Quantum Computing as a Service

Secure and Verifiable Multi=Tenant Quantum Data Centre

Elham Kashefi

University of Edinburgh

Quantum Computing and Simulation Hub

CNRS Sorbonne University Quantum Internet Alliance

VeriQloud

Currently

Quantum Links

Quantum Links

Unclonable / Measurement disturbance ... - security QKD, Quantum Coin Flipping, ...

Quantum Links

Unclonable / Measurement disturbance ... - security QKD, Quantum Coin Flipping, ...

Shangıal

Quantum Nodes

Quantum Links

Unclonable / Measurement disturbance ... - security QKD, Quantum Coin Flipping, ...

Quantum Nodes

Superposition / Entanglement... - speed

Random Walk, Machine Learning, ...

Quantum Links

Future

Multi-Tenant Quantum Data Centre

Multi-Tenant Quantum Data Centre

Use-Case Example: Privacy Preserving QML

Use-Case Example: Privacy Preserving QML

Party with Data

Quantum Secure Multi Party Computing

Party with Q Computer

Plan

Plan

- 2 party QC: Honest Client - Malicious Server

Plan

- 2 party QC: Honest Client - Malicious Server
- What is possible?
- Building Blocks: QKD, Teleportation, Self-Testing
- Verifiable Universal Blind Quantum Computing

Plan

- 2 party QC: Honest Client - Malicious Server
- What is possible?
- Building Blocks: QKD, Teleportation, Self-Testing
- Verifiable Universal Blind Quantum Computing
- 2 party QC: Malicious Client - Malicious Server

Plan

- 2 party QC: Honest Client - Malicious Server
- What is possible?
- Building Blocks: QKD, Teleportation, Self-Testing
- Verifiable Universal Blind Quantum Computing
- 2 party QC: Malicious Client - Malicious Server
- Quantum Cut and Choose Technique

Plan

- 2 party QC: Honest Client - Malicious Server
- What is possible?
- Building Blocks: QKD, Teleportation, Self-Testing
- Verifiable Universal Blind Quantum Computing
- 2 party QC: Malicious Client - Malicious Server
- Quantum Cut and Choose Technique
- Multi party QC: Malicious Clients - Malicious Server

Plan

- 2 party QC: Honest Client - Malicious Server
- What is possible?
- Building Blocks: QKD, Teleportation, Self-Testing
- Verifiable Universal Blind Quantum Computing
- 2 party QC: Malicious Client - Malicious Server
- Quantum Cut and Choose Technique
- Multi party QC: Malicious Clients - Malicious Server
- Lifting Classical SMPC to QSMPC

Plan

- 2 party QC: Honest Client - Malicious Server
- What is possible?
- Building Blocks: QKD, Teleportation, Self-Testing
- Verifiable Universal Blind Quantum Computing
- 2 party QC: Malicious Client - Malicious Server
- Quantum Cut and Choose Technique
- Multi party QC: Malicious Clients - Malicious Server
- Lifting Classical SMPC to QSMPC
- When can we have it for real?

Honest Client - Malicious Server

Honest Client - Malicious Server

Honest Client - Malicious Server

Secure Cloud Computing

Rivest, Adleman and Dertouzos 1979
Can we process encrypted data without decrypting it first ?

Secure Cloud Computing

Rivest, Adleman and Dertouzos 1979
Can we process encrypted data without decrypting it first ?

Limited Client

Secure Cloud Computing

Rivest, Adleman and Dertouzos 1979
Can we process encrypted data without decrypting it first ?

Untrusted Server

Secure Cloud Computing

Rivest, Adleman and Dertouzos 1979
Can we process encrypted data without decrypting it first ?

Secure Cloud Computing

Rivest, Adleman and Dertouzos 1979
Can we process encrypted data without decrypting it first?

Secure Cloud Computing

Rivest, Adleman and Dertouzos 1979
Can we process encrypted data without decrypting it first ?

Gentry 2009 - Fully Homomorphic Encryption
computational security computational security

Secure Classical access to Quantum Cloud?

Fillinger: No efficient informationally secure classical FHE scheme exist

Secure Classical access to Quantum Cloud?

Fillinger: No efficient informationally secure classical FHE scheme exist

Newman and Shi: No efficient informationally secure quantum FHE scheme exist

Secure Classical access to Quantum Cloud?

Fillinger: No efficient informationally secure classical FHE scheme exist

Newman and Shi: No efficient informationally secure quantum FHE scheme exist

Dunjko et.al. : No informationally secure quantum scheme for classical function evaluation (for restricted classical client)

Secure Classical access to Quantum Cloud?

Fillinger: No efficient informationally secure classical FHE scheme exist

Newman and Shi: No efficient informationally secure quantum FHE scheme exist

Dunjko et.al. : No informationally secure quantum scheme for classical function evaluation (for restricted classical client)

Murimae: No informationally secure quantum scheme for quantum function evaluation (for restricted classical client)

Secure Classical access to Quantum Cloud?

Secure Classical access to Quantum Cloud?

On the implausibility of informationally secure quantum cloud computing with Classical Client (PH collapses at the third level)

Aaronson, Cojocaru, Gheorghiu, Kashefi, 2017

Generalised Encryption Scheme (GES)

Which functions admit a GES?

What about NP functions?

Unless PH collapses

Generalised Encryption Scheme for QC (GES)

Our work

1. Do BQP functions admit a GES?

We give evidence that the answer is NO

Conjectured relationship between classes

An oracle result

For each d, there exists an oracle, O, such that:

The oracle is based on Simon's problem

$$
O(n, x)=f_{n}(x)
$$

Is $f_{n} 1$-to- 1 or does it have Simon's property?
Simon's property: f_{n} is 2-to- 1 and periodic

A sampling result

Unless, there exist circuits $\left\{C_{n}\right\}_{n}$ having the properties:

$$
\begin{gathered}
\left|C_{n}\right|=2^{n-\Omega(n / \log (n))} \\
C_{n} \text { queries } \mathrm{NP}^{\mathrm{NP}}
\end{gathered}
$$

Computes exactly the permanent of $n \times n$ matrix
Best known algorithm for permanent (Ryser '63): $O\left(n 2^{n}\right)$

A sampling result

GES for SampBQP \rightarrow "efficient" circuits for permanent

Best known algorithm for permanent (Ryser b3): $U\left(n 2^{n}\right)$

Secure Classical Access to Quantum Cloud

Secure Quantum access to Quantum Cloud

Secure Quantum access to Quantum Cloud

Limited QClient

Secure Quantum access to Quantum Cloud

Limited QClient

Secure Quantum access to Quantum Cloud

Quantum Links
Limited QClient

Secure Quantum access to Quantum Cloud

Limited QClient
Quantum Links Untrusted Server

Secure Quantum access to Quantum Cloud

Secure Quantum access to Quantum Cloud

Broadbent, Fitzsimons, and Kashefi 2009 - Universal Blind Quantum Computing Informational security

Secure Quantum access to Quantum Cloud

QKD for encoding

Broadbent, Fitzsimons, and Kashefi 2009 - Universal Blind Quantum Computing Informational security

Secure Quantum access to Quantum Cloud

Broadbent, Fitzsimons, and Kashefi 2009 - Universal Blind Quantum Computing Informational security

Secure Quantum access to Quantum Cloud

QKD for encoding
Teleportation for computing

Limited QClient

Testing for verification

Broadbent, Fitzsimons, and Kashefi 2009 - Universal Blind Quantum Computing Informational security

Computing with Teleportation

$$
J(\alpha):=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & e^{i \alpha} \\
1 & -e^{i \alpha}
\end{array}\right)
$$

Computing with Teleportation

$$
J(\alpha):=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & e^{i \alpha} \\
1 & -e^{i \alpha}
\end{array}\right)
$$

gate teleportation

Computing with Teleportation

$$
J(\alpha):=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & e^{i \alpha} \\
1 & -e^{i \alpha}
\end{array}\right)
$$

gate teleportation

$$
\left.\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right)+\ldots\right\rangle
$$

Computing with Teleportation

$$
J(\alpha):=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & e^{i \alpha} \\
1 & -e^{i \alpha}
\end{array}\right)
$$

Computing with Teleportation

$$
J(\alpha):=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & e^{i \alpha} \\
1 & -e^{i \alpha}
\end{array}\right)
$$

Hiding with Teleportation

$$
J(\alpha):=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & e^{i \alpha} \\
1 & -e^{i \alpha}
\end{array}\right)
$$

Quantum Computer

Single qubit rotation

Hiding with Teleportation

$$
J(\alpha):=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & e^{i \alpha} \\
1 & -e^{i \alpha}
\end{array}\right)
$$

Single qubit rotation
Quantum Computer

Hiding with Teleportation

$$
J(\alpha):=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & e^{i \alpha} \\
1 & -e^{i \alpha}
\end{array}\right)
$$

Single qubit rotation

Quantum Computer

Hiding with Teleportation

$$
J(\alpha):=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & e^{i \alpha} \\
1 & -e^{i \alpha}
\end{array}\right)
$$

Single qubit rotation

Quantum Computer

Hiding with Teleportation

$$
J(\alpha):=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & e^{i \alpha} \\
1 & -e^{i \alpha}
\end{array}\right)
$$

Hiding the measurement result

Gates Composition

Gates Composition

Gates Composition

Client-Server interactions

Re-writing

Re-writing

Universal Blind Quantum Computings

$$
X=\left(\tilde{U},\left\{\phi_{x, y}\right\}\right)
$$

Universal Blind Quantum Computings

$$
\begin{aligned}
& X=\left(\tilde{U},\left\{\phi_{x, y}\right\}\right)
\end{aligned}
$$

random single qubit generator

$$
\begin{gathered}
1 / \sqrt{2}\left(|0\rangle+e^{i \theta}|1\rangle\right) \\
\theta=0, \pi / 4,2 \pi / 4, \ldots, 7 \pi / 4
\end{gathered}
$$

Universal Blind Quantum Computings

random single qubit generator

$$
\begin{gathered}
1 / \sqrt{2}\left(|0\rangle+e^{i \theta}|1\rangle\right) \\
\theta=0, \pi / 4,2 \pi / 4, \ldots, 7 \pi / 4
\end{gathered}
$$

Universal Blind Quantum Computings

$\theta=0, \pi / 4,2 \pi / 4, \ldots, 7 \pi / 4$

Universal Blind Quantum Computings

$$
\theta=0, \pi / 4,2 \pi / 4, \ldots, 7 \pi / 4
$$

$$
\begin{gathered}
r_{x, y} \in_{R}\{0,1\} \\
\delta_{x, y}=\phi_{x, y}^{\prime}+\theta_{x, y}+\pi r_{x, y}
\end{gathered}
$$

Universal Blind Quantum Computings

random single qubit generator

$$
\begin{gathered}
1 / \sqrt{2}\left(|0\rangle+e^{i \theta}|1\rangle\right) \\
\theta=0, \pi / 4,2 \pi / 4, \ldots, 7 \pi / 4 \\
\underbrace{\delta_{x, y}=\phi_{x, y}^{\prime}+\theta_{x, y}+\pi r_{x, y}}_{r_{x, y} \in_{R}\{0,1\}}
\end{gathered}
$$

Universal Blind Quantum Computings

random single qubit generator

$\left\{\left\{\left|+\delta_{x, x y}\right\rangle,\left|-\delta_{x_{x, y},}\right\rangle\right\}\right.$

Universal Blind Quantum Computings

random single qubit generator

$$
\begin{gathered}
1 / \sqrt{2}\left(|0\rangle+e^{i \theta}|1\rangle\right) \\
\theta=0, \pi / 4,2 \pi / 4, \ldots, 7 \pi / 4 \\
r_{x, y} \in_{R}\{0,1\} \\
\delta_{x, y}=\phi_{x, y}^{\prime}+\theta_{x, y}+\pi r_{x, y}
\end{gathered}
$$

$$
s_{x, y} \in\{0,1\} \quad\left\{\left|+\delta_{x, y}\right\rangle,\left|-\delta_{x, y}\right\rangle\right\}
$$

Universal Blind Quantum Computings

random single qubit generator

$$
\begin{gathered}
1 / \sqrt{2}\left(|0\rangle+e^{i \theta}|1\rangle\right) \\
\theta=0, \pi / 4,2 \pi / 4, \ldots, 7 \pi / 4 \\
\underbrace{\in_{R}\{0,1\}}_{x, y} \\
\delta_{x, y}=\phi_{x, y}^{\prime}+\theta_{x, y}+\pi r_{x, y}
\end{gathered}
$$

$$
s_{x, y}:=s_{x, y}+r_{x, y} \quad s_{x, y} \in\{0,1\} \quad\left\{\left|+\delta_{x, y}\right\rangle,\left|-\delta_{x, y}\right\rangle\right\}
$$

Security Definition

$$
\text { Protocol } \mathrm{P} \text { on input } X=\left(\tilde{U},\left\{\phi_{x, y}\right\}\right) \text { leaks at most } L(X)
$$

\Rightarrow The distribution of the classical information obtained by Server is independent of X
\Rightarrow Given the above distribution, the quantum state is fixed and independent of X

What about correctness?

What about correctness ?

- Correctness: in the absence of any deviation, client accepts and the output is correct
- Soundness: Client rejects an incorrect output, except with probability at most exponentially small in the security parameter

Verification of Quantum Computing

Self Testing 2005

Decide if the physical devices simulate their specification

Verification of Quantum Computing

Single-prover prepare-and-send

verifier has the ability to prepare quantum states and send them to the prover

- State authentication-based protocols
- Trapification-based protocols
- Test or Compute

Protocol	Verifier resources	Communication	2-way quantum comm.
Clifford-QAS VQC	$O(\log (1 / \epsilon))$	$O(N \cdot \log (1 / \epsilon))$	Y
Poly-QAS VQC	$O(\log (1 / \epsilon))$	$O((n+L) \cdot \log (1 / \epsilon))$	N
VUBQC	$O(1)$	$O(N \cdot \log (1 / \epsilon))$	N
Test-or-Compute	$O(1)$	$O((n+T) \cdot \log (1 / \epsilon))$	N

Verification of Quantum Computing

Single-prover receive-and-measure

verifier receives quantum states from the prover and has the ability to measure them

- Post-hoc Verification (none hiding)
- Measuring only blind QC

Protocol	Measurements	Observables	Blind
Measurement-only	$O\left(N \cdot 1 / \alpha \cdot 1 / \epsilon^{2}\right)$	5	Y
Hypergraph measurement-only	$O\left(\max \left(N, 1 / \epsilon^{2}\right)^{22}\right)$	3	Y
1S-Post-hoc	$O\left(N^{2} \cdot \log (1 / \epsilon)\right)$	2	N
Steering-based VUBQC	$O\left(N^{13} \log (N) \cdot \log (1 / \epsilon)\right)$	5	Y

Verification of Quantum Computing

Multi-prover entanglement-based

Classical Verifier interacts with more than one provers that are not allowed to communicate during the protocol

- CHSH game Rigidity
- Self-testing graph states
- Pauli Braiding

Protocol	Provers	Qmem provers	Rounds	Communication	Blind
RUV	2	2	$O\left(N^{8192} \cdot \log (1 / \epsilon)\right)$	$O\left(N^{8192} \cdot \log (1 / \epsilon)\right)$	Y
McKague	$O\left(N^{22} \cdot \log (1 / \epsilon)\right)$	0	$O\left(N^{22} \cdot \log (1 / \epsilon)\right)$	$O\left(N^{22} \cdot \log (1 / \epsilon)\right)$	Y
GKW	2	1	$O\left(N^{2048} \cdot \log (1 / \epsilon)\right)$	$O\left(N^{2048} \cdot \log (1 / \epsilon)\right)$	Y
HPDF	$O\left(N^{4} \log (N) \cdot \log (1 / \epsilon)\right)$	$O(\log (1 / \epsilon))$	$O\left(N^{4} \log (N) \cdot \log (1 / \epsilon)\right)$	$O\left(N^{4} \log (N) \cdot \log (1 / \epsilon)\right)$	Y
FH	5	5	$O\left(N^{16} \cdot \log (1 / \epsilon)\right)$	$O\left(N^{19} \cdot \log (1 / \epsilon)\right)$	N
NV	7	7	$O(1)$	$O\left(N^{3} \cdot \log (1 / \epsilon)\right)$	N

Verification of Quantum Computing

Overhead Noise
Scalability

Trapification

Unconditionally Verifiable Blind Quantum Computing
Fitzsioms Kashefi, 2012

Trapification

Unconditionally Verifiable Blind Quantum Computing
Fitzsioms Kashefi, 2012

Trapification

Unconditionally Verifiable Blind Quantum Computing
Fitzsioms Kashefi, 2012

Trapification

Unconditionally Verifiable Blind Quantum Computing
Fitzsioms Kashefi, 2012

Trapification

Unconditionally Verifiable Blind Quantum Computing
Fitzsioms Kashefi, 2012

Trapification

Unconditionally Verifiable Blind Quantum Computing
Fitzsioms Kashefi, 2012

Trapification

Unconditionally Verifiable Blind Quantum Computing
Fitzsioms Kashefi, 2012

Trapification

 Measurement angles remain hidden

Unconditionally Verifiable Blind Quantum Computing
Fitzsioms Kashefi, 2012

Trapification

$\Omega_{\text {Eve,system }}$

Trapification

$\Omega_{\text {Eve,system }}$

$\sigma_{\text {testsubspace }}$

Trapification

Trapification

Prob trap being correct and the computation is wrong is bounded
$\sigma_{\text {testsubspace }}$

Trapification

Prob trap being correct and the computation is wrong is bounded

$$
\begin{gathered}
\text { Trap Measurements } \\
M^{\theta}\left|+{ }_{\theta}\right\rangle \quad \rightarrow \quad s=0 \\
M^{\theta}\left|-{ }_{\theta}\right\rangle \quad \rightarrow \quad s=1
\end{gathered}
$$

$$
\sum_{\nu} p(\nu) \operatorname{Tr}\left(P_{\text {incorrect }}^{\nu} B(\nu)\right) \leq \epsilon
$$

$$
P_{\text {incorrect }}^{\nu}:=P_{\perp} \otimes|a c c\rangle\langle a c c|
$$

Robust Verifiable Secure Quantum Access to Noisy Quantum Qloud

Classical input/output
Perfect blindness and exponential verification
Exponential correctness on honest-but-noisy device No overhead besides repetitions

Securing Quantum Computations in the NISQ Era

Robust Verifiable Secure Quantum Access to Noisy Quantum Qloud

Practical Efficient Honest Client - Malicious Server

Classical input/output
Perfect blindness and exponential verification
Exponential correctness on honest-but-noisy device
No overhead besides repetitions

Securing Quantum Computations in the NISQ Era

Kashefi, Leichtle, Music, Ollivier, 2020

Robust Verifiable Secure Quantum Access to Noisy Quantum Qloud

Practical Efficient Honest Client - Malicious Server

Classical input/output
Perfect blindness and exponential verification
Exponential correctness on honest-but-noisy device
No overhead besides repetitions

Securing Quantum Computations in the NISQ Era

Kashefi, Leichtle, Music, Ollivier, 2020

Secure Classical Access to Quantum Cloud

Computationally Secure (Post-quantum safe) Classical Access to Quantum Cloud?

Computationally Secure (Post-quantum safe) Classical Access to Quantum Cloud?

Classical Client Quantum FHE Mahadev, FOCS 2018

Computationally Secure (Post-quantum safe) Classical Access to Quantum Cloud?

Classical Client Quantum FHE
Mahadev, FOCS 2018

Delegated Pseudo-Secret Random Qubit Generator
Cojocaru, Colisson, Kashefi, Wallden, AsiaCrypt 2019

Computationally Secure (Post-quantum safe) Classical Access to Quantum Cloud?

Classical Client Quantum FHE Mahadev, FOCS 2018

Delegated Pseudo-Secret Random Qubit Generator
Cojocaru, Colisson, Kashefi, Wallden, AsiaCrypt 2019

Computationally Secure (Post-quantum safe) Classical Access to Quantum Cloud?

Classical Client Quantum FHE Mahadev, FOCS 2018

Delegated Pseudo-Secret Random Qubit Generator
Cojocaru, Colisson, Kashefi, Wallden, AsiaCrypt 2019

Computationally Secure (Post-quantum safe) Classical Access to Quantum Cloud?

Classical Client Quantum FHE Mahadev, FOCS 2018

Delegated Pseudo-Secret Random Qubit Generator
Cojocaru, Colisson, Kashefi, Wallden, AsiaCrypt 2019

$O(1000)$ server qubits for randomising one single client qubits

$$
\begin{gathered}
r_{x, y} \in_{R}\{0,1\} \\
\delta_{x, y}=\phi_{x, y}^{\prime}+\theta_{x, y}+\pi r_{x, y}
\end{gathered}
$$

Secure Access to Quantum Cloud \equiv

Quantum Communication

Malicious Client - Malicious Server

Yao Garbled Circuit - Secure 2-party Computing

Computational Security
Requires OT
Insert secret input b Evaluate f(a,b)
Honest but Curious Adversary

Verifiable Quantum Yao

Secret input q_c

Garbled CP map

Verifiable Quantum Yao

Verifiable Quantum Yao

Verifiable Quantum Yao

Secret input q_c

Garbled CP map

Verifiable Quantum Yao

Server's input placed in DT(G) with correspoding trap-colouring

Verifiable Quantum Yao

Verifiable Quantum Yao

Verifiable Quantum Yao

Verifiable Quantum Yao

Boosting Security
 (Semi-Malicious Client to Fully Malicious one)

Cut : Sender sends multiple copies of a state and message (with independent randomness) to the Receiver

Practical Efficient Malicious Client - Malicious Server

states) wniere comectry comstucteu dy askmy tre oemuer io semu proofs and measuring them accordingly

Conditions for applying Q-CC \longrightarrow Client manipulates single qubit

Malicious Clients - Malicious Server

Multiparty Delegated Quantum Computing 2017

Secret input q_1

Garbled her part of the CP map

Secret input q_n
Garbled her part of the CP map

Multiparty Delegated Quantum Computing 2017

Secret input q_1

Garbled her part of the CP map

Secret input q_n
Garbled her part of the CP map

Multiparty Delegated Quantum Computing 2017

Secret input q_1

Garbled her part of the CP map

Secret input q_n
Garbled her part of the CP map

Multiparty Delegated Quantum Computing 2017

Secret input q_1

Garbled her part of the CP map

.

Secret input q_n
Garbled her part of the CP map

$$
\theta_{j}=\theta_{j}^{j}+\sum_{k=1, k \neq j}^{n}(-1)^{\oplus_{i=k}^{n} t_{j}^{j}} \theta_{j}^{k}
$$

Multiparty Delegated Quantum Computing 2017

Secret input q_1

Garbled her part of the CP map

Secret input q_n
Garbled her part of the CP map

Multiparty Delegated Quantum Computing 2017

Secret input q_1

Garbled her part of the CP map

Secret input q_n
Garbled her part of the CP map

Multiparty Delegated Quantum Computing 2017

Secret input q_1

Garbled her part of the CP map

Multiparty Delegated Quantum Computing 2017

Secret input q_1

Garbled her part of the CP map

Garbled her part of the CP map

Multiparty Delegated Quantum Computing 2017

Multiparty Delegated Quantum Computing 2017

Clients can insert traps only in their subgraphs

But

A connected path for computation can be obtained only if they collaborate

But

They need not to leak the position of traps

Multiparty Delegated Quantum Computing 2017

Clients can insert traps only in their subgraphs

But

A connected path for computation can be obtained only if they collaborate

But

They need not to leak the position of traps

In Symmetric Case these issues are resolved by

Multiparty Delegated Quantum Computing 2021

Double Blind QC - a classically orchestrated delegation

Good Enough State - correct up to a deviation independent of the inputs and security parameters

VUBQC Deconstruction - Reconstruction

Steps to be updated to transform into a multi-client setting \&
Conditions that these replacement need to satisfy

VUBQC Deconstruction - Reconstruction

Steps to be updated to transform into a multi-client setting \&
Conditions that these replacement need to satisfy

VUBQC Deconstruction - Reconstruction

Steps to be updated to transform into a multi-client setting \&
Conditions that these replacement need to satisfy

VUBQC Deconstruction - Reconstruction

Steps to be updated to transform into a multi-client setting \&
Conditions that these replacement need to satisfy

Replacing Classical Steps with Classical SMPC

Replacing Classical Steps with Classical SMPC

Double Blind QC

Double Blind QC

Double Blind QC

Realised itself by a UBQC pattern

Double Blind Gadgets for H or I

Double Blind Gadgets for H or I

Clients: sends encrypted input and rotated states

SMPC: redistribute them to become dummy or trap

Multiparty Delegated Quantum Computing 2021

Dulek, Grilo, Jeffery, Majenz, Schaffner 2020
Alon, Chung, Chung, Huang, Lee, Shen

Metric	9]	26]	1]	This work
Type	Stat. upgrade of CSMPC	Statistical	Comp. (FHE + CSMPC)	Stat. upgrade of CSMPC
Abort	Unanimous	Unanimous	Identifiable	Unanimous
Composability	Composable	Stand-Alone	Stand-Alone	Composable
Max Malicious Players	$N-1$	$\left.\frac{C_{\text {dist }}-1}{2}\right\rfloor$	$N-1$	$N-1$
Protocol Nature	Symmetric	Symmetric	Semi-Delegated	Delegated
Network Topology	Q and C: Complete	Q and C: Complete	Q and C: Complete	Q: Star / C: Complete
Q Operations	F.T. Q. Comp	FT Q Comp	FT Q Comp	Cl.: Single Qubit Serv.: FT Q Comp
Classical SMPC	Clifford Computation, Operations in \mathbb{Z}_{2}, CT	CT	Clifford Computation, FHE verification	Operations in $\mathbb{Z}_{8}, \mathbb{Z}_{2}, \mathrm{CT}$
Rounds (C or CSMPC)	$\mathcal{O}(g+\eta(N+t))$	$d+2$	$\mathcal{O}(1)$	$d+5$
Rounds (Q)	$\begin{gathered} \text { Par.: } \mathcal{O}(N d) \\ \text { Seq.: } \mathcal{O}(N(N+t+c)) \end{gathered}$	Par.: 3 (2 if C output) Seq.: $\mathcal{O}\left(\eta^{2}(N+t)\right)$	Par.: $\mathcal{O}\left(N^{4}\right)$	Par.: 2 (1 if C output) Seq.: $\mathcal{O}(\eta N d)$
Size of Q Memory	Par.: $\left.\mathcal{O}\left(\eta^{2}(N+t)\right)\right)$ Seq.: $\mathcal{O}\left(\eta^{2} N\right)$	$\begin{aligned} & \text { Par.: } \mathcal{O}\left(\eta^{2} N(N+t)\right) \\ & \text { Seq.: } \mathcal{O}\left(N^{2}\right) \end{aligned}$	Par.: $\mathcal{O}\left(t N^{9} \eta^{2}\right)$	$\begin{aligned} & \text { Cl.: } 3 \text { (0 if C I\&O) } \\ & \text { Serv. (par.): } \mathcal{O}\left(\eta N^{2} d\right) \\ & \text { Serv. (seq.): } \mathcal{O}(\eta N d) \end{aligned}$

Lipinska, Ribeiro, Wehner 2020

Practical Efficient Malicious Clients - Malicious Server?

Practical Efficient Malicious Clients - Malicious Server?

Each Module Can be Optimised

- SMPC : angles evaluations and permutations
- Remote State Prep : Hardware Dependent
- Blind QC : Not every qubits being hidden
- Verifiable QC : No Need for dummies

Key component = Remote State Preparation

Key component = Remote State Preparation

The Most Optimal Client-Server RSP

Quantum Enclave - Remote State Rotation

The Most Optimal Multi Party QSMPC

Qline Architecture + Remote State Rotation + QSMPC

VeriQloud's fully connected quantum network with a single optical fibre

A Secure New World

