and many other things…
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