Iron flow in Earth's molten silicate proto-mantle

Henri Samuel

The early stages of planetary evolution

Early stages = Initial condition <> long term evolution

Early differentiation: Core Formation

✓ Metallic core present on several terrestrial bodies

✓ Core formation: First major differentiation event in terrestrial planets

What are the constraints?

Constraints on core formation: Summary

✓Hf/W chronometry⇒ Fast process: t <100 Myrs

✓ Overabundance of siderophile elements (Ni, Co...) in mantle
⇒ Requires time for Fe-Si equilibration

```
✓ High T process ("Si-Fe" separation)➡> Melting
```

How did it happen?

Several possible core formation scenarios

Several possible core formation scenarios

Fluid dynamics description of negative diapirism

Modelling approach

Numerical experiments

[Ichikawa et al., 2010] [Samuel, 2012]

Analog/"Tank" experiments

[Villermaux, 2007] [Wacheul et al., 2014]

Modelling approach

"A theory is something nobody believes, except the person who made it. An experiment is something everybody believes, except the person who made it." —Albert Einstein

[Ichikawa et al., 2010] [Samuel, 2012]

Analog/"Tank" experiments

[Villermaux, 2007] [Wacheul et al., 2014]

Modelling approach

"A <u>numerical experiment</u> is something nobody believes, except the person who made it. A <u>laboratory experiment</u> is something everybody believes, except the person who made it."

[Ichikawa et al., 2010] [Samuel, 2012]

Analog/"Tank" experiments

[Villermaux, 2007] [Wacheul et al., 2014]

3D Eulerian-Lagrangian Finite-Volume modeling

Momentum & continuity: Implicit with exponential scheme / TVD RK explicit projection scheme with 3rd order WENO discretisation of non-linear advection terms
Essentially monotone, efficient for both large and small Reynolds number values

✓ Cons. composition: Particle-Marker two-way [Samuel, 2014] refined narrow-band Level-set

- Sub-grid-scale resolution with good mass preservation at all times (error < 1%)
- Surface tension accurately accounted for via a Continuum Surface Force Model
- ✓ Benchmarked against analytical and numerical solutions

3D Eulerian-Lagrangian Finite-Volume modeling

Momentum & continuity: Implicit with exponential scheme / TVD RK explicit projection scheme with 3rd order WENO discretisation of non-linear advection terms
Essentially monotone, efficient for both large and small Reynolds number values

✓ Cons. composition: Particle-Marker two-way [Samuel, 2014] refined narrow-band Level-set

- Sub-grid-scale resolution with good mass preservation at all times (error < 1%)
- Surface tension accurately accounted for via a Continuum Surface Force Model
- ✓ Benchmarked against analytical and numerical solutions

3D Eulerian-Lagrangian Finite-Volume modeling

Momentum & continuity: Implicit with exponential scheme / TVD RK explicit projection scheme with 3rd order WENO discretisation of non-linear advection terms
Essentially monotone, efficient for both large and small Reynolds number values

✓ Cons. composition: Particle-Marker two-way [Samuel, 2014] refined narrow-band Level-set

- Sub-grid-scale resolution with good mass preservation at all times (error < 1%)
- Surface tension accurately accounted for via a Continuum Surface Force Model
- ✓ Benchmarked against analytical and numerical solutions

Re = Inertia / Viscous effects: $\frac{\rho_s V_{\infty} R}{\Gamma}$	We = Inertia / Surface tension: $\frac{\rho_s V_{\infty}^2 R}{2}$
η_s	σ

√diapir radius, R= 10^{-3} - 10^{5} m √silicate viscosity, η_s = 10^{-4} - 10^{14} Pa s

√diapir radius, R= 10^{-3} - 10^{5} m √silicate viscosity, η_s = 10^{-4} - 10^{14} Pa s

√diapir radius, R= 10^{-3} - 10^{5} m √silicate viscosity, η_s = 10^{-4} - 10^{14} Pa s

✓ diapir radius, R= 10⁻³-10⁵ m
✓ silicate viscosity, η_s =10⁻⁴-10¹⁴ Pa s

Large Plausible range of rheology and diapir sizes Re = [10⁻⁹⁷-10¹⁶] We = [10⁻¹⁰⁰-10¹⁵] ➡Huge parameter space

√diapir radius, R= 10^{-3} - 10^{5} m √silicate viscosity, η_s = 10^{-4} - 10^{14} Pa s

Large Plausible range of rheology and diapir sizes Re = [10⁻⁹⁷-10¹⁶] We = [10⁻¹⁰⁰-10¹⁵] ➡ Huge parameter space

Large, small and intermediate values must be considered

✓ diapir radius, R= 10⁻³-10⁵ m
✓ silicate viscosity, η_s =10⁻⁴-10¹⁴ Pa s

Large Plausible range of rheology and diapir sizes Re = [10⁻⁹⁷-10¹⁶] We = [10⁻¹⁰⁰-10¹⁵] ➡ Huge parameter space

Large, small and intermediate values must be considered

√diapir radius, R= 10^{-3} - 10^{5} m √silicate viscosity, η_s = 10^{-4} - 10^{14} Pa s

Large Plausible range of rheology and diapir sizes Re = [10⁻⁹⁷-10¹⁶] We = [10⁻¹⁰⁰-10¹⁵] ➡Huge parameter space

Large, small and intermediate values must be considered

Systematic exploration for (Re,We)=[10⁻³-10³] and beyond: ⇔ ~200+ experiments

We→∞ *(no surface tension)* **Re** = Inertia / Viscous effects: $\frac{\rho_s V_\infty R}{\eta_s}$

Large Re (small viscous effects) favour breakup Post-breakup diapir sizes decrease with increasing Re

Small We (strong surface tension) efficiently reduces/prevents breakup

Experimental breakup / Stability criterion

Experimental breakup / Stability criterion

Experimental breakup / Stability criterion

Newtonian rheology: Influence of the Fe-Si viscosity contrast

Newtonian rheology: Influence of the Fe-Si viscosity contrast

A high Re, internal circulation reduces breakup ([Wacheul et al., 2014])

Newtonian rheology: Influence of the Fe-Si viscosity contrast

A high Re, internal circulation reduces breakup ([*Wacheul et al., 2014*]) At moderate and small Re, viscous resistance to deformation reduces breakup
Newtonian rheology: Influence of the Fe-Si viscosity contrast

A high Re, internal circulation reduces breakup ([*Wacheul et al., 2014*]) At moderate and small Re, viscous resistance to deformation reduces breakup Small $\gamma = \eta_s / \eta_m$ stabilises diapirs at high Re, but favours breakup at low Re

Rheological transitions & non-Newtonian rheology for partially molten silicates

Newtonian (n=1) vs. Non-Newtonian rheology (n=3.5) stability diagrams

non-Newtonian rheology influence is stronger for smaller Re values

non-Newtonian rheology favours breakup

Fick's law: $\frac{dC_m}{dt} = (1 - C_m) \sqrt{\frac{9}{2} \frac{1}{Pe}}$ Chemical Péclet number: $Pe = \frac{v_{\infty} R_0}{\kappa_c}$

Degree of equilibration:
$$C_m(t) = 1 - e^{-t \sqrt{\frac{9}{2} \frac{1}{P_e}}}$$

Essentially molten, Newtonian magma ocean

Gravitational potential energy 🖒 Kinetic Energy 🖒 Heat

 $E_{p} = (\rho_{m}-\rho_{s})g \Delta h V_{d} \qquad E_{k}(t,Si,Fe) = (\rho/2)Vu^{2}? \qquad E_{T}(t,Si,Fe) = \rho \Delta T C_{p} V?$

Conservation of internal energy:

$$\rho D_t T = P e^{-1} \nabla^2 T + \prod_v \tau : \dot{\varepsilon}$$
diffusion viscous heating

$$\Pi_v = \frac{\eta_s V_\infty}{R \ \rho_s C_p \ \Delta T}$$

$$Pe = \frac{V_{\infty}R}{\kappa}$$

Conservation of internal energy:

$$\rho D_t T = P e^{-1} \nabla^2 T + \prod_v \tau : \dot{\varepsilon}$$
diffusion viscous heating

$$\Pi_v = \frac{\eta_s V_\infty}{R \ \rho_s C_p \ \Delta T}$$

$$Pe = \frac{V_{\infty}R}{\kappa}$$

Conservation of internal energy:

$$\rho D_t T = P e^{-1} \nabla^2 T + \prod_v \tau : \dot{\varepsilon}$$

diffusion viscous heating

$$\Pi_v = \frac{\eta_s V_\infty}{R \ \rho_s C_p \ \Delta T}$$

 $Pe = \frac{V_{\infty}R}{\kappa}$

Conservation of internal energy:

$$\rho D_t T = P e^{-1} \nabla^2 T + \prod_v \tau : \dot{\varepsilon}$$

diffusion viscous heating

$$\Pi_v = \frac{\eta_s V_\infty}{R \ \rho_s C_p \ \Delta T}$$

 $Pe = \frac{V_{\infty}R}{\kappa}$

$$\rho D_t T = P e^{-1} \nabla^2 T + \prod_v \tau : \dot{\varepsilon}$$

diffusion viscous heating

$$\Pi_v = \frac{\eta_s V_\infty}{R \ \rho_s C_p \ \Delta T}$$

$$Pe = \frac{V_{\infty}R}{\kappa}$$

$$\rho D_t T = P e^{-1} \nabla^2 T + \prod_v \tau : \dot{\varepsilon}$$

diffusion viscous heating

$$\Pi_v = \frac{\eta_s V_\infty}{R \ \rho_s C_p \ \Delta T}$$

$$Pe = \frac{V_{\infty}R}{\kappa}$$

$$\rho D_t T = P e^{-1} \nabla^2 T + \prod_v \tau : \dot{\varepsilon}$$

diffusion viscous heating

$$\Pi_v = \frac{\eta_s V_\infty}{R \ \rho_s C_p \ \Delta T}$$

$$Pe = \frac{V_{\infty}R}{\kappa}$$

$$\rho D_t T = P e^{-1} \nabla^2 T + \prod_v \tau : \dot{\varepsilon}$$
diffusion viscous heating

$$\Pi_v = \frac{\eta_s V_\infty}{R \ \rho_s C_p \ \Delta T}$$

$$Pe = \frac{V_{\infty}R}{\kappa}$$

Rheology and dynamical history have a strong influence on Fe-Si heat partitioning

Favours a hotter lowermost mantle with melting (BMO?)

Favours a hotter lowermost mantle with melting (BMO?)

Favours a hotter lowermost mantle with melting (BMO?)

Can explain the presence and sustainability of geodynamo on Earth or Mars
Conclusions

Core formation has an huge influence on Earth evolution

1. Negative diapirism in a fully liquid or partially molten silicate magma ocean

✓ Stability favoured for small Re and We and Newtonian rheology

✓ Low viscosity diapirs favour breakup at low Re but prevents breakup at high Re
⇒ Characterised via scaling laws

2. Equilibration silicate magma ocean on a proto-earth

Fully Terrestrial magma ocean: most likely achieved
Partially Terrestrial magma ocean: unlikely / uncertain

3. Viscous heating and heat partitioning

✓ Maximum viscous dissipation (thus temperature increase) @ interface

- ✓ Negative diapirism favors higher lower mantle temperatures
- ✓ Small diapirs lead to hotter core ("stronger" dynamos)

✓ Silicate rheology has a strong influence on heat partitioning: non-Newtonian (partially molten) viscosity favours hotter silicates and colder metal diapirs

What next?

Need better constraints on the rheology of silicates

Partially molten case $\Rightarrow \sigma_T = f(melt fraction, pressure, composition)$ Fully molten case $\Rightarrow \eta = f(melt fraction, pressure, temperature, composition)$

Future/ongoing investigations

➡ Effect of turbulence on heat partitioning ... and many other things... Thanks to my sponsors/support:

Thanks to my sponsors/support:

... and thank you