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Multi-Tenant Quantum Data Centre

Enhancing: efficiency, security, integrity
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• 2 party QC: Honest Client - Malicious Server

• 2 party QC: Malicious Client - Malicious Server

- What is possible ?

- Building Blocks: QKD, Teleportation, Self-Testing

- Verifiable Universal Blind Quantum Computing

- Quantum Cut and Choose Technique

• Multi party QC: Malicious Clients - Malicious Server 
- Lifting Classical SMPC to QSMPC

• When can we have it for real ?
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Party with Q Computer

Party with Data

Honest Client - Malicious Server

Party with Algorithm

No privacy: Data, Algorithms, Results are all public

No Verification: The results are not classically simulatable
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Secure Cloud Computing

X Y Y F(Y)

Limited Client Untrusted Server

F(X) F(Y)

Rivest, Adleman and Dertouzos 1979

Can we process encrypted data without decrypting it first ? 

Gentry 2009 - Fully Homomorphic Encryption

computational security
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Murimae: No informationally secure quantum scheme for quantum function evaluation 

(for restricted classical client)



Secure Classical access to Quantum Cloud ?



 On the implausibility of informationally secure quantum 
cloud computing with Classical Client


(PH collapses at the third level) 

Aaronson, Cojocaru, Gheorghiu, Kashefi, 2017

Secure Classical access to Quantum Cloud ?



Generalised Encryption Scheme (GES)

[Abadi, Feigenbaum, Killian ’87]

Client

x

Server
…

f(x)

Information-theoretic security

BPP

|x|

y = Enc(x)



Which functions admit a GES?

BPP

NP/poly \ coNP/poly



What about NP functions?

NP BPP GES

Unless PH collapses



Generalised Encryption Scheme for QC (GES)

[Aaronson, et.al. 2019]

Client

x

Server
…

f(x)

Information-theoretic security

BPP

f 2 BQP
|x|

y = Enc(x)



Our work

1. Do BQP functions admit a GES?

We give evidence that the answer is NO

BPP GESBQP

Conjectured relationship between classes



An oracle result

BQPO BPPO GES(d)O

The oracle is based on Simon’s problem
O(n, x) = fn(x)

Is     1-to-1 or does it have Simon’s property?fn

For each d, there exists an oracle, O, such that:

Simon’s property:     is 2-to-1 and periodicfn
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A sampling result

SampBQP SampGESSampBPP

Unless, there exist circuits             having the properties:{Cn}n
|Cn| = 2n�⌦(n/log(n))

Cn queries NPNP

Computes exactly the permanent of n x n matrix
Best known algorithm for permanent (Ryser ’63):     O(n2n)

GES for SampBQP → “efficient” circuits for permanent 
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Limited Client Untrusted Server
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Secure Quantum access to Quantum Cloud

|X> |Y> |Y> U|Y>

Limited QClient Untrusted Server

U|X> U|Y>

Quantum Links

Broadbent, Fitzsimons, and Kashefi 2009 - Universal Blind Quantum Computing

Informational security

QKD for encoding Teleportation for computing

Testing for verification
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[[P1 ⌅ P2]] = [[P2]]⌅ [[P1]]

�a ⌥ A, �a⇥ ⌥ Pl(a) : a < a⇥

BQP ⇧ MIP�

|+� = 1⇤
2
(|0�+ |1�)

|⇤�

|±�

X

Z

H

J(�)(|+�)

2

α±

X

Latex Template

September 15, 2008

⇥2 = Tr1,2,3,4,6[P(|⇤⌥⌃⇤|1 ⇤ ⇥2 ⇤ |+⌥⌃+|3,4,5,6)P†]
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Traux[U ⌅ I ⇤ J(⇥in ⇤ ⇥aux�)I ⇤ J† ⌅ U †]
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Local Cli�ord Group{H,S, I}

[[P1P2]] = [[P2]][[P1]]

[[P1 ⇥ P2]] = [[P2]]⇥ [[P1]]
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⇥2 = Tr1,2,3,4,6[P(|⇤⌥⌃⇤|1 ⇤ ⇥2 ⇤ |+⌥⌃+|3,4,5,6)P†]
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P |+��
i = M�

i Zsi
i

P |+��
i Eij = M�

i Xsi
j Eij Xsi

j

m = d⇥ r

|+⌥

1

|+⇥ = 1�
2
(|0⇥ + |1⇥)

|⇤⇥

|±⇥

X

Z

H

J(� + ⇥)

|+⇥⇥

tr|±�+⇥⇥

3

|+⇥ = 1�
2
(|0⇥+ |1⇥)

|⌅⇥

|±⇥

X

Z

H

J(� + ⇥ + r⇤)

�r

|+⇥⇥

|±�+⇥+r⇤⇥

3

P�
i

1⇤
2
(|0�+ ei�|1�)

�1, �2 · · ·

H := ({1, 2}, {1}, {2}, P 0
1 E12N2)

P 0
1�⌅ 1⇤

2
((a + b)|0�+ (a� b)|1�)

|⇥�

 ⌥Z = 1
2

⇤

⌥⌥⇧

1 1 1 �1
1 �1 1 1
1 1 �1 1
1 �1 �1 �1

⌅

��⌃

H = 1⇤
2

�
1 1
1 �1

⇥

X =
�

0 1
1 0

⇥
Z =

�
1 0
0 �1

⇥

Local Cli�ord Group{H,S, I}
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Local Cli�ord Group{H,S, I}

[[P1P2]] = [[P2]][[P1]]
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⇥2 = Tr1,2,3,4,6[P(|⇤⌥⌃⇤|1 ⇤ ⇥2 ⇤ |+⌥⌃+|3,4,5,6)P†]
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⇥out = POc EG (⇥in ⇤ |+⌥⌃+|V �I) EG POc

Traux[U ⌅ I ⇤ J(⇥in ⇤ ⇥aux�)I ⇤ J† ⌅ U †]
= Traux[U(⇥in ⇤ ⇥aux�)U †]
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[[P1 ⇥ P2]] = [[P2]]⇥ [[P1]]
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⌃a ⇧ A, ⌃a⇥ ⇧ Pl(a) : a < a⇥

BQP ⇤ MIP�

|+� = 1⇤
2
(|0�+ |1�)

|⇥�

|±�

X

Z

2

✓
1 0
0 eib⇡/2

◆✓
1 0
0 eia⇡/2

◆✓
1 0
0 e�i(a�b)⇡/2

◆✓
1
�1

◆
=

✓
1 0
0 e�i(a^b)⇡

◆✓
1
�1

◆

Z

�2 = f(r1, r2, ✓2,�2)

m

E(m) := (� = m+ ✓ + r⇡ , |+✓i = |0i+ ei✓|1i)

E(m2) = m+ PR2 + ✓2

E(m1) ⇤ E(m2) = E(m1 ⇤m2)

D(m) = m� bm/P eP � ✓

|0i+ e

�

1



Gates Composition

α±

X

Latex Template

September 15, 2008

⇥2 = Tr1,2,3,4,6[P(|⇤⌥⌃⇤|1 ⇤ ⇥2 ⇤ |+⌥⌃+|3,4,5,6)P†]

J(�) = 1⇤
2

�
1 ei�

1 �ei�

⇥

⇥out = POc EG (⇥in ⇤ |+⌥⌃+|V �I) EG POc

Traux[U ⌅ I ⇤ J(⇥in ⇤ ⇥aux�)I ⇤ J† ⌅ U †]
= Traux[U(⇥in ⇤ ⇥aux�)U †]

P |+��
i = M�

i Zsi
i

P |+��
i Eij = M�

i Xsi
j Eij Xsi

j

m = d⇥ r

|+⌥

1

|+⇥ = 1�
2
(|0⇥+ |1⇥)

|⌅⇥

|±⇥

X

Z

H

J(� + ⇥ + r⇤)

�r

|+⇥⇥

|±�+⇥+r⇤⇥

3

P�
i

1⇤
2
(|0�+ ei�|1�)

�1, �2 · · ·

H := ({1, 2}, {1}, {2}, P 0
1 E12N2)

P 0
1�⌅ 1⇤

2
((a + b)|0�+ (a� b)|1�)

|⇥�

 ⌥Z = 1
2

⇤

⌥⌥⇧

1 1 1 �1
1 �1 1 1
1 1 �1 1
1 �1 �1 �1

⌅

��⌃

H = 1⇤
2

�
1 1
1 �1

⇥

X =
�

0 1
1 0

⇥
Z =

�
1 0
0 �1

⇥

Local Cli�ord Group{H,S, I}

[[P1P2]] = [[P2]][[P1]]

[[P1 ⇥ P2]] = [[P2]]⇥ [[P1]]

⌃a ⇧ A, ⌃a⇥ ⇧ Pl(a) : a < a⇥

BQP ⇤ MIP�

|+� = 1⇤
2
(|0�+ |1�)

|⇥�

|±�

X

Z

2

✓
1 0
0 eib⇡/2

◆✓
1 0
0 eia⇡/2

◆✓
1 0
0 e�i(a�b)⇡/2

◆✓
1
�1

◆
=

✓
1 0
0 e�i(a^b)⇡

◆✓
1
�1

◆

Z

�2 = f(r1, r2, ✓2,�2)

m

E(m) := (� = m+ ✓ + r⇡ , |+✓i = |0i+ ei✓|1i)

E(m2) = m+ PR2 + ✓2

E(m1) ⇤ E(m2) = E(m1 ⇤m2)

D(m) = m� bm/P eP � ✓

|0i+ e

�

1

α±

X

Latex Template

September 15, 2008

⇥2 = Tr1,2,3,4,6[P(|⇤⌥⌃⇤|1 ⇤ ⇥2 ⇤ |+⌥⌃+|3,4,5,6)P†]

J(�) = 1⇤
2

�
1 ei�

1 �ei�

⇥

⇥out = POc EG (⇥in ⇤ |+⌥⌃+|V �I) EG POc

Traux[U ⌅ I ⇤ J(⇥in ⇤ ⇥aux�)I ⇤ J† ⌅ U †]
= Traux[U(⇥in ⇤ ⇥aux�)U †]

P |+��
i = M�

i Zsi
i

P |+��
i Eij = M�

i Xsi
j Eij Xsi

j

m = d⇥ r

|+⌥

1

|+⇥ = 1�
2
(|0⇥ + |1⇥)

|⇤⇥

|±⇥

X

Z

H

J(� + ⇥)

|+⇥⇥

tr|±�+⇥⇥

3

|+⇥ = 1�
2
(|0⇥+ |1⇥)

|⌅⇥

|±⇥

X

Z

H

J(� + ⇥ + r⇤)

�r

|+⇥⇥

|±�+⇥+r⇤⇥

3

P�
i

1⇤
2
(|0�+ ei�|1�)

�1, �2 · · ·

H := ({1, 2}, {1}, {2}, P 0
1 E12N2)

P 0
1�⌅ 1⇤

2
((a + b)|0�+ (a� b)|1�)

|⇥�

 ⌥Z = 1
2

⇤

⌥⌥⇧

1 1 1 �1
1 �1 1 1
1 1 �1 1
1 �1 �1 �1

⌅

��⌃

H = 1⇤
2

�
1 1
1 �1

⇥

X =
�

0 1
1 0

⇥
Z =

�
1 0
0 �1

⇥

Local Cli�ord Group{H,S, I}

[[P1P2]] = [[P2]][[P1]]

[[P1 ⇥ P2]] = [[P2]]⇥ [[P1]]

⌃a ⇧ A, ⌃a⇥ ⇧ Pl(a) : a < a⇥

BQP ⇤ MIP�

|+� = 1⇤
2
(|0�+ |1�)

|⇥�

|±�

X

Z

2

✓
1 0
0 eib⇡/2

◆✓
1 0
0 eia⇡/2

◆✓
1 0
0 e�i(a�b)⇡/2

◆✓
1
�1

◆
=

✓
1 0
0 e�i(a^b)⇡

◆✓
1
�1

◆

Z

�2 = f(r1, r2, ✓2,�2)

m

E(m) := (� = m+ ✓ + r⇡ , |+✓i = |0i+ ei✓|1i)

E(m2) = m+ PR2 + ✓2

E(m1) ⇤ E(m2) = E(m1 ⇤m2)

D(m) = m� bm/P eP � ✓

|0i+ e

�

1

α±

X

Latex Template

September 15, 2008

⇥2 = Tr1,2,3,4,6[P(|⇤⌥⌃⇤|1 ⇤ ⇥2 ⇤ |+⌥⌃+|3,4,5,6)P†]

J(�) = 1⇤
2

�
1 ei�

1 �ei�

⇥

⇥out = POc EG (⇥in ⇤ |+⌥⌃+|V �I) EG POc

Traux[U ⌅ I ⇤ J(⇥in ⇤ ⇥aux�)I ⇤ J† ⌅ U †]
= Traux[U(⇥in ⇤ ⇥aux�)U †]

P |+��
i = M�

i Zsi
i

P |+��
i Eij = M�

i Xsi
j Eij Xsi

j

m = d⇥ r

|+⌥

1

|+⇥ = 1�
2
(|0⇥+ |1⇥)

|⌅⇥

|±⇥

X

Z

H

J(� + ⇥ + r⇤)

�r

|+⇥⇥

|±�+⇥+r⇤⇥

3

P�
i

1⇤
2
(|0�+ ei�|1�)

�1, �2 · · ·

H := ({1, 2}, {1}, {2}, P 0
1 E12N2)

P 0
1�⌅ 1⇤

2
((a + b)|0�+ (a� b)|1�)

|⇥�

 ⌥Z = 1
2

⇤

⌥⌥⇧

1 1 1 �1
1 �1 1 1
1 1 �1 1
1 �1 �1 �1

⌅

��⌃

H = 1⇤
2

�
1 1
1 �1

⇥

X =
�

0 1
1 0

⇥
Z =

�
1 0
0 �1

⇥

Local Cli�ord Group{H,S, I}

[[P1P2]] = [[P2]][[P1]]

[[P1 ⇥ P2]] = [[P2]]⇥ [[P1]]

⌃a ⇧ A, ⌃a⇥ ⇧ Pl(a) : a < a⇥

BQP ⇤ MIP�

|+� = 1⇤
2
(|0�+ |1�)

|⇥�

|±�

X

Z

2

✓
1 0
0 eib⇡/2

◆✓
1 0
0 eia⇡/2

◆✓
1 0
0 e�i(a�b)⇡/2

◆✓
1
�1

◆
=

✓
1 0
0 e�i(a^b)⇡

◆✓
1
�1

◆

Z

�2 = f(r1, r2, ✓2,�2)

m

E(m) := (� = m+ ✓ + r⇡ , |+✓i = |0i+ ei✓|1i)

E(m2) = m+ PR2 + ✓2

E(m1) ⇤ E(m2) = E(m1 ⇤m2)

D(m) = m� bm/P eP � ✓

|0i+ e

�

1

Perfect decryption and encryption at each step

Client-Server interactions



Re-writing

7

✓
1 0
0 eib⇡/2

◆✓
1 0
0 eia⇡/2

◆✓
1 0
0 e�i(a�b)⇡/2

◆✓
1
�1

◆
=

✓
1 0
0 e�i(a^b)⇡

◆✓
1
�1

◆

Z

�2 = f(r1, r2, ✓2,�2)

m

E(m) := (� = m+ ✓ + r⇡ , |+✓i = |0i+ ei✓|1i)

E(m2) = m+ PR2 + ✓2

E(m1) ⇤ E(m2) = E(m1 ⇤m2)

D(m) = m� bm/P eP � ✓

|0i+ e

�

1

1

✓
1 0
0 eib⇡/2

◆✓
1 0
0 eia⇡/2

◆✓
1 0
0 e�i(a�b)⇡/2

◆✓
1
�1

◆
=

✓
1 0
0 e�i(a^b)⇡

◆✓
1
�1

◆

Z

�2 = f(r1, r2, ✓2,�2)

m

E(m) := (� = m+ ✓ + r⇡ , |+✓i = |0i+ ei✓|1i)

E(m2) = m+ PR2 + ✓2

E(m1) ⇤ E(m2) = E(m1 ⇤m2)

D(m) = m� bm/P eP � ✓

|0i+ e

�

1

2

In

In

a

c

b

|+>

|+>

|+> Out

OutZ

X

|+⇥ = 1�
2
(|0⇥ + |1⇥)

|⇤⇥

|±⇥

X

Z

H

J(� + ⇥)

|+⇥⇥

tr|±�+⇥⇥

3

|+⇥ = 1�
2
(|0⇥ + |1⇥)

|⇤⇥

|±⇥

X

Z

H

J(� + ⇥)

|+⇥⇥

tr|±�+⇥⇥

3

1

2



Re-writing

7

✓
1 0
0 eib⇡/2

◆✓
1 0
0 eia⇡/2

◆✓
1 0
0 e�i(a�b)⇡/2

◆✓
1
�1

◆
=

✓
1 0
0 e�i(a^b)⇡

◆✓
1
�1

◆

Z

�2 = f(r1, r2, ✓2,�2)

m

E(m) := (� = m+ ✓ + r⇡ , |+✓i = |0i+ ei✓|1i)

E(m2) = m+ PR2 + ✓2

E(m1) ⇤ E(m2) = E(m1 ⇤m2)

D(m) = m� bm/P eP � ✓

|0i+ e

�

1

1

✓
1 0
0 eib⇡/2

◆✓
1 0
0 eia⇡/2

◆✓
1 0
0 e�i(a�b)⇡/2

◆✓
1
�1

◆
=

✓
1 0
0 e�i(a^b)⇡

◆✓
1
�1

◆

Z

�2 = f(r1, r2, ✓2,�2)

m

E(m) := (� = m+ ✓ + r⇡ , |+✓i = |0i+ ei✓|1i)

E(m2) = m+ PR2 + ✓2

E(m1) ⇤ E(m2) = E(m1 ⇤m2)

D(m) = m� bm/P eP � ✓

|0i+ e

�

1

2

In

In

a

c

b

|+>

|+>

|+> Out

OutZ

X

|+⇥ = 1�
2
(|0⇥ + |1⇥)

|⇤⇥

|±⇥

X

Z

H

J(� + ⇥)

|+⇥⇥

tr|±�+⇥⇥

3

|+⇥ = 1�
2
(|0⇥ + |1⇥)

|⇤⇥

|±⇥

X

Z

H

J(� + ⇥)

|+⇥⇥

tr|±�+⇥⇥

3

1

2



Universal Blind Quantum Computings

|+⇧ = 1�
2
(|0⇧+ |1⇧)

|⇧⇧

|±⇧

X

Z

H

J(� + ⇥ + r⇤)

⇥r

|+⇥⇧

|±�+⇥+r⇤⇧

{|+⇥⇧}
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Our protocol is described in terms of the measurement-based model for quantum computation
(MBQC) [RB01, RBB03]. While the computational power of this model is the same as in the
quantum circuit model [Deu89] (and our protocol could be completely recast into this model), it
has proven to be conceptually enlightening to reason about the distributed task of blind quantum
computation using this approach. The novelty of our approach is in using the unique feature
of MBQC that separates the classical and quantum parts of a computation, leading to a generic
scheme for blind computation of any circuit without requiring any quantum memory for Alice. This
is fundamentally different from previously known classical or quantum schemes. Our protocol can
be viewed as a distributed version of an MBQC computation (where Alice prepares the individual
qubits, Bob does the entanglement and measurements, and Alice computes the classical feedforward
mechanism), on top of which randomness is added in order to obscure the computation from Bob’s
point of view. The family of graph states called cluster states [RB01] is universal for MBQC (graph
states are initial entangled states required for the computation in MBQC). However, the method
that allows arbitrary computation on the cluster state consists in first tailoring the cluster state
to the specific computation by performing some computational basis measurements. If we were to
use this principle for blind quantum computing, Alice would have to reveal information about the
structure of the underlying graph state. We introduce a new family of states called the brickwork
states (Figure 1) which are universal for X − Y plane measurements and thus do not require the
initial computational basis measurements. Other universal graph states for that do not require
initial computational basis measurements have appeared in [CLN05].

To the best of our knowledge, this is the first time that a new functionality has been achieved
thanks to MBQC (other theoretical advances due to MBQC appear in [RHG06, MS08]). From
a conceptual point of view, our contribution shows that MBQC has tremendous potential for the
development of new protocols, and maybe even of algorithms.

1.3 Outline of Protocols

The outline of the main protocol is as follows. Alice has in mind a quantum computation given as
a measurement pattern on a brickwork state. There are two stages: preparation and computation.
In the preparation stage, Alice prepares single qubits chosen randomly from {1/

√
2
(

|0〉 + eiθ |1〉
)

|
θ = 0,π/4, 2π/4, . . . , 7π/4} and sends them to Bob. After receiving all the qubits, Bob entangles
them according to the brickwork state. Note that this unavoidably reveals upper bounds on the
dimensions of Alice’s underlying graph state, that correspond to the length of the input and depth
of the computation. However, due to universality of the brickwork state, it does not reveal any
additional information on Alice’s computation. The computation stage involves interaction: for
each layer of the brickwork state, for each qubit, Alice sends a classical message to Bob to tell him
in which basis of the X−Y plane he should measure the qubit. Bob performs the measurement and
communicates the outcome; Alice’s choice of angles in future rounds will depend on these values.
Importantly, Alice’s quantum states and classical messages are astutely chosen so that, no matter
what Bob does, he cannot infer anything about her measurement pattern. If Alice is computing
a classical function, the protocol finishes when all qubits are measured. If she is computing a
quantum function, Bob returns to her the final qubits. A modification of the protocol also allows
Alice’s inputs to be quantum.

We give an authentication technique which enables Alice to detect an interfering Bob with over-
whelming probability (strictly speaking, either Bob’s interference is corrected and he is not detected,
or his interference is detected with overwhelming probability). The authentication requires that
Alice encode her input into an error correction code and choose an appropriate fault-tolerant im-
plementation of her desired computation. She also uses some qubits as traps; they are prepared in
the eigenstates of the Pauli operators X, Y and Z.

The remainder of the paper is structured as follows: the main protocol is given in Section 2,
where correctness and blindness are proven. Section 3 discusses extensions to the case of quantum
inputs or outputs; authentication techniques that are used to detect an interfering Bob and perform
fault-tolerant computations are in Section 4, while Section 5 presents the two-server protocol with
a purely classical Alice. The reader unfamiliar with MBQC is referred to a short introduction in
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Figure 1: The brickwork state, Gn×m. Qubits |ψx,y〉 (x = 1, . . . , n, y = 1, . . . ,m) are arranged
according to layer x and row y, corresponding to the vertices in the above graph, and are originally
in the |+〉 = 1√

2
|0〉 + 1√

2
|1〉 state. Controlled-Z gates are then performed between qubits which

are joined by an edge.

The proof of the following theorem is relegated to Appendix B due to lack of space.

Theorem 1 (Universality). The brickwork state Gn×m is universal for quantum computation. Fur-
thermore, we only require single-qubit measurements under the angles {0,±π/4,±π/2}, and mea-
surements can be done layer-by-layer.

In this work, we only consider approximate universality. This allows us to restrict the angles
of preparation and measurement to a finite set and hence simplify the description of the protocol.
However one can easily extend our protocol to achieve exact universality as well, provided Alice
can communicate real numbers to Bob.

Correctness refers to the fact that the outcome of the protocol is the same as the outcome
if Alice has run the pattern herself. The fact that Protocol 1 correctly computes U |0〉 follows
from the commutativity of Alice’s rotations and Bob’s measurements in the rotated bases. This is
formalized below.

Theorem 2 (Correctness). Assume Alice and Bob follow the steps of Protocol 1. Then the
outcome is correct.

Proof. Firstly, since ctrl-Z commutes with Z-rotations, steps 1 and 2 do not change the underlying
graph state; only the phase of each qubit is locally changed, and it is as if Bob had done the Z-
rotation after the ctrl-Z. Secondly, since a measurement in the |+φ〉 , |−φ〉 basis on a state |ψ〉 is
the same as a measurement in the |+φ+θ〉 , |−φ+θ〉 basis on Z(θ) |ψ〉 (see Appendix A), and since
δ = φ′ + θ + πr, if r = 0, Bob’s measurement has the same effect as Alice’s target measurement; if
r = 1, all Alice needs to do is flip the outcome.

We now define and prove the security of the protocol. Intuitively, we wish to prove that whatever
Bob chooses to do (including arbitrary deviations from the protocol), his knowledge on Alice’s
quantum computation does not increase. Note, however that Bob does learn the dimensions of the
brickwork state, giving an upper bound on the size of Alice’s computation. This is unavoidable:
a simple adaptation of the proof of Theorem 2 from [AFK89], confirms this. We incorporate
this notion of leakage in our definition of blindness. A quantum delegated computation protocol
is a protocol by which Alice interacts quantumly with Bob in order to obtain the result of a
computation, U(x), where X = (Ũ , x) is Alice’s input with Ũ being a description of U .

Definition 2. Let P be a quantum delegated computation on input X and let L(X) be any function
of the input. We say that a quantum delegated computation protocol is blind while leaking at most
L(X) if, on Alice’s input X, for any fixed Y = L(X), the following two hold when given Y :

1. The distribution of the classical information obtained by Bob in P is independent of X.
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initial computational basis measurements. Other universal graph states for that do not require
initial computational basis measurements have appeared in [CLN05].

To the best of our knowledge, this is the first time that a new functionality has been achieved
thanks to MBQC (other theoretical advances due to MBQC appear in [RHG06, MS08]). From
a conceptual point of view, our contribution shows that MBQC has tremendous potential for the
development of new protocols, and maybe even of algorithms.

1.3 Outline of Protocols

The outline of the main protocol is as follows. Alice has in mind a quantum computation given as
a measurement pattern on a brickwork state. There are two stages: preparation and computation.
In the preparation stage, Alice prepares single qubits chosen randomly from {1/
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θ = 0,π/4, 2π/4, . . . , 7π/4} and sends them to Bob. After receiving all the qubits, Bob entangles
them according to the brickwork state. Note that this unavoidably reveals upper bounds on the
dimensions of Alice’s underlying graph state, that correspond to the length of the input and depth
of the computation. However, due to universality of the brickwork state, it does not reveal any
additional information on Alice’s computation. The computation stage involves interaction: for
each layer of the brickwork state, for each qubit, Alice sends a classical message to Bob to tell him
in which basis of the X−Y plane he should measure the qubit. Bob performs the measurement and
communicates the outcome; Alice’s choice of angles in future rounds will depend on these values.
Importantly, Alice’s quantum states and classical messages are astutely chosen so that, no matter
what Bob does, he cannot infer anything about her measurement pattern. If Alice is computing
a classical function, the protocol finishes when all qubits are measured. If she is computing a
quantum function, Bob returns to her the final qubits. A modification of the protocol also allows
Alice’s inputs to be quantum.

We give an authentication technique which enables Alice to detect an interfering Bob with over-
whelming probability (strictly speaking, either Bob’s interference is corrected and he is not detected,
or his interference is detected with overwhelming probability). The authentication requires that
Alice encode her input into an error correction code and choose an appropriate fault-tolerant im-
plementation of her desired computation. She also uses some qubits as traps; they are prepared in
the eigenstates of the Pauli operators X, Y and Z.

The remainder of the paper is structured as follows: the main protocol is given in Section 2,
where correctness and blindness are proven. Section 3 discusses extensions to the case of quantum
inputs or outputs; authentication techniques that are used to detect an interfering Bob and perform
fault-tolerant computations are in Section 4, while Section 5 presents the two-server protocol with
a purely classical Alice. The reader unfamiliar with MBQC is referred to a short introduction in
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Figure 1: The brickwork state, Gn×m. Qubits |ψx,y〉 (x = 1, . . . , n, y = 1, . . . ,m) are arranged
according to layer x and row y, corresponding to the vertices in the above graph, and are originally
in the |+〉 = 1√

2
|0〉 + 1√

2
|1〉 state. Controlled-Z gates are then performed between qubits which

are joined by an edge.

The proof of the following theorem is relegated to Appendix B due to lack of space.

Theorem 1 (Universality). The brickwork state Gn×m is universal for quantum computation. Fur-
thermore, we only require single-qubit measurements under the angles {0,±π/4,±π/2}, and mea-
surements can be done layer-by-layer.

In this work, we only consider approximate universality. This allows us to restrict the angles
of preparation and measurement to a finite set and hence simplify the description of the protocol.
However one can easily extend our protocol to achieve exact universality as well, provided Alice
can communicate real numbers to Bob.

Correctness refers to the fact that the outcome of the protocol is the same as the outcome
if Alice has run the pattern herself. The fact that Protocol 1 correctly computes U |0〉 follows
from the commutativity of Alice’s rotations and Bob’s measurements in the rotated bases. This is
formalized below.

Theorem 2 (Correctness). Assume Alice and Bob follow the steps of Protocol 1. Then the
outcome is correct.

Proof. Firstly, since ctrl-Z commutes with Z-rotations, steps 1 and 2 do not change the underlying
graph state; only the phase of each qubit is locally changed, and it is as if Bob had done the Z-
rotation after the ctrl-Z. Secondly, since a measurement in the |+φ〉 , |−φ〉 basis on a state |ψ〉 is
the same as a measurement in the |+φ+θ〉 , |−φ+θ〉 basis on Z(θ) |ψ〉 (see Appendix A), and since
δ = φ′ + θ + πr, if r = 0, Bob’s measurement has the same effect as Alice’s target measurement; if
r = 1, all Alice needs to do is flip the outcome.

We now define and prove the security of the protocol. Intuitively, we wish to prove that whatever
Bob chooses to do (including arbitrary deviations from the protocol), his knowledge on Alice’s
quantum computation does not increase. Note, however that Bob does learn the dimensions of the
brickwork state, giving an upper bound on the size of Alice’s computation. This is unavoidable:
a simple adaptation of the proof of Theorem 2 from [AFK89], confirms this. We incorporate
this notion of leakage in our definition of blindness. A quantum delegated computation protocol
is a protocol by which Alice interacts quantumly with Bob in order to obtain the result of a
computation, U(x), where X = (Ũ , x) is Alice’s input with Ũ being a description of U .

Definition 2. Let P be a quantum delegated computation on input X and let L(X) be any function
of the input. We say that a quantum delegated computation protocol is blind while leaking at most
L(X) if, on Alice’s input X, for any fixed Y = L(X), the following two hold when given Y :

1. The distribution of the classical information obtained by Bob in P is independent of X.
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Appendix A. Appendix B contains a universality proof of the brickwork states that is lengthy
due to its figures, while Appendix C contains modified versions of the main protocol to deal with
quantum inputs or outputs.

2 Main Protocol

Suppose Alice has in mind a unitary operator U that is implemented with a pattern on a brickwork
state Gn×m (Figure 1) with measurements given as multiples of π/4. This pattern could have been
designed either directly in MBQC or from a circuit construction. Each qubit |ψx,y〉 ∈ Gn×m is
indexed by a column x ∈ {1, . . . , n} and a row y ∈ {1, . . . ,m}. Thus each qubit is assigned: a
measurement angle φx,y, a set of X-dependencies Dx,y ⊆ [x− 1]× [m], and a set of Z-dependencies
D′

x,y ⊆ [x− 1]× [m] . Here, we assume that the dependency sets Xx,y and Zx,y are obtained via the
flow construction [DK06]. During the execution of the pattern, the actual measurement angle φ′

x,y
is a modification of φx,y that depends on previous measurement outcomes in the following way:
let sX

x,y = ⊕i∈Dx,ysi be the parity of all measurement outcomes for qubits in Xx,y and similarly,

sZ
x,y = ⊕i∈D′

x,y
si be the parity of all measurement outcomes for qubits in Zx,y. Then φ′

x,y =

(−1)s
X
x,yφx,y + sZ

x,yπ . Protocol 1 implements a blind quantum computation for U . Note that
we assume that Alice’s input to the computation is built into U . In other words, Alice wishes to
compute U |0〉, her input is classical and the first layers of U may depend on it.

Protocol 1 Universal Blind Quantum Computation
1. Alice’s preparation

For each column x = 1, . . . , n
For each row y = 1, . . . ,m

1.1 Alice prepares |ψx,y〉 ∈R {
∣

∣+θx,y

〉

= 1√
2
(|0〉+ eiθx,y |1〉) | θx,y = 0,π/4, . . . , 7π/4} and sends

the qubits to Bob.

2. Bob’s preparation

2.1 Bob creates an entangled state from all received qubits, according to their indices, by
applying ctrl-Z gates between the qubits in order to create a brickwork state Gn×m (see
Definition 1).

3. Interaction and measurement
For each column x = 1, . . . , n
For each row y = 1, . . . ,m

3.1 Alice computes φ′
x,y where sX

0,y = sZ
0,y = 0.

3.2 Alice chooses rx,y ∈R {0, 1} and computes δx,y = φ′
x,y + θx,y + πrx,y .

3.3 Alice transmits δx,y to Bob. Bob measures in the basis {
∣

∣+δx,y

〉

,
∣

∣−δx,y

〉

}.
3.4 Bob transmits the result sx,y ∈ {0, 1} to Alice.
3.5 If rx,y = 1 above, Alice flips sx,y; otherwise she does nothing.

The universality of Protocol 1 follows from the universality of brickwork state (defined below)
for measurement-based quantum computing.

Definition 1. A brickwork state Gn×m, where m ≡ 5 (mod 8), is an entangled state of n × m
qubits constructed as follows (see also Figure 1):

1. Prepare all qubits in state |+〉 and assign to each qubit an index (i, j), i being a column (i ∈ [n])
and j being a row (j ∈ [m]).

2. For each row, apply the operator ctrl-Z on qubits (i, j) and (i, j + 1) where 1 ≤ j ≤ m − 1.
3. For each column j ≡ 3 (mod 8) and each odd row i, apply the operator ctrl-Z on qubits (i, j)

and (i + 1, j) and also on qubits (i, j + 2) and (i + 1, j + 2).
4. For each column j ≡ 7 (mod 8) and each even row i, apply the operator ctrl-Z on qubits (i, j)

and (i + 1, j) and also on qubits (i, j + 2) and (i + 1, j + 2).
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them according to the brickwork state. Note that this unavoidably reveals upper bounds on the
dimensions of Alice’s underlying graph state, that correspond to the length of the input and depth
of the computation. However, due to universality of the brickwork state, it does not reveal any
additional information on Alice’s computation. The computation stage involves interaction: for
each layer of the brickwork state, for each qubit, Alice sends a classical message to Bob to tell him
in which basis of the X−Y plane he should measure the qubit. Bob performs the measurement and
communicates the outcome; Alice’s choice of angles in future rounds will depend on these values.
Importantly, Alice’s quantum states and classical messages are astutely chosen so that, no matter
what Bob does, he cannot infer anything about her measurement pattern. If Alice is computing
a classical function, the protocol finishes when all qubits are measured. If she is computing a
quantum function, Bob returns to her the final qubits. A modification of the protocol also allows
Alice’s inputs to be quantum.

We give an authentication technique which enables Alice to detect an interfering Bob with over-
whelming probability (strictly speaking, either Bob’s interference is corrected and he is not detected,
or his interference is detected with overwhelming probability). The authentication requires that
Alice encode her input into an error correction code and choose an appropriate fault-tolerant im-
plementation of her desired computation. She also uses some qubits as traps; they are prepared in
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Figure 1: The brickwork state, Gn×m. Qubits |ψx,y〉 (x = 1, . . . , n, y = 1, . . . ,m) are arranged
according to layer x and row y, corresponding to the vertices in the above graph, and are originally
in the |+〉 = 1√

2
|0〉 + 1√

2
|1〉 state. Controlled-Z gates are then performed between qubits which

are joined by an edge.

The proof of the following theorem is relegated to Appendix B due to lack of space.

Theorem 1 (Universality). The brickwork state Gn×m is universal for quantum computation. Fur-
thermore, we only require single-qubit measurements under the angles {0,±π/4,±π/2}, and mea-
surements can be done layer-by-layer.

In this work, we only consider approximate universality. This allows us to restrict the angles
of preparation and measurement to a finite set and hence simplify the description of the protocol.
However one can easily extend our protocol to achieve exact universality as well, provided Alice
can communicate real numbers to Bob.

Correctness refers to the fact that the outcome of the protocol is the same as the outcome
if Alice has run the pattern herself. The fact that Protocol 1 correctly computes U |0〉 follows
from the commutativity of Alice’s rotations and Bob’s measurements in the rotated bases. This is
formalized below.

Theorem 2 (Correctness). Assume Alice and Bob follow the steps of Protocol 1. Then the
outcome is correct.

Proof. Firstly, since ctrl-Z commutes with Z-rotations, steps 1 and 2 do not change the underlying
graph state; only the phase of each qubit is locally changed, and it is as if Bob had done the Z-
rotation after the ctrl-Z. Secondly, since a measurement in the |+φ〉 , |−φ〉 basis on a state |ψ〉 is
the same as a measurement in the |+φ+θ〉 , |−φ+θ〉 basis on Z(θ) |ψ〉 (see Appendix A), and since
δ = φ′ + θ + πr, if r = 0, Bob’s measurement has the same effect as Alice’s target measurement; if
r = 1, all Alice needs to do is flip the outcome.

We now define and prove the security of the protocol. Intuitively, we wish to prove that whatever
Bob chooses to do (including arbitrary deviations from the protocol), his knowledge on Alice’s
quantum computation does not increase. Note, however that Bob does learn the dimensions of the
brickwork state, giving an upper bound on the size of Alice’s computation. This is unavoidable:
a simple adaptation of the proof of Theorem 2 from [AFK89], confirms this. We incorporate
this notion of leakage in our definition of blindness. A quantum delegated computation protocol
is a protocol by which Alice interacts quantumly with Bob in order to obtain the result of a
computation, U(x), where X = (Ũ , x) is Alice’s input with Ũ being a description of U .

Definition 2. Let P be a quantum delegated computation on input X and let L(X) be any function
of the input. We say that a quantum delegated computation protocol is blind while leaking at most
L(X) if, on Alice’s input X, for any fixed Y = L(X), the following two hold when given Y :

1. The distribution of the classical information obtained by Bob in P is independent of X.
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Appendix A. Appendix B contains a universality proof of the brickwork states that is lengthy
due to its figures, while Appendix C contains modified versions of the main protocol to deal with
quantum inputs or outputs.

2 Main Protocol

Suppose Alice has in mind a unitary operator U that is implemented with a pattern on a brickwork
state Gn×m (Figure 1) with measurements given as multiples of π/4. This pattern could have been
designed either directly in MBQC or from a circuit construction. Each qubit |ψx,y〉 ∈ Gn×m is
indexed by a column x ∈ {1, . . . , n} and a row y ∈ {1, . . . ,m}. Thus each qubit is assigned: a
measurement angle φx,y, a set of X-dependencies Dx,y ⊆ [x− 1]× [m], and a set of Z-dependencies
D′

x,y ⊆ [x− 1]× [m] . Here, we assume that the dependency sets Xx,y and Zx,y are obtained via the
flow construction [DK06]. During the execution of the pattern, the actual measurement angle φ′

x,y
is a modification of φx,y that depends on previous measurement outcomes in the following way:
let sX

x,y = ⊕i∈Dx,ysi be the parity of all measurement outcomes for qubits in Xx,y and similarly,

sZ
x,y = ⊕i∈D′

x,y
si be the parity of all measurement outcomes for qubits in Zx,y. Then φ′

x,y =

(−1)s
X
x,yφx,y + sZ

x,yπ . Protocol 1 implements a blind quantum computation for U . Note that
we assume that Alice’s input to the computation is built into U . In other words, Alice wishes to
compute U |0〉, her input is classical and the first layers of U may depend on it.

Protocol 1 Universal Blind Quantum Computation
1. Alice’s preparation

For each column x = 1, . . . , n
For each row y = 1, . . . ,m

1.1 Alice prepares |ψx,y〉 ∈R {
∣

∣+θx,y

〉

= 1√
2
(|0〉+ eiθx,y |1〉) | θx,y = 0,π/4, . . . , 7π/4} and sends

the qubits to Bob.

2. Bob’s preparation

2.1 Bob creates an entangled state from all received qubits, according to their indices, by
applying ctrl-Z gates between the qubits in order to create a brickwork state Gn×m (see
Definition 1).

3. Interaction and measurement
For each column x = 1, . . . , n
For each row y = 1, . . . ,m

3.1 Alice computes φ′
x,y where sX

0,y = sZ
0,y = 0.

3.2 Alice chooses rx,y ∈R {0, 1} and computes δx,y = φ′
x,y + θx,y + πrx,y .

3.3 Alice transmits δx,y to Bob. Bob measures in the basis {
∣

∣+δx,y

〉

,
∣

∣−δx,y

〉

}.
3.4 Bob transmits the result sx,y ∈ {0, 1} to Alice.
3.5 If rx,y = 1 above, Alice flips sx,y; otherwise she does nothing.

The universality of Protocol 1 follows from the universality of brickwork state (defined below)
for measurement-based quantum computing.

Definition 1. A brickwork state Gn×m, where m ≡ 5 (mod 8), is an entangled state of n × m
qubits constructed as follows (see also Figure 1):

1. Prepare all qubits in state |+〉 and assign to each qubit an index (i, j), i being a column (i ∈ [n])
and j being a row (j ∈ [m]).

2. For each row, apply the operator ctrl-Z on qubits (i, j) and (i, j + 1) where 1 ≤ j ≤ m − 1.
3. For each column j ≡ 3 (mod 8) and each odd row i, apply the operator ctrl-Z on qubits (i, j)

and (i + 1, j) and also on qubits (i, j + 2) and (i + 1, j + 2).
4. For each column j ≡ 7 (mod 8) and each even row i, apply the operator ctrl-Z on qubits (i, j)

and (i + 1, j) and also on qubits (i, j + 2) and (i + 1, j + 2).
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Our protocol is described in terms of the measurement-based model for quantum computation
(MBQC) [RB01, RBB03]. While the computational power of this model is the same as in the
quantum circuit model [Deu89] (and our protocol could be completely recast into this model), it
has proven to be conceptually enlightening to reason about the distributed task of blind quantum
computation using this approach. The novelty of our approach is in using the unique feature
of MBQC that separates the classical and quantum parts of a computation, leading to a generic
scheme for blind computation of any circuit without requiring any quantum memory for Alice. This
is fundamentally different from previously known classical or quantum schemes. Our protocol can
be viewed as a distributed version of an MBQC computation (where Alice prepares the individual
qubits, Bob does the entanglement and measurements, and Alice computes the classical feedforward
mechanism), on top of which randomness is added in order to obscure the computation from Bob’s
point of view. The family of graph states called cluster states [RB01] is universal for MBQC (graph
states are initial entangled states required for the computation in MBQC). However, the method
that allows arbitrary computation on the cluster state consists in first tailoring the cluster state
to the specific computation by performing some computational basis measurements. If we were to
use this principle for blind quantum computing, Alice would have to reveal information about the
structure of the underlying graph state. We introduce a new family of states called the brickwork
states (Figure 1) which are universal for X − Y plane measurements and thus do not require the
initial computational basis measurements. Other universal graph states for that do not require
initial computational basis measurements have appeared in [CLN05].

To the best of our knowledge, this is the first time that a new functionality has been achieved
thanks to MBQC (other theoretical advances due to MBQC appear in [RHG06, MS08]). From
a conceptual point of view, our contribution shows that MBQC has tremendous potential for the
development of new protocols, and maybe even of algorithms.

1.3 Outline of Protocols

The outline of the main protocol is as follows. Alice has in mind a quantum computation given as
a measurement pattern on a brickwork state. There are two stages: preparation and computation.
In the preparation stage, Alice prepares single qubits chosen randomly from {1/

√
2
(

|0〉 + eiθ |1〉
)

|
θ = 0,π/4, 2π/4, . . . , 7π/4} and sends them to Bob. After receiving all the qubits, Bob entangles
them according to the brickwork state. Note that this unavoidably reveals upper bounds on the
dimensions of Alice’s underlying graph state, that correspond to the length of the input and depth
of the computation. However, due to universality of the brickwork state, it does not reveal any
additional information on Alice’s computation. The computation stage involves interaction: for
each layer of the brickwork state, for each qubit, Alice sends a classical message to Bob to tell him
in which basis of the X−Y plane he should measure the qubit. Bob performs the measurement and
communicates the outcome; Alice’s choice of angles in future rounds will depend on these values.
Importantly, Alice’s quantum states and classical messages are astutely chosen so that, no matter
what Bob does, he cannot infer anything about her measurement pattern. If Alice is computing
a classical function, the protocol finishes when all qubits are measured. If she is computing a
quantum function, Bob returns to her the final qubits. A modification of the protocol also allows
Alice’s inputs to be quantum.

We give an authentication technique which enables Alice to detect an interfering Bob with over-
whelming probability (strictly speaking, either Bob’s interference is corrected and he is not detected,
or his interference is detected with overwhelming probability). The authentication requires that
Alice encode her input into an error correction code and choose an appropriate fault-tolerant im-
plementation of her desired computation. She also uses some qubits as traps; they are prepared in
the eigenstates of the Pauli operators X, Y and Z.

The remainder of the paper is structured as follows: the main protocol is given in Section 2,
where correctness and blindness are proven. Section 3 discusses extensions to the case of quantum
inputs or outputs; authentication techniques that are used to detect an interfering Bob and perform
fault-tolerant computations are in Section 4, while Section 5 presents the two-server protocol with
a purely classical Alice. The reader unfamiliar with MBQC is referred to a short introduction in
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Figure 1: The brickwork state, Gn×m. Qubits |ψx,y〉 (x = 1, . . . , n, y = 1, . . . ,m) are arranged
according to layer x and row y, corresponding to the vertices in the above graph, and are originally
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The proof of the following theorem is relegated to Appendix B due to lack of space.

Theorem 1 (Universality). The brickwork state Gn×m is universal for quantum computation. Fur-
thermore, we only require single-qubit measurements under the angles {0,±π/4,±π/2}, and mea-
surements can be done layer-by-layer.

In this work, we only consider approximate universality. This allows us to restrict the angles
of preparation and measurement to a finite set and hence simplify the description of the protocol.
However one can easily extend our protocol to achieve exact universality as well, provided Alice
can communicate real numbers to Bob.

Correctness refers to the fact that the outcome of the protocol is the same as the outcome
if Alice has run the pattern herself. The fact that Protocol 1 correctly computes U |0〉 follows
from the commutativity of Alice’s rotations and Bob’s measurements in the rotated bases. This is
formalized below.

Theorem 2 (Correctness). Assume Alice and Bob follow the steps of Protocol 1. Then the
outcome is correct.

Proof. Firstly, since ctrl-Z commutes with Z-rotations, steps 1 and 2 do not change the underlying
graph state; only the phase of each qubit is locally changed, and it is as if Bob had done the Z-
rotation after the ctrl-Z. Secondly, since a measurement in the |+φ〉 , |−φ〉 basis on a state |ψ〉 is
the same as a measurement in the |+φ+θ〉 , |−φ+θ〉 basis on Z(θ) |ψ〉 (see Appendix A), and since
δ = φ′ + θ + πr, if r = 0, Bob’s measurement has the same effect as Alice’s target measurement; if
r = 1, all Alice needs to do is flip the outcome.

We now define and prove the security of the protocol. Intuitively, we wish to prove that whatever
Bob chooses to do (including arbitrary deviations from the protocol), his knowledge on Alice’s
quantum computation does not increase. Note, however that Bob does learn the dimensions of the
brickwork state, giving an upper bound on the size of Alice’s computation. This is unavoidable:
a simple adaptation of the proof of Theorem 2 from [AFK89], confirms this. We incorporate
this notion of leakage in our definition of blindness. A quantum delegated computation protocol
is a protocol by which Alice interacts quantumly with Bob in order to obtain the result of a
computation, U(x), where X = (Ũ , x) is Alice’s input with Ũ being a description of U .

Definition 2. Let P be a quantum delegated computation on input X and let L(X) be any function
of the input. We say that a quantum delegated computation protocol is blind while leaking at most
L(X) if, on Alice’s input X, for any fixed Y = L(X), the following two hold when given Y :

1. The distribution of the classical information obtained by Bob in P is independent of X.

5

|+⌥ = 1⇥
2
(|0⌥+ |1⌥)

|⇧⌥

|±⌥

X

Z

H

J(� + ⇥ + r⇤)

⇤r

|+⇥⌥

|±�+⇥+r⇤⌥

{|+⇥⌥}
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Appendix A. Appendix B contains a universality proof of the brickwork states that is lengthy
due to its figures, while Appendix C contains modified versions of the main protocol to deal with
quantum inputs or outputs.

2 Main Protocol

Suppose Alice has in mind a unitary operator U that is implemented with a pattern on a brickwork
state Gn×m (Figure 1) with measurements given as multiples of π/4. This pattern could have been
designed either directly in MBQC or from a circuit construction. Each qubit |ψx,y〉 ∈ Gn×m is
indexed by a column x ∈ {1, . . . , n} and a row y ∈ {1, . . . ,m}. Thus each qubit is assigned: a
measurement angle φx,y, a set of X-dependencies Dx,y ⊆ [x− 1]× [m], and a set of Z-dependencies
D′

x,y ⊆ [x− 1]× [m] . Here, we assume that the dependency sets Xx,y and Zx,y are obtained via the
flow construction [DK06]. During the execution of the pattern, the actual measurement angle φ′

x,y
is a modification of φx,y that depends on previous measurement outcomes in the following way:
let sX

x,y = ⊕i∈Dx,ysi be the parity of all measurement outcomes for qubits in Xx,y and similarly,

sZ
x,y = ⊕i∈D′

x,y
si be the parity of all measurement outcomes for qubits in Zx,y. Then φ′

x,y =

(−1)s
X
x,yφx,y + sZ

x,yπ . Protocol 1 implements a blind quantum computation for U . Note that
we assume that Alice’s input to the computation is built into U . In other words, Alice wishes to
compute U |0〉, her input is classical and the first layers of U may depend on it.

Protocol 1 Universal Blind Quantum Computation
1. Alice’s preparation

For each column x = 1, . . . , n
For each row y = 1, . . . ,m

1.1 Alice prepares |ψx,y〉 ∈R {
∣

∣+θx,y

〉

= 1√
2
(|0〉+ eiθx,y |1〉) | θx,y = 0,π/4, . . . , 7π/4} and sends

the qubits to Bob.

2. Bob’s preparation

2.1 Bob creates an entangled state from all received qubits, according to their indices, by
applying ctrl-Z gates between the qubits in order to create a brickwork state Gn×m (see
Definition 1).

3. Interaction and measurement
For each column x = 1, . . . , n
For each row y = 1, . . . ,m

3.1 Alice computes φ′
x,y where sX

0,y = sZ
0,y = 0.

3.2 Alice chooses rx,y ∈R {0, 1} and computes δx,y = φ′
x,y + θx,y + πrx,y .

3.3 Alice transmits δx,y to Bob. Bob measures in the basis {
∣

∣+δx,y

〉

,
∣

∣−δx,y

〉

}.
3.4 Bob transmits the result sx,y ∈ {0, 1} to Alice.
3.5 If rx,y = 1 above, Alice flips sx,y; otherwise she does nothing.

The universality of Protocol 1 follows from the universality of brickwork state (defined below)
for measurement-based quantum computing.

Definition 1. A brickwork state Gn×m, where m ≡ 5 (mod 8), is an entangled state of n × m
qubits constructed as follows (see also Figure 1):

1. Prepare all qubits in state |+〉 and assign to each qubit an index (i, j), i being a column (i ∈ [n])
and j being a row (j ∈ [m]).

2. For each row, apply the operator ctrl-Z on qubits (i, j) and (i, j + 1) where 1 ≤ j ≤ m − 1.
3. For each column j ≡ 3 (mod 8) and each odd row i, apply the operator ctrl-Z on qubits (i, j)

and (i + 1, j) and also on qubits (i, j + 2) and (i + 1, j + 2).
4. For each column j ≡ 7 (mod 8) and each even row i, apply the operator ctrl-Z on qubits (i, j)

and (i + 1, j) and also on qubits (i, j + 2) and (i + 1, j + 2).
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Our protocol is described in terms of the measurement-based model for quantum computation
(MBQC) [RB01, RBB03]. While the computational power of this model is the same as in the
quantum circuit model [Deu89] (and our protocol could be completely recast into this model), it
has proven to be conceptually enlightening to reason about the distributed task of blind quantum
computation using this approach. The novelty of our approach is in using the unique feature
of MBQC that separates the classical and quantum parts of a computation, leading to a generic
scheme for blind computation of any circuit without requiring any quantum memory for Alice. This
is fundamentally different from previously known classical or quantum schemes. Our protocol can
be viewed as a distributed version of an MBQC computation (where Alice prepares the individual
qubits, Bob does the entanglement and measurements, and Alice computes the classical feedforward
mechanism), on top of which randomness is added in order to obscure the computation from Bob’s
point of view. The family of graph states called cluster states [RB01] is universal for MBQC (graph
states are initial entangled states required for the computation in MBQC). However, the method
that allows arbitrary computation on the cluster state consists in first tailoring the cluster state
to the specific computation by performing some computational basis measurements. If we were to
use this principle for blind quantum computing, Alice would have to reveal information about the
structure of the underlying graph state. We introduce a new family of states called the brickwork
states (Figure 1) which are universal for X − Y plane measurements and thus do not require the
initial computational basis measurements. Other universal graph states for that do not require
initial computational basis measurements have appeared in [CLN05].

To the best of our knowledge, this is the first time that a new functionality has been achieved
thanks to MBQC (other theoretical advances due to MBQC appear in [RHG06, MS08]). From
a conceptual point of view, our contribution shows that MBQC has tremendous potential for the
development of new protocols, and maybe even of algorithms.

1.3 Outline of Protocols

The outline of the main protocol is as follows. Alice has in mind a quantum computation given as
a measurement pattern on a brickwork state. There are two stages: preparation and computation.
In the preparation stage, Alice prepares single qubits chosen randomly from {1/

√
2
(

|0〉 + eiθ |1〉
)

|
θ = 0,π/4, 2π/4, . . . , 7π/4} and sends them to Bob. After receiving all the qubits, Bob entangles
them according to the brickwork state. Note that this unavoidably reveals upper bounds on the
dimensions of Alice’s underlying graph state, that correspond to the length of the input and depth
of the computation. However, due to universality of the brickwork state, it does not reveal any
additional information on Alice’s computation. The computation stage involves interaction: for
each layer of the brickwork state, for each qubit, Alice sends a classical message to Bob to tell him
in which basis of the X−Y plane he should measure the qubit. Bob performs the measurement and
communicates the outcome; Alice’s choice of angles in future rounds will depend on these values.
Importantly, Alice’s quantum states and classical messages are astutely chosen so that, no matter
what Bob does, he cannot infer anything about her measurement pattern. If Alice is computing
a classical function, the protocol finishes when all qubits are measured. If she is computing a
quantum function, Bob returns to her the final qubits. A modification of the protocol also allows
Alice’s inputs to be quantum.

We give an authentication technique which enables Alice to detect an interfering Bob with over-
whelming probability (strictly speaking, either Bob’s interference is corrected and he is not detected,
or his interference is detected with overwhelming probability). The authentication requires that
Alice encode her input into an error correction code and choose an appropriate fault-tolerant im-
plementation of her desired computation. She also uses some qubits as traps; they are prepared in
the eigenstates of the Pauli operators X, Y and Z.

The remainder of the paper is structured as follows: the main protocol is given in Section 2,
where correctness and blindness are proven. Section 3 discusses extensions to the case of quantum
inputs or outputs; authentication techniques that are used to detect an interfering Bob and perform
fault-tolerant computations are in Section 4, while Section 5 presents the two-server protocol with
a purely classical Alice. The reader unfamiliar with MBQC is referred to a short introduction in
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Figure 1: The brickwork state, Gn×m. Qubits |ψx,y〉 (x = 1, . . . , n, y = 1, . . . ,m) are arranged
according to layer x and row y, corresponding to the vertices in the above graph, and are originally
in the |+〉 = 1√

2
|0〉 + 1√

2
|1〉 state. Controlled-Z gates are then performed between qubits which

are joined by an edge.

The proof of the following theorem is relegated to Appendix B due to lack of space.

Theorem 1 (Universality). The brickwork state Gn×m is universal for quantum computation. Fur-
thermore, we only require single-qubit measurements under the angles {0,±π/4,±π/2}, and mea-
surements can be done layer-by-layer.

In this work, we only consider approximate universality. This allows us to restrict the angles
of preparation and measurement to a finite set and hence simplify the description of the protocol.
However one can easily extend our protocol to achieve exact universality as well, provided Alice
can communicate real numbers to Bob.

Correctness refers to the fact that the outcome of the protocol is the same as the outcome
if Alice has run the pattern herself. The fact that Protocol 1 correctly computes U |0〉 follows
from the commutativity of Alice’s rotations and Bob’s measurements in the rotated bases. This is
formalized below.

Theorem 2 (Correctness). Assume Alice and Bob follow the steps of Protocol 1. Then the
outcome is correct.

Proof. Firstly, since ctrl-Z commutes with Z-rotations, steps 1 and 2 do not change the underlying
graph state; only the phase of each qubit is locally changed, and it is as if Bob had done the Z-
rotation after the ctrl-Z. Secondly, since a measurement in the |+φ〉 , |−φ〉 basis on a state |ψ〉 is
the same as a measurement in the |+φ+θ〉 , |−φ+θ〉 basis on Z(θ) |ψ〉 (see Appendix A), and since
δ = φ′ + θ + πr, if r = 0, Bob’s measurement has the same effect as Alice’s target measurement; if
r = 1, all Alice needs to do is flip the outcome.

We now define and prove the security of the protocol. Intuitively, we wish to prove that whatever
Bob chooses to do (including arbitrary deviations from the protocol), his knowledge on Alice’s
quantum computation does not increase. Note, however that Bob does learn the dimensions of the
brickwork state, giving an upper bound on the size of Alice’s computation. This is unavoidable:
a simple adaptation of the proof of Theorem 2 from [AFK89], confirms this. We incorporate
this notion of leakage in our definition of blindness. A quantum delegated computation protocol
is a protocol by which Alice interacts quantumly with Bob in order to obtain the result of a
computation, U(x), where X = (Ũ , x) is Alice’s input with Ũ being a description of U .

Definition 2. Let P be a quantum delegated computation on input X and let L(X) be any function
of the input. We say that a quantum delegated computation protocol is blind while leaking at most
L(X) if, on Alice’s input X, for any fixed Y = L(X), the following two hold when given Y :

1. The distribution of the classical information obtained by Bob in P is independent of X.
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Appendix A. Appendix B contains a universality proof of the brickwork states that is lengthy
due to its figures, while Appendix C contains modified versions of the main protocol to deal with
quantum inputs or outputs.

2 Main Protocol

Suppose Alice has in mind a unitary operator U that is implemented with a pattern on a brickwork
state Gn×m (Figure 1) with measurements given as multiples of π/4. This pattern could have been
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x,y
is a modification of φx,y that depends on previous measurement outcomes in the following way:
let sX

x,y = ⊕i∈Dx,ysi be the parity of all measurement outcomes for qubits in Xx,y and similarly,

sZ
x,y = ⊕i∈D′

x,y
si be the parity of all measurement outcomes for qubits in Zx,y. Then φ′

x,y =

(−1)s
X
x,yφx,y + sZ

x,yπ . Protocol 1 implements a blind quantum computation for U . Note that
we assume that Alice’s input to the computation is built into U . In other words, Alice wishes to
compute U |0〉, her input is classical and the first layers of U may depend on it.
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For each row y = 1, . . . ,m

1.1 Alice prepares |ψx,y〉 ∈R {
∣

∣+θx,y

〉

= 1√
2
(|0〉+ eiθx,y |1〉) | θx,y = 0,π/4, . . . , 7π/4} and sends

the qubits to Bob.

2. Bob’s preparation

2.1 Bob creates an entangled state from all received qubits, according to their indices, by
applying ctrl-Z gates between the qubits in order to create a brickwork state Gn×m (see
Definition 1).

3. Interaction and measurement
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x,y where sX

0,y = sZ
0,y = 0.

3.2 Alice chooses rx,y ∈R {0, 1} and computes δx,y = φ′
x,y + θx,y + πrx,y .

3.3 Alice transmits δx,y to Bob. Bob measures in the basis {
∣

∣+δx,y

〉

,
∣

∣−δx,y

〉

}.
3.4 Bob transmits the result sx,y ∈ {0, 1} to Alice.
3.5 If rx,y = 1 above, Alice flips sx,y; otherwise she does nothing.

The universality of Protocol 1 follows from the universality of brickwork state (defined below)
for measurement-based quantum computing.

Definition 1. A brickwork state Gn×m, where m ≡ 5 (mod 8), is an entangled state of n × m
qubits constructed as follows (see also Figure 1):

1. Prepare all qubits in state |+〉 and assign to each qubit an index (i, j), i being a column (i ∈ [n])
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Our protocol is described in terms of the measurement-based model for quantum computation
(MBQC) [RB01, RBB03]. While the computational power of this model is the same as in the
quantum circuit model [Deu89] (and our protocol could be completely recast into this model), it
has proven to be conceptually enlightening to reason about the distributed task of blind quantum
computation using this approach. The novelty of our approach is in using the unique feature
of MBQC that separates the classical and quantum parts of a computation, leading to a generic
scheme for blind computation of any circuit without requiring any quantum memory for Alice. This
is fundamentally different from previously known classical or quantum schemes. Our protocol can
be viewed as a distributed version of an MBQC computation (where Alice prepares the individual
qubits, Bob does the entanglement and measurements, and Alice computes the classical feedforward
mechanism), on top of which randomness is added in order to obscure the computation from Bob’s
point of view. The family of graph states called cluster states [RB01] is universal for MBQC (graph
states are initial entangled states required for the computation in MBQC). However, the method
that allows arbitrary computation on the cluster state consists in first tailoring the cluster state
to the specific computation by performing some computational basis measurements. If we were to
use this principle for blind quantum computing, Alice would have to reveal information about the
structure of the underlying graph state. We introduce a new family of states called the brickwork
states (Figure 1) which are universal for X − Y plane measurements and thus do not require the
initial computational basis measurements. Other universal graph states for that do not require
initial computational basis measurements have appeared in [CLN05].

To the best of our knowledge, this is the first time that a new functionality has been achieved
thanks to MBQC (other theoretical advances due to MBQC appear in [RHG06, MS08]). From
a conceptual point of view, our contribution shows that MBQC has tremendous potential for the
development of new protocols, and maybe even of algorithms.

1.3 Outline of Protocols

The outline of the main protocol is as follows. Alice has in mind a quantum computation given as
a measurement pattern on a brickwork state. There are two stages: preparation and computation.
In the preparation stage, Alice prepares single qubits chosen randomly from {1/

√
2
(

|0〉 + eiθ |1〉
)

|
θ = 0,π/4, 2π/4, . . . , 7π/4} and sends them to Bob. After receiving all the qubits, Bob entangles
them according to the brickwork state. Note that this unavoidably reveals upper bounds on the
dimensions of Alice’s underlying graph state, that correspond to the length of the input and depth
of the computation. However, due to universality of the brickwork state, it does not reveal any
additional information on Alice’s computation. The computation stage involves interaction: for
each layer of the brickwork state, for each qubit, Alice sends a classical message to Bob to tell him
in which basis of the X−Y plane he should measure the qubit. Bob performs the measurement and
communicates the outcome; Alice’s choice of angles in future rounds will depend on these values.
Importantly, Alice’s quantum states and classical messages are astutely chosen so that, no matter
what Bob does, he cannot infer anything about her measurement pattern. If Alice is computing
a classical function, the protocol finishes when all qubits are measured. If she is computing a
quantum function, Bob returns to her the final qubits. A modification of the protocol also allows
Alice’s inputs to be quantum.

We give an authentication technique which enables Alice to detect an interfering Bob with over-
whelming probability (strictly speaking, either Bob’s interference is corrected and he is not detected,
or his interference is detected with overwhelming probability). The authentication requires that
Alice encode her input into an error correction code and choose an appropriate fault-tolerant im-
plementation of her desired computation. She also uses some qubits as traps; they are prepared in
the eigenstates of the Pauli operators X, Y and Z.

The remainder of the paper is structured as follows: the main protocol is given in Section 2,
where correctness and blindness are proven. Section 3 discusses extensions to the case of quantum
inputs or outputs; authentication techniques that are used to detect an interfering Bob and perform
fault-tolerant computations are in Section 4, while Section 5 presents the two-server protocol with
a purely classical Alice. The reader unfamiliar with MBQC is referred to a short introduction in
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Universal Blind Quantum Computings
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Figure 1: The brickwork state, Gn×m. Qubits |ψx,y〉 (x = 1, . . . , n, y = 1, . . . ,m) are arranged
according to layer x and row y, corresponding to the vertices in the above graph, and are originally
in the |+〉 = 1√

2
|0〉 + 1√

2
|1〉 state. Controlled-Z gates are then performed between qubits which

are joined by an edge.

The proof of the following theorem is relegated to Appendix B due to lack of space.

Theorem 1 (Universality). The brickwork state Gn×m is universal for quantum computation. Fur-
thermore, we only require single-qubit measurements under the angles {0,±π/4,±π/2}, and mea-
surements can be done layer-by-layer.

In this work, we only consider approximate universality. This allows us to restrict the angles
of preparation and measurement to a finite set and hence simplify the description of the protocol.
However one can easily extend our protocol to achieve exact universality as well, provided Alice
can communicate real numbers to Bob.

Correctness refers to the fact that the outcome of the protocol is the same as the outcome
if Alice has run the pattern herself. The fact that Protocol 1 correctly computes U |0〉 follows
from the commutativity of Alice’s rotations and Bob’s measurements in the rotated bases. This is
formalized below.

Theorem 2 (Correctness). Assume Alice and Bob follow the steps of Protocol 1. Then the
outcome is correct.

Proof. Firstly, since ctrl-Z commutes with Z-rotations, steps 1 and 2 do not change the underlying
graph state; only the phase of each qubit is locally changed, and it is as if Bob had done the Z-
rotation after the ctrl-Z. Secondly, since a measurement in the |+φ〉 , |−φ〉 basis on a state |ψ〉 is
the same as a measurement in the |+φ+θ〉 , |−φ+θ〉 basis on Z(θ) |ψ〉 (see Appendix A), and since
δ = φ′ + θ + πr, if r = 0, Bob’s measurement has the same effect as Alice’s target measurement; if
r = 1, all Alice needs to do is flip the outcome.

We now define and prove the security of the protocol. Intuitively, we wish to prove that whatever
Bob chooses to do (including arbitrary deviations from the protocol), his knowledge on Alice’s
quantum computation does not increase. Note, however that Bob does learn the dimensions of the
brickwork state, giving an upper bound on the size of Alice’s computation. This is unavoidable:
a simple adaptation of the proof of Theorem 2 from [AFK89], confirms this. We incorporate
this notion of leakage in our definition of blindness. A quantum delegated computation protocol
is a protocol by which Alice interacts quantumly with Bob in order to obtain the result of a
computation, U(x), where X = (Ũ , x) is Alice’s input with Ũ being a description of U .

Definition 2. Let P be a quantum delegated computation on input X and let L(X) be any function
of the input. We say that a quantum delegated computation protocol is blind while leaking at most
L(X) if, on Alice’s input X, for any fixed Y = L(X), the following two hold when given Y :

1. The distribution of the classical information obtained by Bob in P is independent of X.

5

|+⌥ = 1⇥
2
(|0⌥+ |1⌥)

|⇧⌥

|±⌥

X

Z

H

J(� + ⇥ + r⇤)

⇤r

|+⇥⌥

|±�+⇥+r⇤⌥

{|+⇥⌥}
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Appendix A. Appendix B contains a universality proof of the brickwork states that is lengthy
due to its figures, while Appendix C contains modified versions of the main protocol to deal with
quantum inputs or outputs.

2 Main Protocol

Suppose Alice has in mind a unitary operator U that is implemented with a pattern on a brickwork
state Gn×m (Figure 1) with measurements given as multiples of π/4. This pattern could have been
designed either directly in MBQC or from a circuit construction. Each qubit |ψx,y〉 ∈ Gn×m is
indexed by a column x ∈ {1, . . . , n} and a row y ∈ {1, . . . ,m}. Thus each qubit is assigned: a
measurement angle φx,y, a set of X-dependencies Dx,y ⊆ [x− 1]× [m], and a set of Z-dependencies
D′

x,y ⊆ [x− 1]× [m] . Here, we assume that the dependency sets Xx,y and Zx,y are obtained via the
flow construction [DK06]. During the execution of the pattern, the actual measurement angle φ′

x,y
is a modification of φx,y that depends on previous measurement outcomes in the following way:
let sX

x,y = ⊕i∈Dx,ysi be the parity of all measurement outcomes for qubits in Xx,y and similarly,

sZ
x,y = ⊕i∈D′

x,y
si be the parity of all measurement outcomes for qubits in Zx,y. Then φ′

x,y =

(−1)s
X
x,yφx,y + sZ

x,yπ . Protocol 1 implements a blind quantum computation for U . Note that
we assume that Alice’s input to the computation is built into U . In other words, Alice wishes to
compute U |0〉, her input is classical and the first layers of U may depend on it.

Protocol 1 Universal Blind Quantum Computation
1. Alice’s preparation

For each column x = 1, . . . , n
For each row y = 1, . . . ,m

1.1 Alice prepares |ψx,y〉 ∈R {
∣

∣+θx,y

〉

= 1√
2
(|0〉+ eiθx,y |1〉) | θx,y = 0,π/4, . . . , 7π/4} and sends

the qubits to Bob.

2. Bob’s preparation

2.1 Bob creates an entangled state from all received qubits, according to their indices, by
applying ctrl-Z gates between the qubits in order to create a brickwork state Gn×m (see
Definition 1).

3. Interaction and measurement
For each column x = 1, . . . , n
For each row y = 1, . . . ,m

3.1 Alice computes φ′
x,y where sX

0,y = sZ
0,y = 0.

3.2 Alice chooses rx,y ∈R {0, 1} and computes δx,y = φ′
x,y + θx,y + πrx,y .

3.3 Alice transmits δx,y to Bob. Bob measures in the basis {
∣

∣+δx,y

〉

,
∣

∣−δx,y

〉

}.
3.4 Bob transmits the result sx,y ∈ {0, 1} to Alice.
3.5 If rx,y = 1 above, Alice flips sx,y; otherwise she does nothing.

The universality of Protocol 1 follows from the universality of brickwork state (defined below)
for measurement-based quantum computing.

Definition 1. A brickwork state Gn×m, where m ≡ 5 (mod 8), is an entangled state of n × m
qubits constructed as follows (see also Figure 1):

1. Prepare all qubits in state |+〉 and assign to each qubit an index (i, j), i being a column (i ∈ [n])
and j being a row (j ∈ [m]).

2. For each row, apply the operator ctrl-Z on qubits (i, j) and (i, j + 1) where 1 ≤ j ≤ m − 1.
3. For each column j ≡ 3 (mod 8) and each odd row i, apply the operator ctrl-Z on qubits (i, j)

and (i + 1, j) and also on qubits (i, j + 2) and (i + 1, j + 2).
4. For each column j ≡ 7 (mod 8) and each even row i, apply the operator ctrl-Z on qubits (i, j)

and (i + 1, j) and also on qubits (i, j + 2) and (i + 1, j + 2).
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Our protocol is described in terms of the measurement-based model for quantum computation
(MBQC) [RB01, RBB03]. While the computational power of this model is the same as in the
quantum circuit model [Deu89] (and our protocol could be completely recast into this model), it
has proven to be conceptually enlightening to reason about the distributed task of blind quantum
computation using this approach. The novelty of our approach is in using the unique feature
of MBQC that separates the classical and quantum parts of a computation, leading to a generic
scheme for blind computation of any circuit without requiring any quantum memory for Alice. This
is fundamentally different from previously known classical or quantum schemes. Our protocol can
be viewed as a distributed version of an MBQC computation (where Alice prepares the individual
qubits, Bob does the entanglement and measurements, and Alice computes the classical feedforward
mechanism), on top of which randomness is added in order to obscure the computation from Bob’s
point of view. The family of graph states called cluster states [RB01] is universal for MBQC (graph
states are initial entangled states required for the computation in MBQC). However, the method
that allows arbitrary computation on the cluster state consists in first tailoring the cluster state
to the specific computation by performing some computational basis measurements. If we were to
use this principle for blind quantum computing, Alice would have to reveal information about the
structure of the underlying graph state. We introduce a new family of states called the brickwork
states (Figure 1) which are universal for X − Y plane measurements and thus do not require the
initial computational basis measurements. Other universal graph states for that do not require
initial computational basis measurements have appeared in [CLN05].

To the best of our knowledge, this is the first time that a new functionality has been achieved
thanks to MBQC (other theoretical advances due to MBQC appear in [RHG06, MS08]). From
a conceptual point of view, our contribution shows that MBQC has tremendous potential for the
development of new protocols, and maybe even of algorithms.

1.3 Outline of Protocols

The outline of the main protocol is as follows. Alice has in mind a quantum computation given as
a measurement pattern on a brickwork state. There are two stages: preparation and computation.
In the preparation stage, Alice prepares single qubits chosen randomly from {1/

√
2
(

|0〉 + eiθ |1〉
)

|
θ = 0,π/4, 2π/4, . . . , 7π/4} and sends them to Bob. After receiving all the qubits, Bob entangles
them according to the brickwork state. Note that this unavoidably reveals upper bounds on the
dimensions of Alice’s underlying graph state, that correspond to the length of the input and depth
of the computation. However, due to universality of the brickwork state, it does not reveal any
additional information on Alice’s computation. The computation stage involves interaction: for
each layer of the brickwork state, for each qubit, Alice sends a classical message to Bob to tell him
in which basis of the X−Y plane he should measure the qubit. Bob performs the measurement and
communicates the outcome; Alice’s choice of angles in future rounds will depend on these values.
Importantly, Alice’s quantum states and classical messages are astutely chosen so that, no matter
what Bob does, he cannot infer anything about her measurement pattern. If Alice is computing
a classical function, the protocol finishes when all qubits are measured. If she is computing a
quantum function, Bob returns to her the final qubits. A modification of the protocol also allows
Alice’s inputs to be quantum.

We give an authentication technique which enables Alice to detect an interfering Bob with over-
whelming probability (strictly speaking, either Bob’s interference is corrected and he is not detected,
or his interference is detected with overwhelming probability). The authentication requires that
Alice encode her input into an error correction code and choose an appropriate fault-tolerant im-
plementation of her desired computation. She also uses some qubits as traps; they are prepared in
the eigenstates of the Pauli operators X, Y and Z.

The remainder of the paper is structured as follows: the main protocol is given in Section 2,
where correctness and blindness are proven. Section 3 discusses extensions to the case of quantum
inputs or outputs; authentication techniques that are used to detect an interfering Bob and perform
fault-tolerant computations are in Section 4, while Section 5 presents the two-server protocol with
a purely classical Alice. The reader unfamiliar with MBQC is referred to a short introduction in
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X = (Ũ , {⌅x,y})

3

.

.

.
.
.
.

. . .

. . .

. . .

. . .

. . .

. . .

. . .

Figure 1: The brickwork state, Gn×m. Qubits |ψx,y〉 (x = 1, . . . , n, y = 1, . . . ,m) are arranged
according to layer x and row y, corresponding to the vertices in the above graph, and are originally
in the |+〉 = 1√

2
|0〉 + 1√

2
|1〉 state. Controlled-Z gates are then performed between qubits which

are joined by an edge.

The proof of the following theorem is relegated to Appendix B due to lack of space.

Theorem 1 (Universality). The brickwork state Gn×m is universal for quantum computation. Fur-
thermore, we only require single-qubit measurements under the angles {0,±π/4,±π/2}, and mea-
surements can be done layer-by-layer.

In this work, we only consider approximate universality. This allows us to restrict the angles
of preparation and measurement to a finite set and hence simplify the description of the protocol.
However one can easily extend our protocol to achieve exact universality as well, provided Alice
can communicate real numbers to Bob.

Correctness refers to the fact that the outcome of the protocol is the same as the outcome
if Alice has run the pattern herself. The fact that Protocol 1 correctly computes U |0〉 follows
from the commutativity of Alice’s rotations and Bob’s measurements in the rotated bases. This is
formalized below.

Theorem 2 (Correctness). Assume Alice and Bob follow the steps of Protocol 1. Then the
outcome is correct.

Proof. Firstly, since ctrl-Z commutes with Z-rotations, steps 1 and 2 do not change the underlying
graph state; only the phase of each qubit is locally changed, and it is as if Bob had done the Z-
rotation after the ctrl-Z. Secondly, since a measurement in the |+φ〉 , |−φ〉 basis on a state |ψ〉 is
the same as a measurement in the |+φ+θ〉 , |−φ+θ〉 basis on Z(θ) |ψ〉 (see Appendix A), and since
δ = φ′ + θ + πr, if r = 0, Bob’s measurement has the same effect as Alice’s target measurement; if
r = 1, all Alice needs to do is flip the outcome.

We now define and prove the security of the protocol. Intuitively, we wish to prove that whatever
Bob chooses to do (including arbitrary deviations from the protocol), his knowledge on Alice’s
quantum computation does not increase. Note, however that Bob does learn the dimensions of the
brickwork state, giving an upper bound on the size of Alice’s computation. This is unavoidable:
a simple adaptation of the proof of Theorem 2 from [AFK89], confirms this. We incorporate
this notion of leakage in our definition of blindness. A quantum delegated computation protocol
is a protocol by which Alice interacts quantumly with Bob in order to obtain the result of a
computation, U(x), where X = (Ũ , x) is Alice’s input with Ũ being a description of U .

Definition 2. Let P be a quantum delegated computation on input X and let L(X) be any function
of the input. We say that a quantum delegated computation protocol is blind while leaking at most
L(X) if, on Alice’s input X, for any fixed Y = L(X), the following two hold when given Y :

1. The distribution of the classical information obtained by Bob in P is independent of X.
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2. Given the distribution of classical information described in 1, the state of the quantum system
obtained by Bob in P is fixed and independent of X.

Definition 2 captures the intuitive notion that Bob’s view of the protocol should not depend on X
(when given Y ); since his view consists of classical and quantum information, this means that the
distribution of the classical information should not depend on X (given Y ) and that for any fixed
choice of the classical information, the state of the quantum system should be uniquely determined
and not depend on X (given Y ). We are now ready to state and prove our main theorem. Recall
that in Protocol 1, (n,m) is the dimension of the brickwork state.

Theorem 3 (Blindness). Protocol 1 is blind while leaking at most (n,m).

Proof. Let (n,m) (the dimension of the brickwork state) be given. Note that the universality of
the brickwork state guarantees that Bob’s creating of the graph state does not reveal anything on
the underlying computation (except n and m).

Alice’s input consists of φ = (φx,y | x ∈ [n], y ∈ [m]), with the actual measurement angles φ′ =
(φ′

x,y | x ∈ [n], y ∈ [m]) being a modification of φ that depends on previous measurement outcomes.
Let the classical information that Bob gets during the protocol be δ = (δx,y | x ∈ [n], y ∈ [m]), and
let A be the quantum system initially sent from Alice to Bob.

To show independence of Bob’s classical information, let θ′x,y = θx,y + πrx,y (for a uniformly
random chosen θx,y) and θ′ = (θ′x,y | x ∈ [n], y ∈ [m]). We have δ = φ′ + θ′, with θ′ being uniformly
random (and independent of φ and/or φ′), which implies the independence of δ and φ.

As for Bob’s quantum information, first fix an arbitrary choice of δ. Because rx,y is uniformly
random, for each qubit of A, one of the following two has occurred:

1. rx,y = 0 so δx,y = φ′
x,y + θ′x,y and |ψx,y〉 = 1√

2
(|0〉 + ei(δx,y−φ′

x,y) |1〉.
2. rx,y = 1 so δx,y = φ′

x,y + θ′x,y + π and |ψx,y〉 = 1√
2
(|0〉 − ei(δx,y−φ′

x,y) |1〉.

Since δ is fixed, θ′ depends on φ′ (and thus on φ), but since rx,y is independent of everything else,
without knowledge of rx,y (i.e. taking the partial trace of the system over Alice’s secret), A consists
of copies of the two-dimensional completely mixed state, which is fixed and independent of φ.

There are two malicious scenarios that are covered by Definition 2 and that we explicitly mention
here. Suppose Bob has some prior knowledge, given as some a priori distribution on Alice’s input X.
Since Definition 2 applies to any distribution of X, we can simply apply it to the conditional
distribution representing the distribution of X given Bob’s a priori knowledge; we conclude that
Bob does not learn any information on X beyond what he already knows, as well as what is leaked.
The second scenario concerns a Bob whose goal it is to find Alice’s output. Definition 2 forbids
this: learning information on the output would imply learning information on Alice’s input.

Note that the protocol does not allow Alice to reveal to Bob whether or not she accepts the result
of the computation as this bit of information could be exploited by Bob to learn some information
about the actual computation. In this scenario, Protocol 2 can be used instead.

3 Quantum Inputs and Outputs

We can slightly modify Protocol 1 to deal with both quantum inputs and outputs. In the former
case, no extra channel resources are required, while the latter case requires a quantum channel
from Bob to Alice in order for him to return the output qubits. Alice will also need to be able to
apply X and Z Pauli operators in order to undo the quantum one-time pad. The exact protocols
are given as Protocols 4 and 5 in Appendix C; a brief description of the protocols follows. Note
that these protocols can be combined to obtain a protocol for quantum inputs and outputs.

3.1 Quantum Inputs

Consider the scenario where Alice’s input is the form of m physical qubits and she has no efficient
classical description of the inputs to be able to incorporate it into Protocol 1. In this case, she
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Figure 1: The brickwork state, Gn×m. Qubits |ψx,y〉 (x = 1, . . . , n, y = 1, . . . ,m) are arranged
according to layer x and row y, corresponding to the vertices in the above graph, and are originally
in the |+〉 = 1√

2
|0〉 + 1√

2
|1〉 state. Controlled-Z gates are then performed between qubits which

are joined by an edge.

The proof of the following theorem is relegated to Appendix B due to lack of space.

Theorem 1 (Universality). The brickwork state Gn×m is universal for quantum computation. Fur-
thermore, we only require single-qubit measurements under the angles {0,±π/4,±π/2}, and mea-
surements can be done layer-by-layer.

In this work, we only consider approximate universality. This allows us to restrict the angles
of preparation and measurement to a finite set and hence simplify the description of the protocol.
However one can easily extend our protocol to achieve exact universality as well, provided Alice
can communicate real numbers to Bob.

Correctness refers to the fact that the outcome of the protocol is the same as the outcome
if Alice has run the pattern herself. The fact that Protocol 1 correctly computes U |0〉 follows
from the commutativity of Alice’s rotations and Bob’s measurements in the rotated bases. This is
formalized below.

Theorem 2 (Correctness). Assume Alice and Bob follow the steps of Protocol 1. Then the
outcome is correct.

Proof. Firstly, since ctrl-Z commutes with Z-rotations, steps 1 and 2 do not change the underlying
graph state; only the phase of each qubit is locally changed, and it is as if Bob had done the Z-
rotation after the ctrl-Z. Secondly, since a measurement in the |+φ〉 , |−φ〉 basis on a state |ψ〉 is
the same as a measurement in the |+φ+θ〉 , |−φ+θ〉 basis on Z(θ) |ψ〉 (see Appendix A), and since
δ = φ′ + θ + πr, if r = 0, Bob’s measurement has the same effect as Alice’s target measurement; if
r = 1, all Alice needs to do is flip the outcome.

We now define and prove the security of the protocol. Intuitively, we wish to prove that whatever
Bob chooses to do (including arbitrary deviations from the protocol), his knowledge on Alice’s
quantum computation does not increase. Note, however that Bob does learn the dimensions of the
brickwork state, giving an upper bound on the size of Alice’s computation. This is unavoidable:
a simple adaptation of the proof of Theorem 2 from [AFK89], confirms this. We incorporate
this notion of leakage in our definition of blindness. A quantum delegated computation protocol
is a protocol by which Alice interacts quantumly with Bob in order to obtain the result of a
computation, U(x), where X = (Ũ , x) is Alice’s input with Ũ being a description of U .

Definition 2. Let P be a quantum delegated computation on input X and let L(X) be any function
of the input. We say that a quantum delegated computation protocol is blind while leaking at most
L(X) if, on Alice’s input X, for any fixed Y = L(X), the following two hold when given Y :

1. The distribution of the classical information obtained by Bob in P is independent of X.
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Appendix A. Appendix B contains a universality proof of the brickwork states that is lengthy
due to its figures, while Appendix C contains modified versions of the main protocol to deal with
quantum inputs or outputs.

2 Main Protocol

Suppose Alice has in mind a unitary operator U that is implemented with a pattern on a brickwork
state Gn×m (Figure 1) with measurements given as multiples of π/4. This pattern could have been
designed either directly in MBQC or from a circuit construction. Each qubit |ψx,y〉 ∈ Gn×m is
indexed by a column x ∈ {1, . . . , n} and a row y ∈ {1, . . . ,m}. Thus each qubit is assigned: a
measurement angle φx,y, a set of X-dependencies Dx,y ⊆ [x− 1]× [m], and a set of Z-dependencies
D′

x,y ⊆ [x− 1]× [m] . Here, we assume that the dependency sets Xx,y and Zx,y are obtained via the
flow construction [DK06]. During the execution of the pattern, the actual measurement angle φ′

x,y
is a modification of φx,y that depends on previous measurement outcomes in the following way:
let sX

x,y = ⊕i∈Dx,ysi be the parity of all measurement outcomes for qubits in Xx,y and similarly,

sZ
x,y = ⊕i∈D′

x,y
si be the parity of all measurement outcomes for qubits in Zx,y. Then φ′

x,y =

(−1)s
X
x,yφx,y + sZ

x,yπ . Protocol 1 implements a blind quantum computation for U . Note that
we assume that Alice’s input to the computation is built into U . In other words, Alice wishes to
compute U |0〉, her input is classical and the first layers of U may depend on it.

Protocol 1 Universal Blind Quantum Computation
1. Alice’s preparation

For each column x = 1, . . . , n
For each row y = 1, . . . ,m

1.1 Alice prepares |ψx,y〉 ∈R {
∣

∣+θx,y

〉

= 1√
2
(|0〉+ eiθx,y |1〉) | θx,y = 0,π/4, . . . , 7π/4} and sends

the qubits to Bob.

2. Bob’s preparation

2.1 Bob creates an entangled state from all received qubits, according to their indices, by
applying ctrl-Z gates between the qubits in order to create a brickwork state Gn×m (see
Definition 1).

3. Interaction and measurement
For each column x = 1, . . . , n
For each row y = 1, . . . ,m

3.1 Alice computes φ′
x,y where sX

0,y = sZ
0,y = 0.

3.2 Alice chooses rx,y ∈R {0, 1} and computes δx,y = φ′
x,y + θx,y + πrx,y .

3.3 Alice transmits δx,y to Bob. Bob measures in the basis {
∣

∣+δx,y

〉

,
∣

∣−δx,y

〉

}.
3.4 Bob transmits the result sx,y ∈ {0, 1} to Alice.
3.5 If rx,y = 1 above, Alice flips sx,y; otherwise she does nothing.

The universality of Protocol 1 follows from the universality of brickwork state (defined below)
for measurement-based quantum computing.

Definition 1. A brickwork state Gn×m, where m ≡ 5 (mod 8), is an entangled state of n × m
qubits constructed as follows (see also Figure 1):

1. Prepare all qubits in state |+〉 and assign to each qubit an index (i, j), i being a column (i ∈ [n])
and j being a row (j ∈ [m]).

2. For each row, apply the operator ctrl-Z on qubits (i, j) and (i, j + 1) where 1 ≤ j ≤ m − 1.
3. For each column j ≡ 3 (mod 8) and each odd row i, apply the operator ctrl-Z on qubits (i, j)

and (i + 1, j) and also on qubits (i, j + 2) and (i + 1, j + 2).
4. For each column j ≡ 7 (mod 8) and each even row i, apply the operator ctrl-Z on qubits (i, j)

and (i + 1, j) and also on qubits (i, j + 2) and (i + 1, j + 2).
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X = (Ũ , {⌅x,y})

⌅�x,y = (�1)sX
x,y⌅x,y + sZ

x,y⇤

rx,y ⌅R {0, 1}

sx,y := sx,y + rx,y

3

Appendix A. Appendix B contains a universality proof of the brickwork states that is lengthy
due to its figures, while Appendix C contains modified versions of the main protocol to deal with
quantum inputs or outputs.

2 Main Protocol

Suppose Alice has in mind a unitary operator U that is implemented with a pattern on a brickwork
state Gn×m (Figure 1) with measurements given as multiples of π/4. This pattern could have been
designed either directly in MBQC or from a circuit construction. Each qubit |ψx,y〉 ∈ Gn×m is
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measurement angle φx,y, a set of X-dependencies Dx,y ⊆ [x− 1]× [m], and a set of Z-dependencies
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x,y ⊆ [x− 1]× [m] . Here, we assume that the dependency sets Xx,y and Zx,y are obtained via the
flow construction [DK06]. During the execution of the pattern, the actual measurement angle φ′

x,y
is a modification of φx,y that depends on previous measurement outcomes in the following way:
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x,y = ⊕i∈Dx,ysi be the parity of all measurement outcomes for qubits in Xx,y and similarly,
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x,y = ⊕i∈D′

x,y
si be the parity of all measurement outcomes for qubits in Zx,y. Then φ′

x,y =

(−1)s
X
x,yφx,y + sZ

x,yπ . Protocol 1 implements a blind quantum computation for U . Note that
we assume that Alice’s input to the computation is built into U . In other words, Alice wishes to
compute U |0〉, her input is classical and the first layers of U may depend on it.
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1. Alice’s preparation

For each column x = 1, . . . , n
For each row y = 1, . . . ,m

1.1 Alice prepares |ψx,y〉 ∈R {
∣
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〉

= 1√
2
(|0〉+ eiθx,y |1〉) | θx,y = 0,π/4, . . . , 7π/4} and sends
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2.1 Bob creates an entangled state from all received qubits, according to their indices, by
applying ctrl-Z gates between the qubits in order to create a brickwork state Gn×m (see
Definition 1).

3. Interaction and measurement
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x,y + θx,y + πrx,y .
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3.4 Bob transmits the result sx,y ∈ {0, 1} to Alice.
3.5 If rx,y = 1 above, Alice flips sx,y; otherwise she does nothing.

The universality of Protocol 1 follows from the universality of brickwork state (defined below)
for measurement-based quantum computing.

Definition 1. A brickwork state Gn×m, where m ≡ 5 (mod 8), is an entangled state of n × m
qubits constructed as follows (see also Figure 1):
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and (i + 1, j) and also on qubits (i, j + 2) and (i + 1, j + 2).
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Figure 1: The brickwork state, Gn×m. Qubits |ψx,y〉 (x = 1, . . . , n, y = 1, . . . ,m) are arranged
according to layer x and row y, corresponding to the vertices in the above graph, and are originally
in the |+〉 = 1√

2
|0〉 + 1√

2
|1〉 state. Controlled-Z gates are then performed between qubits which

are joined by an edge.

The proof of the following theorem is relegated to Appendix B due to lack of space.

Theorem 1 (Universality). The brickwork state Gn×m is universal for quantum computation. Fur-
thermore, we only require single-qubit measurements under the angles {0,±π/4,±π/2}, and mea-
surements can be done layer-by-layer.

In this work, we only consider approximate universality. This allows us to restrict the angles
of preparation and measurement to a finite set and hence simplify the description of the protocol.
However one can easily extend our protocol to achieve exact universality as well, provided Alice
can communicate real numbers to Bob.

Correctness refers to the fact that the outcome of the protocol is the same as the outcome
if Alice has run the pattern herself. The fact that Protocol 1 correctly computes U |0〉 follows
from the commutativity of Alice’s rotations and Bob’s measurements in the rotated bases. This is
formalized below.

Theorem 2 (Correctness). Assume Alice and Bob follow the steps of Protocol 1. Then the
outcome is correct.

Proof. Firstly, since ctrl-Z commutes with Z-rotations, steps 1 and 2 do not change the underlying
graph state; only the phase of each qubit is locally changed, and it is as if Bob had done the Z-
rotation after the ctrl-Z. Secondly, since a measurement in the |+φ〉 , |−φ〉 basis on a state |ψ〉 is
the same as a measurement in the |+φ+θ〉 , |−φ+θ〉 basis on Z(θ) |ψ〉 (see Appendix A), and since
δ = φ′ + θ + πr, if r = 0, Bob’s measurement has the same effect as Alice’s target measurement; if
r = 1, all Alice needs to do is flip the outcome.

We now define and prove the security of the protocol. Intuitively, we wish to prove that whatever
Bob chooses to do (including arbitrary deviations from the protocol), his knowledge on Alice’s
quantum computation does not increase. Note, however that Bob does learn the dimensions of the
brickwork state, giving an upper bound on the size of Alice’s computation. This is unavoidable:
a simple adaptation of the proof of Theorem 2 from [AFK89], confirms this. We incorporate
this notion of leakage in our definition of blindness. A quantum delegated computation protocol
is a protocol by which Alice interacts quantumly with Bob in order to obtain the result of a
computation, U(x), where X = (Ũ , x) is Alice’s input with Ũ being a description of U .

Definition 2. Let P be a quantum delegated computation on input X and let L(X) be any function
of the input. We say that a quantum delegated computation protocol is blind while leaking at most
L(X) if, on Alice’s input X, for any fixed Y = L(X), the following two hold when given Y :

1. The distribution of the classical information obtained by Bob in P is independent of X.
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Appendix A. Appendix B contains a universality proof of the brickwork states that is lengthy
due to its figures, while Appendix C contains modified versions of the main protocol to deal with
quantum inputs or outputs.

2 Main Protocol

Suppose Alice has in mind a unitary operator U that is implemented with a pattern on a brickwork
state Gn×m (Figure 1) with measurements given as multiples of π/4. This pattern could have been
designed either directly in MBQC or from a circuit construction. Each qubit |ψx,y〉 ∈ Gn×m is
indexed by a column x ∈ {1, . . . , n} and a row y ∈ {1, . . . ,m}. Thus each qubit is assigned: a
measurement angle φx,y, a set of X-dependencies Dx,y ⊆ [x− 1]× [m], and a set of Z-dependencies
D′

x,y ⊆ [x− 1]× [m] . Here, we assume that the dependency sets Xx,y and Zx,y are obtained via the
flow construction [DK06]. During the execution of the pattern, the actual measurement angle φ′

x,y
is a modification of φx,y that depends on previous measurement outcomes in the following way:
let sX

x,y = ⊕i∈Dx,ysi be the parity of all measurement outcomes for qubits in Xx,y and similarly,

sZ
x,y = ⊕i∈D′

x,y
si be the parity of all measurement outcomes for qubits in Zx,y. Then φ′

x,y =

(−1)s
X
x,yφx,y + sZ

x,yπ . Protocol 1 implements a blind quantum computation for U . Note that
we assume that Alice’s input to the computation is built into U . In other words, Alice wishes to
compute U |0〉, her input is classical and the first layers of U may depend on it.

Protocol 1 Universal Blind Quantum Computation
1. Alice’s preparation

For each column x = 1, . . . , n
For each row y = 1, . . . ,m

1.1 Alice prepares |ψx,y〉 ∈R {
∣

∣+θx,y

〉

= 1√
2
(|0〉+ eiθx,y |1〉) | θx,y = 0,π/4, . . . , 7π/4} and sends

the qubits to Bob.

2. Bob’s preparation

2.1 Bob creates an entangled state from all received qubits, according to their indices, by
applying ctrl-Z gates between the qubits in order to create a brickwork state Gn×m (see
Definition 1).

3. Interaction and measurement
For each column x = 1, . . . , n
For each row y = 1, . . . ,m

3.1 Alice computes φ′
x,y where sX

0,y = sZ
0,y = 0.

3.2 Alice chooses rx,y ∈R {0, 1} and computes δx,y = φ′
x,y + θx,y + πrx,y .

3.3 Alice transmits δx,y to Bob. Bob measures in the basis {
∣

∣+δx,y

〉

,
∣

∣−δx,y

〉

}.
3.4 Bob transmits the result sx,y ∈ {0, 1} to Alice.
3.5 If rx,y = 1 above, Alice flips sx,y; otherwise she does nothing.

The universality of Protocol 1 follows from the universality of brickwork state (defined below)
for measurement-based quantum computing.

Definition 1. A brickwork state Gn×m, where m ≡ 5 (mod 8), is an entangled state of n × m
qubits constructed as follows (see also Figure 1):

1. Prepare all qubits in state |+〉 and assign to each qubit an index (i, j), i being a column (i ∈ [n])
and j being a row (j ∈ [m]).

2. For each row, apply the operator ctrl-Z on qubits (i, j) and (i, j + 1) where 1 ≤ j ≤ m − 1.
3. For each column j ≡ 3 (mod 8) and each odd row i, apply the operator ctrl-Z on qubits (i, j)

and (i + 1, j) and also on qubits (i, j + 2) and (i + 1, j + 2).
4. For each column j ≡ 7 (mod 8) and each even row i, apply the operator ctrl-Z on qubits (i, j)

and (i + 1, j) and also on qubits (i, j + 2) and (i + 1, j + 2).
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Figure 1: The brickwork state, Gn×m. Qubits |ψx,y〉 (x = 1, . . . , n, y = 1, . . . ,m) are arranged
according to layer x and row y, corresponding to the vertices in the above graph, and are originally
in the |+〉 = 1√

2
|0〉 + 1√

2
|1〉 state. Controlled-Z gates are then performed between qubits which

are joined by an edge.

The proof of the following theorem is relegated to Appendix B due to lack of space.

Theorem 1 (Universality). The brickwork state Gn×m is universal for quantum computation. Fur-
thermore, we only require single-qubit measurements under the angles {0,±π/4,±π/2}, and mea-
surements can be done layer-by-layer.

In this work, we only consider approximate universality. This allows us to restrict the angles
of preparation and measurement to a finite set and hence simplify the description of the protocol.
However one can easily extend our protocol to achieve exact universality as well, provided Alice
can communicate real numbers to Bob.

Correctness refers to the fact that the outcome of the protocol is the same as the outcome
if Alice has run the pattern herself. The fact that Protocol 1 correctly computes U |0〉 follows
from the commutativity of Alice’s rotations and Bob’s measurements in the rotated bases. This is
formalized below.

Theorem 2 (Correctness). Assume Alice and Bob follow the steps of Protocol 1. Then the
outcome is correct.

Proof. Firstly, since ctrl-Z commutes with Z-rotations, steps 1 and 2 do not change the underlying
graph state; only the phase of each qubit is locally changed, and it is as if Bob had done the Z-
rotation after the ctrl-Z. Secondly, since a measurement in the |+φ〉 , |−φ〉 basis on a state |ψ〉 is
the same as a measurement in the |+φ+θ〉 , |−φ+θ〉 basis on Z(θ) |ψ〉 (see Appendix A), and since
δ = φ′ + θ + πr, if r = 0, Bob’s measurement has the same effect as Alice’s target measurement; if
r = 1, all Alice needs to do is flip the outcome.

We now define and prove the security of the protocol. Intuitively, we wish to prove that whatever
Bob chooses to do (including arbitrary deviations from the protocol), his knowledge on Alice’s
quantum computation does not increase. Note, however that Bob does learn the dimensions of the
brickwork state, giving an upper bound on the size of Alice’s computation. This is unavoidable:
a simple adaptation of the proof of Theorem 2 from [AFK89], confirms this. We incorporate
this notion of leakage in our definition of blindness. A quantum delegated computation protocol
is a protocol by which Alice interacts quantumly with Bob in order to obtain the result of a
computation, U(x), where X = (Ũ , x) is Alice’s input with Ũ being a description of U .

Definition 2. Let P be a quantum delegated computation on input X and let L(X) be any function
of the input. We say that a quantum delegated computation protocol is blind while leaking at most
L(X) if, on Alice’s input X, for any fixed Y = L(X), the following two hold when given Y :

1. The distribution of the classical information obtained by Bob in P is independent of X.
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Appendix A. Appendix B contains a universality proof of the brickwork states that is lengthy
due to its figures, while Appendix C contains modified versions of the main protocol to deal with
quantum inputs or outputs.

2 Main Protocol

Suppose Alice has in mind a unitary operator U that is implemented with a pattern on a brickwork
state Gn×m (Figure 1) with measurements given as multiples of π/4. This pattern could have been
designed either directly in MBQC or from a circuit construction. Each qubit |ψx,y〉 ∈ Gn×m is
indexed by a column x ∈ {1, . . . , n} and a row y ∈ {1, . . . ,m}. Thus each qubit is assigned: a
measurement angle φx,y, a set of X-dependencies Dx,y ⊆ [x− 1]× [m], and a set of Z-dependencies
D′

x,y ⊆ [x− 1]× [m] . Here, we assume that the dependency sets Xx,y and Zx,y are obtained via the
flow construction [DK06]. During the execution of the pattern, the actual measurement angle φ′

x,y
is a modification of φx,y that depends on previous measurement outcomes in the following way:
let sX

x,y = ⊕i∈Dx,ysi be the parity of all measurement outcomes for qubits in Xx,y and similarly,

sZ
x,y = ⊕i∈D′

x,y
si be the parity of all measurement outcomes for qubits in Zx,y. Then φ′

x,y =

(−1)s
X
x,yφx,y + sZ

x,yπ . Protocol 1 implements a blind quantum computation for U . Note that
we assume that Alice’s input to the computation is built into U . In other words, Alice wishes to
compute U |0〉, her input is classical and the first layers of U may depend on it.

Protocol 1 Universal Blind Quantum Computation
1. Alice’s preparation

For each column x = 1, . . . , n
For each row y = 1, . . . ,m

1.1 Alice prepares |ψx,y〉 ∈R {
∣

∣+θx,y

〉

= 1√
2
(|0〉+ eiθx,y |1〉) | θx,y = 0,π/4, . . . , 7π/4} and sends

the qubits to Bob.

2. Bob’s preparation

2.1 Bob creates an entangled state from all received qubits, according to their indices, by
applying ctrl-Z gates between the qubits in order to create a brickwork state Gn×m (see
Definition 1).

3. Interaction and measurement
For each column x = 1, . . . , n
For each row y = 1, . . . ,m

3.1 Alice computes φ′
x,y where sX

0,y = sZ
0,y = 0.

3.2 Alice chooses rx,y ∈R {0, 1} and computes δx,y = φ′
x,y + θx,y + πrx,y .

3.3 Alice transmits δx,y to Bob. Bob measures in the basis {
∣

∣+δx,y

〉

,
∣

∣−δx,y

〉

}.
3.4 Bob transmits the result sx,y ∈ {0, 1} to Alice.
3.5 If rx,y = 1 above, Alice flips sx,y; otherwise she does nothing.

The universality of Protocol 1 follows from the universality of brickwork state (defined below)
for measurement-based quantum computing.

Definition 1. A brickwork state Gn×m, where m ≡ 5 (mod 8), is an entangled state of n × m
qubits constructed as follows (see also Figure 1):

1. Prepare all qubits in state |+〉 and assign to each qubit an index (i, j), i being a column (i ∈ [n])
and j being a row (j ∈ [m]).

2. For each row, apply the operator ctrl-Z on qubits (i, j) and (i, j + 1) where 1 ≤ j ≤ m − 1.
3. For each column j ≡ 3 (mod 8) and each odd row i, apply the operator ctrl-Z on qubits (i, j)

and (i + 1, j) and also on qubits (i, j + 2) and (i + 1, j + 2).
4. For each column j ≡ 7 (mod 8) and each even row i, apply the operator ctrl-Z on qubits (i, j)

and (i + 1, j) and also on qubits (i, j + 2) and (i + 1, j + 2).
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due to its figures, while Appendix C contains modified versions of the main protocol to deal with
quantum inputs or outputs.

2 Main Protocol
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let sX

x,y = ⊕i∈Dx,ysi be the parity of all measurement outcomes for qubits in Xx,y and similarly,

sZ
x,y = ⊕i∈D′

x,y
si be the parity of all measurement outcomes for qubits in Zx,y. Then φ′

x,y =

(−1)s
X
x,yφx,y + sZ

x,yπ . Protocol 1 implements a blind quantum computation for U . Note that
we assume that Alice’s input to the computation is built into U . In other words, Alice wishes to
compute U |0〉, her input is classical and the first layers of U may depend on it.

Protocol 1 Universal Blind Quantum Computation
1. Alice’s preparation

For each column x = 1, . . . , n
For each row y = 1, . . . ,m

1.1 Alice prepares |ψx,y〉 ∈R {
∣

∣+θx,y

〉

= 1√
2
(|0〉+ eiθx,y |1〉) | θx,y = 0,π/4, . . . , 7π/4} and sends

the qubits to Bob.

2. Bob’s preparation

2.1 Bob creates an entangled state from all received qubits, according to their indices, by
applying ctrl-Z gates between the qubits in order to create a brickwork state Gn×m (see
Definition 1).

3. Interaction and measurement
For each column x = 1, . . . , n
For each row y = 1, . . . ,m

3.1 Alice computes φ′
x,y where sX

0,y = sZ
0,y = 0.

3.2 Alice chooses rx,y ∈R {0, 1} and computes δx,y = φ′
x,y + θx,y + πrx,y .

3.3 Alice transmits δx,y to Bob. Bob measures in the basis {
∣

∣+δx,y

〉

,
∣

∣−δx,y

〉

}.
3.4 Bob transmits the result sx,y ∈ {0, 1} to Alice.
3.5 If rx,y = 1 above, Alice flips sx,y; otherwise she does nothing.

The universality of Protocol 1 follows from the universality of brickwork state (defined below)
for measurement-based quantum computing.

Definition 1. A brickwork state Gn×m, where m ≡ 5 (mod 8), is an entangled state of n × m
qubits constructed as follows (see also Figure 1):

1. Prepare all qubits in state |+〉 and assign to each qubit an index (i, j), i being a column (i ∈ [n])
and j being a row (j ∈ [m]).

2. For each row, apply the operator ctrl-Z on qubits (i, j) and (i, j + 1) where 1 ≤ j ≤ m − 1.
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2 Main Protocol

Suppose Alice has in mind a unitary operator U that is implemented with a pattern on a brickwork
state Gn×m (Figure 1) with measurements given as multiples of π/4. This pattern could have been
designed either directly in MBQC or from a circuit construction. Each qubit |ψx,y〉 ∈ Gn×m is
indexed by a column x ∈ {1, . . . , n} and a row y ∈ {1, . . . ,m}. Thus each qubit is assigned: a
measurement angle φx,y, a set of X-dependencies Dx,y ⊆ [x− 1]× [m], and a set of Z-dependencies
D′

x,y ⊆ [x− 1]× [m] . Here, we assume that the dependency sets Xx,y and Zx,y are obtained via the
flow construction [DK06]. During the execution of the pattern, the actual measurement angle φ′

x,y
is a modification of φx,y that depends on previous measurement outcomes in the following way:
let sX

x,y = ⊕i∈Dx,ysi be the parity of all measurement outcomes for qubits in Xx,y and similarly,

sZ
x,y = ⊕i∈D′

x,y
si be the parity of all measurement outcomes for qubits in Zx,y. Then φ′

x,y =

(−1)s
X
x,yφx,y + sZ

x,yπ . Protocol 1 implements a blind quantum computation for U . Note that
we assume that Alice’s input to the computation is built into U . In other words, Alice wishes to
compute U |0〉, her input is classical and the first layers of U may depend on it.

Protocol 1 Universal Blind Quantum Computation
1. Alice’s preparation

For each column x = 1, . . . , n
For each row y = 1, . . . ,m

1.1 Alice prepares |ψx,y〉 ∈R {
∣

∣+θx,y

〉

= 1√
2
(|0〉+ eiθx,y |1〉) | θx,y = 0,π/4, . . . , 7π/4} and sends

the qubits to Bob.

2. Bob’s preparation

2.1 Bob creates an entangled state from all received qubits, according to their indices, by
applying ctrl-Z gates between the qubits in order to create a brickwork state Gn×m (see
Definition 1).

3. Interaction and measurement
For each column x = 1, . . . , n
For each row y = 1, . . . ,m

3.1 Alice computes φ′
x,y where sX

0,y = sZ
0,y = 0.

3.2 Alice chooses rx,y ∈R {0, 1} and computes δx,y = φ′
x,y + θx,y + πrx,y .

3.3 Alice transmits δx,y to Bob. Bob measures in the basis {
∣

∣+δx,y

〉

,
∣

∣−δx,y

〉

}.
3.4 Bob transmits the result sx,y ∈ {0, 1} to Alice.
3.5 If rx,y = 1 above, Alice flips sx,y; otherwise she does nothing.

The universality of Protocol 1 follows from the universality of brickwork state (defined below)
for measurement-based quantum computing.

Definition 1. A brickwork state Gn×m, where m ≡ 5 (mod 8), is an entangled state of n × m
qubits constructed as follows (see also Figure 1):

1. Prepare all qubits in state |+〉 and assign to each qubit an index (i, j), i being a column (i ∈ [n])
and j being a row (j ∈ [m]).

2. For each row, apply the operator ctrl-Z on qubits (i, j) and (i, j + 1) where 1 ≤ j ≤ m − 1.
3. For each column j ≡ 3 (mod 8) and each odd row i, apply the operator ctrl-Z on qubits (i, j)

and (i + 1, j) and also on qubits (i, j + 2) and (i + 1, j + 2).
4. For each column j ≡ 7 (mod 8) and each even row i, apply the operator ctrl-Z on qubits (i, j)

and (i + 1, j) and also on qubits (i, j + 2) and (i + 1, j + 2).
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Appendix A. Appendix B contains a universality proof of the brickwork states that is lengthy
due to its figures, while Appendix C contains modified versions of the main protocol to deal with
quantum inputs or outputs.

2 Main Protocol

Suppose Alice has in mind a unitary operator U that is implemented with a pattern on a brickwork
state Gn×m (Figure 1) with measurements given as multiples of π/4. This pattern could have been
designed either directly in MBQC or from a circuit construction. Each qubit |ψx,y〉 ∈ Gn×m is
indexed by a column x ∈ {1, . . . , n} and a row y ∈ {1, . . . ,m}. Thus each qubit is assigned: a
measurement angle φx,y, a set of X-dependencies Dx,y ⊆ [x− 1]× [m], and a set of Z-dependencies
D′

x,y ⊆ [x− 1]× [m] . Here, we assume that the dependency sets Xx,y and Zx,y are obtained via the
flow construction [DK06]. During the execution of the pattern, the actual measurement angle φ′

x,y
is a modification of φx,y that depends on previous measurement outcomes in the following way:
let sX

x,y = ⊕i∈Dx,ysi be the parity of all measurement outcomes for qubits in Xx,y and similarly,

sZ
x,y = ⊕i∈D′

x,y
si be the parity of all measurement outcomes for qubits in Zx,y. Then φ′

x,y =

(−1)s
X
x,yφx,y + sZ

x,yπ . Protocol 1 implements a blind quantum computation for U . Note that
we assume that Alice’s input to the computation is built into U . In other words, Alice wishes to
compute U |0〉, her input is classical and the first layers of U may depend on it.

Protocol 1 Universal Blind Quantum Computation
1. Alice’s preparation

For each column x = 1, . . . , n
For each row y = 1, . . . ,m

1.1 Alice prepares |ψx,y〉 ∈R {
∣

∣+θx,y

〉

= 1√
2
(|0〉+ eiθx,y |1〉) | θx,y = 0,π/4, . . . , 7π/4} and sends

the qubits to Bob.

2. Bob’s preparation

2.1 Bob creates an entangled state from all received qubits, according to their indices, by
applying ctrl-Z gates between the qubits in order to create a brickwork state Gn×m (see
Definition 1).

3. Interaction and measurement
For each column x = 1, . . . , n
For each row y = 1, . . . ,m

3.1 Alice computes φ′
x,y where sX

0,y = sZ
0,y = 0.

3.2 Alice chooses rx,y ∈R {0, 1} and computes δx,y = φ′
x,y + θx,y + πrx,y .

3.3 Alice transmits δx,y to Bob. Bob measures in the basis {
∣

∣+δx,y

〉

,
∣

∣−δx,y

〉

}.
3.4 Bob transmits the result sx,y ∈ {0, 1} to Alice.
3.5 If rx,y = 1 above, Alice flips sx,y; otherwise she does nothing.

The universality of Protocol 1 follows from the universality of brickwork state (defined below)
for measurement-based quantum computing.

Definition 1. A brickwork state Gn×m, where m ≡ 5 (mod 8), is an entangled state of n × m
qubits constructed as follows (see also Figure 1):

1. Prepare all qubits in state |+〉 and assign to each qubit an index (i, j), i being a column (i ∈ [n])
and j being a row (j ∈ [m]).

2. For each row, apply the operator ctrl-Z on qubits (i, j) and (i, j + 1) where 1 ≤ j ≤ m − 1.
3. For each column j ≡ 3 (mod 8) and each odd row i, apply the operator ctrl-Z on qubits (i, j)

and (i + 1, j) and also on qubits (i, j + 2) and (i + 1, j + 2).
4. For each column j ≡ 7 (mod 8) and each even row i, apply the operator ctrl-Z on qubits (i, j)

and (i + 1, j) and also on qubits (i, j + 2) and (i + 1, j + 2).

4

Secure Classical 
Emulation

O(1000) server qubits for randomising one single client qubits





Secure Access to Quantum Cloud 


= 


Quantum Communication



Party with Q Computer

Malicious Client - Malicious Server

Q Internet

Party with Algorithm

Party with Data

Party with Algorithm

Party with Data



Yao Garbled Circuit - Secure 2-party Computing

Garbled Program f

Yao 1986

Secret input a 



Yao Garbled Circuit - Secure 2-party Computing

Garbled Program f

Yao 1986

Secret input a 



Yao Garbled Circuit - Secure 2-party Computing

Garbled Program f

Yao 1986

Secret input a 



Yao Garbled Circuit - Secure 2-party Computing

Garbled Program f

Yao 1986

Secret input a 



Yao Garbled Circuit - Secure 2-party Computing

Garbled Program f

Yao 1986

Secret input a 

Insert secret input b  
Evaluate f(a,b)



Yao Garbled Circuit - Secure 2-party Computing

Computational Security 


Requires OT


Honest but Curious Adversary

Garbled Program f

Yao 1986

Secret input a 

Insert secret input b  
Evaluate f(a,b)



Verifiable Quantum Yao

Garbled CP map

Secret input q_c 

Kashefi, Walden 16 
Kashefi, Music, Wallden 17



Verifiable Quantum Yao

Garbled CP map

Secret input q_c 

P
⌫

p(⌫) Tr (P ⌫

incorrect
B(⌫))  ✏

0

BB@

1
1
1
�1

1

CCA ✓

1
2

✓
1 e

i↵

e
�i↵ 1

◆
+ 1

2

✓
1 �e

i↵

�e
�i↵ 1

◆

s 2 {0, 1} ; X
s
J(↵)

✓
1
1

◆

✓
1 (ei↵

1 �e
i↵

◆

4

P
⌫

p(⌫) Tr (P ⌫
incorrect

B(⌫))  ✏

0

BB@

1
1
1
�1

1

CCA ✓ + ↵ + r⇡

1
2

✓
1 e

i↵

e
�i↵ 1

◆
+ 1

2

✓
1 �e

i↵

�e
�i↵ 1

◆

s 2 {0, 1} ; X
s+r

J(↵)
✓

1
1

◆

✓
1 (ei↵

1 �e
i↵

◆

✓
0

4

…

Our protocol is described in terms of the measurement-based model for quantum computation
(MBQC) [RB01, RBB03]. While the computational power of this model is the same as in the
quantum circuit model [Deu89] (and our protocol could be completely recast into this model), it
has proven to be conceptually enlightening to reason about the distributed task of blind quantum
computation using this approach. The novelty of our approach is in using the unique feature
of MBQC that separates the classical and quantum parts of a computation, leading to a generic
scheme for blind computation of any circuit without requiring any quantum memory for Alice. This
is fundamentally different from previously known classical or quantum schemes. Our protocol can
be viewed as a distributed version of an MBQC computation (where Alice prepares the individual
qubits, Bob does the entanglement and measurements, and Alice computes the classical feedforward
mechanism), on top of which randomness is added in order to obscure the computation from Bob’s
point of view. The family of graph states called cluster states [RB01] is universal for MBQC (graph
states are initial entangled states required for the computation in MBQC). However, the method
that allows arbitrary computation on the cluster state consists in first tailoring the cluster state
to the specific computation by performing some computational basis measurements. If we were to
use this principle for blind quantum computing, Alice would have to reveal information about the
structure of the underlying graph state. We introduce a new family of states called the brickwork
states (Figure 1) which are universal for X − Y plane measurements and thus do not require the
initial computational basis measurements. Other universal graph states for that do not require
initial computational basis measurements have appeared in [CLN05].

To the best of our knowledge, this is the first time that a new functionality has been achieved
thanks to MBQC (other theoretical advances due to MBQC appear in [RHG06, MS08]). From
a conceptual point of view, our contribution shows that MBQC has tremendous potential for the
development of new protocols, and maybe even of algorithms.

1.3 Outline of Protocols

The outline of the main protocol is as follows. Alice has in mind a quantum computation given as
a measurement pattern on a brickwork state. There are two stages: preparation and computation.
In the preparation stage, Alice prepares single qubits chosen randomly from {1/

√
2
(

|0〉 + eiθ |1〉
)

|
θ = 0,π/4, 2π/4, . . . , 7π/4} and sends them to Bob. After receiving all the qubits, Bob entangles
them according to the brickwork state. Note that this unavoidably reveals upper bounds on the
dimensions of Alice’s underlying graph state, that correspond to the length of the input and depth
of the computation. However, due to universality of the brickwork state, it does not reveal any
additional information on Alice’s computation. The computation stage involves interaction: for
each layer of the brickwork state, for each qubit, Alice sends a classical message to Bob to tell him
in which basis of the X−Y plane he should measure the qubit. Bob performs the measurement and
communicates the outcome; Alice’s choice of angles in future rounds will depend on these values.
Importantly, Alice’s quantum states and classical messages are astutely chosen so that, no matter
what Bob does, he cannot infer anything about her measurement pattern. If Alice is computing
a classical function, the protocol finishes when all qubits are measured. If she is computing a
quantum function, Bob returns to her the final qubits. A modification of the protocol also allows
Alice’s inputs to be quantum.

We give an authentication technique which enables Alice to detect an interfering Bob with over-
whelming probability (strictly speaking, either Bob’s interference is corrected and he is not detected,
or his interference is detected with overwhelming probability). The authentication requires that
Alice encode her input into an error correction code and choose an appropriate fault-tolerant im-
plementation of her desired computation. She also uses some qubits as traps; they are prepared in
the eigenstates of the Pauli operators X, Y and Z.

The remainder of the paper is structured as follows: the main protocol is given in Section 2,
where correctness and blindness are proven. Section 3 discusses extensions to the case of quantum
inputs or outputs; authentication techniques that are used to detect an interfering Bob and perform
fault-tolerant computations are in Section 4, while Section 5 presents the two-server protocol with
a purely classical Alice. The reader unfamiliar with MBQC is referred to a short introduction in
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communicates the outcome; Alice’s choice of angles in future rounds will depend on these values.
Importantly, Alice’s quantum states and classical messages are astutely chosen so that, no matter
what Bob does, he cannot infer anything about her measurement pattern. If Alice is computing
a classical function, the protocol finishes when all qubits are measured. If she is computing a
quantum function, Bob returns to her the final qubits. A modification of the protocol also allows
Alice’s inputs to be quantum.

We give an authentication technique which enables Alice to detect an interfering Bob with over-
whelming probability (strictly speaking, either Bob’s interference is corrected and he is not detected,
or his interference is detected with overwhelming probability). The authentication requires that
Alice encode her input into an error correction code and choose an appropriate fault-tolerant im-
plementation of her desired computation. She also uses some qubits as traps; they are prepared in
the eigenstates of the Pauli operators X, Y and Z.

The remainder of the paper is structured as follows: the main protocol is given in Section 2,
where correctness and blindness are proven. Section 3 discusses extensions to the case of quantum
inputs or outputs; authentication techniques that are used to detect an interfering Bob and perform
fault-tolerant computations are in Section 4, while Section 5 presents the two-server protocol with
a purely classical Alice. The reader unfamiliar with MBQC is referred to a short introduction in

3

|+⌦ = 1⇥
2
(|0⌦+ |1⌦)

|⇧⌦

|±⌦

X

Z

H

J(� + ⇥ + r⇤)

⌅r

|+⇥⌦

|±�+⇥+r⇤⌦

{|+⇥⌦}
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about the position of the traps is leaked. Trap hiding also requires the client to
return two extra qubits for the input insertion (see Figure 2) that will belong
to trap graphs (called the white-graph and black-graph). The white qubit is a
trap is prepared in a state |✓ki while the black qubit is dummy and is prepared
in state |dji. The three qubits will be randomly permuted by the client so that
the server does not know which qubit is which. A similar procedure (with no
communication from the server) is applied for client’s input qubits, as well as
for all the qubits corresponding to the gate computation (see Figure 2).

Fig. 2. Server gives their input (blue) and client chooses (randomly) where in the input
base-location to place the input. The random choice is highlighted. The trap-colouring
is filled correspondingly, after the random choice is made.

Finally, after the server has received all the qubits, announces the secret
keys (mx,i,mz,i) for each input i to the client, so that the client can update the
encryption for these qubits and have (xi, ✓i) := (x0

i
+mx,i, (�1)mx,i✓

0

i
+ ⇡mz,i).

With the updated encryption, the client computes the suitable measurement
angles �i. It is worth pointing out that the key releasing step from server to
client could be avoided, by using classical OT to compute the measurement
angles as a function of the secret parameters of the server �i(mx,i,mz,i) for
the first two layers (that have dependency on mx,i,mz,i). While this could be
necessary for future work, to construct protocols dealing with malicious client,
it is not necessary for our case where the client is considered to be specious.

3.2 Server’s output extraction

In the regular VUBQC protocol, the server returns all the output qubits to the
client. The client measures the final layer’s traps to check for any deviation and
then obtains the output of the computation by decrypting the output computa-
tion qubits using their secret keys. In the 2PQC, part of the output (of known
base-locations) should remain in the hands of the server. This, however, would
not allow the client to check for the related traps (that could have e↵ects on
other output qubits). Similar to the input injection, the solution is obtained via
an extra layer of encryption by server followed by a delayed key releasing. The
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Appendix A. Appendix B contains a universality proof of the brickwork states that is lengthy
due to its figures, while Appendix C contains modified versions of the main protocol to deal with
quantum inputs or outputs.

2 Main Protocol

Suppose Alice has in mind a unitary operator U that is implemented with a pattern on a brickwork
state Gn×m (Figure 1) with measurements given as multiples of π/4. This pattern could have been
designed either directly in MBQC or from a circuit construction. Each qubit |ψx,y〉 ∈ Gn×m is
indexed by a column x ∈ {1, . . . , n} and a row y ∈ {1, . . . ,m}. Thus each qubit is assigned: a
measurement angle φx,y, a set of X-dependencies Dx,y ⊆ [x− 1]× [m], and a set of Z-dependencies
D′

x,y ⊆ [x− 1]× [m] . Here, we assume that the dependency sets Xx,y and Zx,y are obtained via the
flow construction [DK06]. During the execution of the pattern, the actual measurement angle φ′

x,y
is a modification of φx,y that depends on previous measurement outcomes in the following way:
let sX

x,y = ⊕i∈Dx,ysi be the parity of all measurement outcomes for qubits in Xx,y and similarly,

sZ
x,y = ⊕i∈D′

x,y
si be the parity of all measurement outcomes for qubits in Zx,y. Then φ′

x,y =

(−1)s
X
x,yφx,y + sZ

x,yπ . Protocol 1 implements a blind quantum computation for U . Note that
we assume that Alice’s input to the computation is built into U . In other words, Alice wishes to
compute U |0〉, her input is classical and the first layers of U may depend on it.

Protocol 1 Universal Blind Quantum Computation
1. Alice’s preparation

For each column x = 1, . . . , n
For each row y = 1, . . . ,m

1.1 Alice prepares |ψx,y〉 ∈R {
∣

∣+θx,y

〉

= 1√
2
(|0〉+ eiθx,y |1〉) | θx,y = 0,π/4, . . . , 7π/4} and sends

the qubits to Bob.

2. Bob’s preparation

2.1 Bob creates an entangled state from all received qubits, according to their indices, by
applying ctrl-Z gates between the qubits in order to create a brickwork state Gn×m (see
Definition 1).

3. Interaction and measurement
For each column x = 1, . . . , n
For each row y = 1, . . . ,m

3.1 Alice computes φ′
x,y where sX

0,y = sZ
0,y = 0.

3.2 Alice chooses rx,y ∈R {0, 1} and computes δx,y = φ′
x,y + θx,y + πrx,y .

3.3 Alice transmits δx,y to Bob. Bob measures in the basis {
∣

∣+δx,y

〉

,
∣

∣−δx,y

〉

}.
3.4 Bob transmits the result sx,y ∈ {0, 1} to Alice.
3.5 If rx,y = 1 above, Alice flips sx,y; otherwise she does nothing.

The universality of Protocol 1 follows from the universality of brickwork state (defined below)
for measurement-based quantum computing.

Definition 1. A brickwork state Gn×m, where m ≡ 5 (mod 8), is an entangled state of n × m
qubits constructed as follows (see also Figure 1):

1. Prepare all qubits in state |+〉 and assign to each qubit an index (i, j), i being a column (i ∈ [n])
and j being a row (j ∈ [m]).

2. For each row, apply the operator ctrl-Z on qubits (i, j) and (i, j + 1) where 1 ≤ j ≤ m − 1.
3. For each column j ≡ 3 (mod 8) and each odd row i, apply the operator ctrl-Z on qubits (i, j)

and (i + 1, j) and also on qubits (i, j + 2) and (i + 1, j + 2).
4. For each column j ≡ 7 (mod 8) and each even row i, apply the operator ctrl-Z on qubits (i, j)

and (i + 1, j) and also on qubits (i, j + 2) and (i + 1, j + 2).
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keys (mx,i,mz,i) for each input i to the client, so that the client can update the
encryption for these qubits and have (xi, ✓i) := (x0
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+mx,i, (�1)mx,i✓
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i
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With the updated encryption, the client computes the suitable measurement
angles �i. It is worth pointing out that the key releasing step from server to
client could be avoided, by using classical OT to compute the measurement
angles as a function of the secret parameters of the server �i(mx,i,mz,i) for
the first two layers (that have dependency on mx,i,mz,i). While this could be
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Finally, after the server has received all the qubits, announces the secret
keys (mx,i,mz,i) for each input i to the client, so that the client can update the
encryption for these qubits and have (xi, ✓i) := (x0

i
+mx,i, (�1)mx,i✓

0

i
+ ⇡mz,i).

With the updated encryption, the client computes the suitable measurement
angles �i. It is worth pointing out that the key releasing step from server to
client could be avoided, by using classical OT to compute the measurement
angles as a function of the secret parameters of the server �i(mx,i,mz,i) for
the first two layers (that have dependency on mx,i,mz,i). While this could be
necessary for future work, to construct protocols dealing with malicious client,
it is not necessary for our case where the client is considered to be specious.

3.2 Server’s output extraction

In the regular VUBQC protocol, the server returns all the output qubits to the
client. The client measures the final layer’s traps to check for any deviation and
then obtains the output of the computation by decrypting the output computa-
tion qubits using their secret keys. In the 2PQC, part of the output (of known
base-locations) should remain in the hands of the server. This, however, would
not allow the client to check for the related traps (that could have e↵ects on
other output qubits). Similar to the input injection, the solution is obtained via
an extra layer of encryption by server followed by a delayed key releasing. The
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x,y⌅x,y + sZ

x,y⇤
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3

Appendix A. Appendix B contains a universality proof of the brickwork states that is lengthy
due to its figures, while Appendix C contains modified versions of the main protocol to deal with
quantum inputs or outputs.

2 Main Protocol

Suppose Alice has in mind a unitary operator U that is implemented with a pattern on a brickwork
state Gn×m (Figure 1) with measurements given as multiples of π/4. This pattern could have been
designed either directly in MBQC or from a circuit construction. Each qubit |ψx,y〉 ∈ Gn×m is
indexed by a column x ∈ {1, . . . , n} and a row y ∈ {1, . . . ,m}. Thus each qubit is assigned: a
measurement angle φx,y, a set of X-dependencies Dx,y ⊆ [x− 1]× [m], and a set of Z-dependencies
D′

x,y ⊆ [x− 1]× [m] . Here, we assume that the dependency sets Xx,y and Zx,y are obtained via the
flow construction [DK06]. During the execution of the pattern, the actual measurement angle φ′

x,y
is a modification of φx,y that depends on previous measurement outcomes in the following way:
let sX

x,y = ⊕i∈Dx,ysi be the parity of all measurement outcomes for qubits in Xx,y and similarly,

sZ
x,y = ⊕i∈D′

x,y
si be the parity of all measurement outcomes for qubits in Zx,y. Then φ′

x,y =

(−1)s
X
x,yφx,y + sZ

x,yπ . Protocol 1 implements a blind quantum computation for U . Note that
we assume that Alice’s input to the computation is built into U . In other words, Alice wishes to
compute U |0〉, her input is classical and the first layers of U may depend on it.

Protocol 1 Universal Blind Quantum Computation
1. Alice’s preparation

For each column x = 1, . . . , n
For each row y = 1, . . . ,m

1.1 Alice prepares |ψx,y〉 ∈R {
∣

∣+θx,y

〉

= 1√
2
(|0〉+ eiθx,y |1〉) | θx,y = 0,π/4, . . . , 7π/4} and sends

the qubits to Bob.

2. Bob’s preparation

2.1 Bob creates an entangled state from all received qubits, according to their indices, by
applying ctrl-Z gates between the qubits in order to create a brickwork state Gn×m (see
Definition 1).

3. Interaction and measurement
For each column x = 1, . . . , n
For each row y = 1, . . . ,m

3.1 Alice computes φ′
x,y where sX

0,y = sZ
0,y = 0.

3.2 Alice chooses rx,y ∈R {0, 1} and computes δx,y = φ′
x,y + θx,y + πrx,y .

3.3 Alice transmits δx,y to Bob. Bob measures in the basis {
∣

∣+δx,y

〉

,
∣

∣−δx,y

〉

}.
3.4 Bob transmits the result sx,y ∈ {0, 1} to Alice.
3.5 If rx,y = 1 above, Alice flips sx,y; otherwise she does nothing.

The universality of Protocol 1 follows from the universality of brickwork state (defined below)
for measurement-based quantum computing.

Definition 1. A brickwork state Gn×m, where m ≡ 5 (mod 8), is an entangled state of n × m
qubits constructed as follows (see also Figure 1):

1. Prepare all qubits in state |+〉 and assign to each qubit an index (i, j), i being a column (i ∈ [n])
and j being a row (j ∈ [m]).

2. For each row, apply the operator ctrl-Z on qubits (i, j) and (i, j + 1) where 1 ≤ j ≤ m − 1.
3. For each column j ≡ 3 (mod 8) and each odd row i, apply the operator ctrl-Z on qubits (i, j)

and (i + 1, j) and also on qubits (i, j + 2) and (i + 1, j + 2).
4. For each column j ≡ 7 (mod 8) and each even row i, apply the operator ctrl-Z on qubits (i, j)

and (i + 1, j) and also on qubits (i, j + 2) and (i + 1, j + 2).
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j
)X aj⇢j
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j
)|+i.
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Figure 1: The brickwork state, Gn×m. Qubits |ψx,y〉 (x = 1, . . . , n, y = 1, . . . ,m) are arranged
according to layer x and row y, corresponding to the vertices in the above graph, and are originally
in the |+〉 = 1√

2
|0〉 + 1√

2
|1〉 state. Controlled-Z gates are then performed between qubits which

are joined by an edge.

The proof of the following theorem is relegated to Appendix B due to lack of space.

Theorem 1 (Universality). The brickwork state Gn×m is universal for quantum computation. Fur-
thermore, we only require single-qubit measurements under the angles {0,±π/4,±π/2}, and mea-
surements can be done layer-by-layer.

In this work, we only consider approximate universality. This allows us to restrict the angles
of preparation and measurement to a finite set and hence simplify the description of the protocol.
However one can easily extend our protocol to achieve exact universality as well, provided Alice
can communicate real numbers to Bob.

Correctness refers to the fact that the outcome of the protocol is the same as the outcome
if Alice has run the pattern herself. The fact that Protocol 1 correctly computes U |0〉 follows
from the commutativity of Alice’s rotations and Bob’s measurements in the rotated bases. This is
formalized below.

Theorem 2 (Correctness). Assume Alice and Bob follow the steps of Protocol 1. Then the
outcome is correct.

Proof. Firstly, since ctrl-Z commutes with Z-rotations, steps 1 and 2 do not change the underlying
graph state; only the phase of each qubit is locally changed, and it is as if Bob had done the Z-
rotation after the ctrl-Z. Secondly, since a measurement in the |+φ〉 , |−φ〉 basis on a state |ψ〉 is
the same as a measurement in the |+φ+θ〉 , |−φ+θ〉 basis on Z(θ) |ψ〉 (see Appendix A), and since
δ = φ′ + θ + πr, if r = 0, Bob’s measurement has the same effect as Alice’s target measurement; if
r = 1, all Alice needs to do is flip the outcome.

We now define and prove the security of the protocol. Intuitively, we wish to prove that whatever
Bob chooses to do (including arbitrary deviations from the protocol), his knowledge on Alice’s
quantum computation does not increase. Note, however that Bob does learn the dimensions of the
brickwork state, giving an upper bound on the size of Alice’s computation. This is unavoidable:
a simple adaptation of the proof of Theorem 2 from [AFK89], confirms this. We incorporate
this notion of leakage in our definition of blindness. A quantum delegated computation protocol
is a protocol by which Alice interacts quantumly with Bob in order to obtain the result of a
computation, U(x), where X = (Ũ , x) is Alice’s input with Ũ being a description of U .

Definition 2. Let P be a quantum delegated computation on input X and let L(X) be any function
of the input. We say that a quantum delegated computation protocol is blind while leaking at most
L(X) if, on Alice’s input X, for any fixed Y = L(X), the following two hold when given Y :

1. The distribution of the classical information obtained by Bob in P is independent of X.
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Figure 1: The brickwork state, Gn×m. Qubits |ψx,y〉 (x = 1, . . . , n, y = 1, . . . ,m) are arranged
according to layer x and row y, corresponding to the vertices in the above graph, and are originally
in the |+〉 = 1√

2
|0〉 + 1√

2
|1〉 state. Controlled-Z gates are then performed between qubits which

are joined by an edge.

The proof of the following theorem is relegated to Appendix B due to lack of space.

Theorem 1 (Universality). The brickwork state Gn×m is universal for quantum computation. Fur-
thermore, we only require single-qubit measurements under the angles {0,±π/4,±π/2}, and mea-
surements can be done layer-by-layer.

In this work, we only consider approximate universality. This allows us to restrict the angles
of preparation and measurement to a finite set and hence simplify the description of the protocol.
However one can easily extend our protocol to achieve exact universality as well, provided Alice
can communicate real numbers to Bob.

Correctness refers to the fact that the outcome of the protocol is the same as the outcome
if Alice has run the pattern herself. The fact that Protocol 1 correctly computes U |0〉 follows
from the commutativity of Alice’s rotations and Bob’s measurements in the rotated bases. This is
formalized below.

Theorem 2 (Correctness). Assume Alice and Bob follow the steps of Protocol 1. Then the
outcome is correct.

Proof. Firstly, since ctrl-Z commutes with Z-rotations, steps 1 and 2 do not change the underlying
graph state; only the phase of each qubit is locally changed, and it is as if Bob had done the Z-
rotation after the ctrl-Z. Secondly, since a measurement in the |+φ〉 , |−φ〉 basis on a state |ψ〉 is
the same as a measurement in the |+φ+θ〉 , |−φ+θ〉 basis on Z(θ) |ψ〉 (see Appendix A), and since
δ = φ′ + θ + πr, if r = 0, Bob’s measurement has the same effect as Alice’s target measurement; if
r = 1, all Alice needs to do is flip the outcome.

We now define and prove the security of the protocol. Intuitively, we wish to prove that whatever
Bob chooses to do (including arbitrary deviations from the protocol), his knowledge on Alice’s
quantum computation does not increase. Note, however that Bob does learn the dimensions of the
brickwork state, giving an upper bound on the size of Alice’s computation. This is unavoidable:
a simple adaptation of the proof of Theorem 2 from [AFK89], confirms this. We incorporate
this notion of leakage in our definition of blindness. A quantum delegated computation protocol
is a protocol by which Alice interacts quantumly with Bob in order to obtain the result of a
computation, U(x), where X = (Ũ , x) is Alice’s input with Ũ being a description of U .

Definition 2. Let P be a quantum delegated computation on input X and let L(X) be any function
of the input. We say that a quantum delegated computation protocol is blind while leaking at most
L(X) if, on Alice’s input X, for any fixed Y = L(X), the following two hold when given Y :

1. The distribution of the classical information obtained by Bob in P is independent of X.
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Figure 1: The brickwork state, Gn×m. Qubits |ψx,y〉 (x = 1, . . . , n, y = 1, . . . ,m) are arranged
according to layer x and row y, corresponding to the vertices in the above graph, and are originally
in the |+〉 = 1√

2
|0〉 + 1√
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|1〉 state. Controlled-Z gates are then performed between qubits which
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The proof of the following theorem is relegated to Appendix B due to lack of space.

Theorem 1 (Universality). The brickwork state Gn×m is universal for quantum computation. Fur-
thermore, we only require single-qubit measurements under the angles {0,±π/4,±π/2}, and mea-
surements can be done layer-by-layer.

In this work, we only consider approximate universality. This allows us to restrict the angles
of preparation and measurement to a finite set and hence simplify the description of the protocol.
However one can easily extend our protocol to achieve exact universality as well, provided Alice
can communicate real numbers to Bob.

Correctness refers to the fact that the outcome of the protocol is the same as the outcome
if Alice has run the pattern herself. The fact that Protocol 1 correctly computes U |0〉 follows
from the commutativity of Alice’s rotations and Bob’s measurements in the rotated bases. This is
formalized below.

Theorem 2 (Correctness). Assume Alice and Bob follow the steps of Protocol 1. Then the
outcome is correct.

Proof. Firstly, since ctrl-Z commutes with Z-rotations, steps 1 and 2 do not change the underlying
graph state; only the phase of each qubit is locally changed, and it is as if Bob had done the Z-
rotation after the ctrl-Z. Secondly, since a measurement in the |+φ〉 , |−φ〉 basis on a state |ψ〉 is
the same as a measurement in the |+φ+θ〉 , |−φ+θ〉 basis on Z(θ) |ψ〉 (see Appendix A), and since
δ = φ′ + θ + πr, if r = 0, Bob’s measurement has the same effect as Alice’s target measurement; if
r = 1, all Alice needs to do is flip the outcome.

We now define and prove the security of the protocol. Intuitively, we wish to prove that whatever
Bob chooses to do (including arbitrary deviations from the protocol), his knowledge on Alice’s
quantum computation does not increase. Note, however that Bob does learn the dimensions of the
brickwork state, giving an upper bound on the size of Alice’s computation. This is unavoidable:
a simple adaptation of the proof of Theorem 2 from [AFK89], confirms this. We incorporate
this notion of leakage in our definition of blindness. A quantum delegated computation protocol
is a protocol by which Alice interacts quantumly with Bob in order to obtain the result of a
computation, U(x), where X = (Ũ , x) is Alice’s input with Ũ being a description of U .

Definition 2. Let P be a quantum delegated computation on input X and let L(X) be any function
of the input. We say that a quantum delegated computation protocol is blind while leaking at most
L(X) if, on Alice’s input X, for any fixed Y = L(X), the following two hold when given Y :

1. The distribution of the classical information obtained by Bob in P is independent of X.
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Classical SMPC is needed


No client-server colluding is allowed !
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Clients can insert traps only in their subgraphs


But 

A connected path for computation can be obtained only if they collaborate  


But  

They need not to leak the position of traps

In Symmetric Case these issues are resolved by 
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Double Blind QC - a classically orchestrated delegation 


Good Enough State - correct up to a deviation independent of the inputs and security parameters
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VUBQC Deconstruction - Reconstruction 

Steps to be updated to transform into a multi-client setting
&

Conditions that these replacement need to satisfy

Collaboratively prepared Collaboratively measured
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Replacing Classical Steps with Classical SMPC

Possibly deviated multi party encrypted state (independent of secret parameters) 
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Double Blind QC

Classical SMPC

Realised itself by a UBQC pattern
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Double Blind Gadgets for H or I

Clients: sends encrypted input and rotated states

SMPC: redistribute them to become dummy or trap



 Multiparty Delegated Quantum Computing 2021

Dulek, Grilo, Jeffery, Majenz, Schaffner 2020

Lipinska, Ribeiro, Wehner 2020

Alon, Chung, Chung, Huang, Lee, Shen
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Practical Efficient Malicious Clients - Malicious Server ?

Each Module Can be Optimised 

• SMPC : angles evaluations and permutations


• Remote State Prep : Hardware Dependent


• Blind QC : Not every qubits being hidden 


• Verifiable QC : No Need for dummies
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The Most Optimal Client-Server RSP

Quantum Enclave - Remote State Rotation

Arapinis, Chakraborty, Kaplan, Kashefi, Ma, 2021



The Most Optimal Multi Party QSMPC

Qline Architecture + Remote State Rotation + QSMPC



A Secure New World 

57

QLine


