Quantum Computing as a Service

Secure and Verifiable Multi-Tenant Quantum Data Centre

Elham Kashefi

University of Edinburgh Quantum Computing and Simulation Hub

> **CNRS Sorbonne University Quantum Internet Alliance**

> > VeriQloud

Quantum Links

Unclonable / Measurement disturbance ... - security

QKD, Quantum Coin Flipping, ...

Unclonable / Measurement disturbance ... - security

QKD, Quantum Coin Flipping, ...

Quantum Nodes

Unclonable / Measurement disturbance ... - security

QKD, Quantum Coin Flipping, ...

Quantum Nodes

Superposition / Entanglement... - speed

Random Walk, Machine Learning, ...

Future

Multi-Tenant Quantum Data Centre

Multi-Tenant Quantum Data Centre

Use-Case Example: Privacy Preserving QML

Use-Case Example: Privacy Preserving QML

• 2 party QC: Honest Client - Malicious Server

- 2 party QC: Honest Client Malicious Server
 - What is possible ?
 - Building Blocks: QKD, Teleportation, Self-Testing
 - Verifiable Universal Blind Quantum Computing

- 2 party QC: Honest Client Malicious Server
 - What is possible ?
 - Building Blocks: QKD, Teleportation, Self-Testing
 - Verifiable Universal Blind Quantum Computing
- 2 party QC: Malicious Client Malicious Server

- 2 party QC: Honest Client Malicious Server
 - What is possible ?
 - Building Blocks: QKD, Teleportation, Self-Testing
 - Verifiable Universal Blind Quantum Computing
- 2 party QC: Malicious Client Malicious Server
 - Quantum Cut and Choose Technique

- 2 party QC: Honest Client Malicious Server
 - What is possible ?
 - Building Blocks: QKD, Teleportation, Self-Testing
 - Verifiable Universal Blind Quantum Computing
- 2 party QC: Malicious Client Malicious Server
 - Quantum Cut and Choose Technique
- Multi party QC: Malicious Clients Malicious Server

- 2 party QC: Honest Client Malicious Server
 - What is possible ?
 - Building Blocks: QKD, Teleportation, Self-Testing
 - Verifiable Universal Blind Quantum Computing
- 2 party QC: Malicious Client Malicious Server
 - Quantum Cut and Choose Technique
- Multi party QC: Malicious Clients Malicious Server
 - Lifting Classical SMPC to QSMPC

- 2 party QC: Honest Client Malicious Server
 - What is possible ?
 - Building Blocks: QKD, Teleportation, Self-Testing
 - Verifiable Universal Blind Quantum Computing
- 2 party QC: Malicious Client Malicious Server
 - Quantum Cut and Choose Technique
 - Multi party QC: Malicious Clients Malicious Server
 - Lifting Classical SMPC to QSMPC
 - When can we have it for real?

Honest Client - Malicious Server

Honest Client - Malicious Server

Honest Client - Malicious Server

Rivest, Adleman and Dertouzos 1979 Can we process encrypted data without decrypting it first ?

Gentry 2009 - Fully Homomorphic Encryption computational security

Fillinger: No efficient informationally secure classical FHE scheme exist

Fillinger: No efficient informationally secure classical FHE scheme exist

Newman and Shi: No efficient informationally secure quantum FHE scheme exist

Fillinger: No efficient informationally secure classical FHE scheme exist

Newman and Shi: No efficient informationally secure quantum FHE scheme exist

Dunjko et.al. : No informationally secure quantum scheme for classical function evaluation (for restricted classical client)

Fillinger: No efficient informationally secure classical FHE scheme exist

Newman and Shi: No efficient informationally secure quantum FHE scheme exist

Dunjko et.al. : No informationally secure quantum scheme for classical function evaluation (for restricted classical client)

Murimae: No informationally secure quantum scheme for quantum function evaluation (for restricted classical client)

On the implausibility of informationally secure quantum cloud computing with Classical Client *(PH collapses at the third level)*

Aaronson, Cojocaru, Gheorghiu, Kashefi, 2017

Generalised Encryption Scheme (GES)

Information-theoretic security
Which functions admit a GES?

What about **NP** functions?

Unless PH collapses

Generalised Encryption Scheme for QC (GES)

Our work

1. Do **BQP** functions admit a GES?

We give evidence that the answer is NO

Conjectured relationship between classes

An oracle result

For each d, there exists an oracle, O, such that:

The oracle is based on Simon's problem $O(n,x) = f_n(x)$

Is f_n 1-to-1 or does it have Simon's property? Simon's property: f_n is 2-to-1 and periodic

A sampling result

Unless, there exist circuits $\{C_n\}_n$ having the properties:

$$|C_n| = 2^{n - \Omega(n/\log(n))}$$

$$C_n \ queries \ \mathsf{NP}^{\mathsf{NP}}$$

Computes <u>exactly</u> the permanent of n x n matrix Best known algorithm for permanent (*Ryser '63*): $O(n2^n)$

A sampling result

GES for SampBQP → "efficient" circuits for permanent

Best known algorithm for permanent (*Ryser 63*): $O(n2^n)$

Secure Classical Access to Quantum Cloud

$$J(\alpha) := \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & e^{i\alpha} \\ 1 & -e^{i\alpha} \end{pmatrix}$$

$$J(\alpha) := \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & e^{i\alpha} \\ 1 & -e^{i\alpha} \end{pmatrix}$$

gate teleportation

$$J(\alpha) := \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & e^{i\alpha} \\ 1 & -e^{i\alpha} \end{pmatrix}$$

gate teleportation

$$J(\alpha) := \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & e^{i\alpha} \\ 1 & -e^{i\alpha} \end{pmatrix}$$

$$J(\alpha) := \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & e^{i\alpha} \\ 1 & -e^{i\alpha} \end{pmatrix}$$

$$J(\alpha) := \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & e^{i\alpha} \\ 1 & -e^{i\alpha} \end{pmatrix}$$

Single qubit rotation

$$J(\alpha) := \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & e^{i\alpha} \\ 1 & -e^{i\alpha} \end{pmatrix}$$

$$J(\alpha) := \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & e^{i\alpha} \\ 1 & -e^{i\alpha} \end{pmatrix}$$

$$J(\alpha) := \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & e^{i\alpha} \\ 1 & -e^{i\alpha} \end{pmatrix}$$

$$J(\alpha) := \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & e^{i\alpha} \\ 1 & -e^{i\alpha} \end{pmatrix}$$

Gates Composition

Gates Composition

Gates Composition

Re-writing

Re-writing

Universal Blind Quantum Computings

$$X = (\tilde{U}, \{\phi_{x,y}\})$$

Universal Blind Quantum Computings

random single qubit generator

 $[1/\sqrt{2}(|0\rangle + e^{i\theta}|1\rangle)$ $\theta = 0, \pi/4, 2\pi/4, \dots, 7\pi/4$

Universal Blind Quantum Computings

Security Definition

Protocol P on input $X = (\tilde{U}, \{\phi_{x,y}\})$ leaks at most L(X)

The distribution of the classical information obtained by Server is independent of X

 \blacksquare Given the above distribution, the quantum state is fixed and independent of X

What about correctness ?

• Correctness: in the absence of any deviation, client accepts and the output is correct

• Soundness: Client rejects an incorrect output, except with probability at most exponentially small in the security parameter

Self Testing 2005

Decide if the physical devices simulate their specification

Single-prover prepare-and-send

verifier has the ability to prepare quantum states and send them to the prover

- State authentication-based protocols
- Trapification-based protocols
- Test or Compute

Protocol	Verifier resources	Communication	2-way quantum comm.
Clifford-QAS VQC	$O(log(1/\epsilon))$	$O(N \cdot log(1/\epsilon))$	Y
Poly-QAS VQC	$O(log(1/\epsilon))$	$O((n+L) \cdot log(1/\epsilon))$	N
VUBQC	O(1)	$O(N \cdot log(1/\epsilon))$	N
Test-or-Compute	O(1)	$O((n+T) \cdot log(1/\epsilon))$	N

Single-prover receive-and-measure

verifier receives quantum states from the prover and has the ability to measure them

- Post-hoc Verification (none hiding)
- Measuring only blind QC

Protocol	Measurements	Observables	Blind
Measurement-only	$O(N \cdot 1/lpha \cdot 1/\epsilon^2)$	5	Y
Hypergraph measurement-only	$O(max(N, 1/\epsilon^2)^{22})$	3	Y
1S-Post-hoc	$O(N^2 \cdot log(1/\epsilon))$	2	Ν
Steering-based VUBQC	$O(N^{13}log(N) \cdot log(1/\epsilon))$	5	Y

Multi-prover entanglement-based

Classical Verifier interacts with more than one provers that are not allowed to communicate during the protocol

- CHSH game Rigidity
- Self-testing graph states
- Pauli Braiding

Protocol	Provers	Q mem provers	Rounds	Communication	Blind
RUV	2	2	$O(N^{8192} \cdot log(1/\epsilon))$	$O(N^{8192} \cdot log(1/\epsilon))$	Y
McKague	$O(N^{22} \cdot log(1/\epsilon))$	0	$O(N^{22} \cdot log(1/\epsilon))$	$O(N^{22} \cdot log(1/\epsilon))$	Y
GKW	2	1	$O(N^{2048} \cdot log(1/\epsilon))$	$O(N^{2048} \cdot log(1/\epsilon))$	Y
HPDF	$O(N^4 log(N) \cdot log(1/\epsilon))$	$O(log(1/\epsilon))$	$O(N^4 log(N) \cdot log(1/\epsilon))$	$O(N^4 log(N) \cdot log(1/\epsilon))$	Y
\mathbf{FH}	5	5	$O(N^{16} \cdot log(1/\epsilon))$	$O(N^{19} \cdot log(1/\epsilon))$	N
NV	7	7	O(1)	$O(N^3 \cdot log(1/\epsilon))$	Ν

Overhead Noise Scalability

Unconditionally Verifiable Blind Quantum Computing

Unconditionally Verifiable Blind Quantum Computing

Unconditionally Verifiable Blind Quantum Computing

Unconditionally Verifiable Blind Quantum Computing

Unconditionally Verifiable Blind Quantum Computing

Unconditionally Verifiable Blind Quantum Computing

Unconditionally Verifiable Blind Quantum Computing

Trap Measurements $M^{\theta}|+_{\theta}\rangle \rightarrow s = 0$ $M^{\theta}|-_{\theta}\rangle \rightarrow s = 1$

Trap Measurements $M^{\theta}|+_{\theta}\rangle \rightarrow s = 0$ $M^{\theta}|-_{\theta}\rangle \rightarrow s = 1$

Prob trap being correct and the computation is wrong is bounded

Trap Measurements $M^{\theta}|+_{\theta}\rangle \rightarrow s = 0$ $M^{\theta}|-_{\theta}\rangle \rightarrow s = 1$

Prob trap being correct and the computation is wrong is bounded

 $\sum_{\nu} p(\nu) \ Tr\left(P_{incorrect}^{\nu} B(\nu)\right) \le \epsilon$

 $P_{incorrect}^{\nu} := P_{\perp} \otimes |acc\rangle \langle acc|$

Robust Verifiable Secure Quantum Access to Noisy Quantum Qloud

Classical input/output Perfect blindness and exponential verification Exponential correctness on honest-but-noisy device No overhead besides repetitions

Securing Quantum Computations in the NISQ Era

Kashefi, Leichtle, Music, Ollivier, 2020

Robust Verifiable Secure Quantum Access to Noisy Quantum Qloud

Practical Efficient Honest Client - Malicious Server

Classical input/output

Perfect blindness and exponential verification

Exponential correctness on honest-but-noisy device

No overhead besides repetitions

Securing Quantum Computations in the NISQ Era

Kashefi, Leichtle, Music, Ollivier, 2020

Robust Verifiable Secure Quantum Access to Noisy Quantum Qloud

Practical Efficient Honest Client - Malicious Server

Classical input/output

Perfect blindness and exponential verification

Exponential correctness on honest-but-noisy device

No overhead besides repetitions

Securing Quantum Computations in the NISQ Era

Kashefi, Leichtle, Music, Ollivier, 2020

Secure Classical Access to Quantum Cloud

Classical Client Quantum FHE Mahadev, FOCS 2018

Classical Client Quantum FHE Mahadev, FOCS 2018

Delegated Pseudo-Secret Random Qubit Generator Cojocaru, Colisson, Kashefi, Wallden, AsiaCrypt 2019

Classical Client Quantum FHE Mahadev, FOCS 2018

Delegated Pseudo-Secret Random Qubit Generator Cojocaru, Colisson, Kashefi, Wallden, AsiaCrypt 2019

Classical Client Quantum FHE Mahadev, FOCS 2018

Delegated Pseudo-Secret Random Qubit Generator Cojocaru, Colisson, Kashefi, Wallden, AsiaCrypt 2019

Computationally Secure (Post-quantum safe) Classical Access to Quantum Cloud ?

Classical Client Quantum FHE Mahadev, FOCS 2018

Delegated Pseudo-Secret Random Qubit Generator Cojocaru, Colisson, Kashefi, Wallden, AsiaCrypt 2019

Malicious Client - Malicious Server

Requires OT

Honest but Curious Adversary

Verifiable Quantum Yao

Verifiable Quantum Yao

Verifiable Quantum Yao

Server's input placed in $\mathrm{DT}(\mathrm{G})$ with correspoding trap-colouring

Boosting Security (Semi-Malicious Client to Fully Malicious one)

Cut : Sender sends multiple copies of a state and message (with independent randomness) to the Receiver

Practical Efficient Malicious Client - Malicious Server

states) where correctly constructed by asking the Sender to send proofs and measuring them accordingly

Conditions for applying Q-CC

Client manipulates single qubit

Malicious Clients - Malicious Server

Secret input q_1

Garbled her part of the CP map

Secret input q_n

Garbled her part of the CP map

Secret input q_1

Garbled her part of the CP map

Secret input q_n

Garbled her part of the CP map

Secret input q_1

Garbled her part of the CP map

Secret input q_n

Garbled her part of the CP map

Secret input q_1

Garbled her part of the CP map

Secret input q_n

Garbled her part of the CP map

Secret input q_1

Garbled her part of the CP map

Secret input q_n

Garbled her part of the CP map

Secret input q_1

Garbled her part of the CP map

Secret input q_n

Garbled her part of the CP map

Clients can insert traps only in their subgraphs

But

A connected path for computation can be obtained only if they collaborate

But

They need not to leak the position of traps

Clients can insert traps only in their subgraphs

But

A connected path for computation can be obtained only if they collaborate

But

They need not to leak the position of traps

In Symmetric Case these issues are resolved by Dulek, Grilo, Jeffery, Majenz, Schaffner 2020

Double Blind QC - a classically orchestrated delegation

Good Enough State - correct up to a deviation independent of the inputs and security parameters

VUBQC Deconstruction - Reconstruction

Steps to be updated to transform into a multi-client setting & & Conditions that these replacement need to satisfy

VUBQC Deconstruction - Reconstruction

Steps to be updated to transform into a multi-client setting & & Conditions that these replacement need to satisfy

VUBQC Deconstruction - Reconstruction

Steps to be updated to transform into a multi-client setting & & Conditions that these replacement need to satisfy

VUBQC Deconstruction - Reconstruction

Steps to be updated to transform into a multi-client setting & & Conditions that these replacement need to satisfy

Replacing Classical Steps with Classical SMPC

Replacing Classical Steps with Classical SMPC

Possibly deviated multi party encrypted state (independent of secret parameters)

Double Blind QC

Double Blind QC

Double Blind QC

Double Blind Gadgets for *H* or *I*

Double Blind Gadgets for H or I

Clients: sends encrypted input and rotated states

SMPC: redistribute them to become dummy or trap

Multiparty Delegated Quantum Computing 2021

Metric	9]	[26]	[1]	This work
Type	Stat. upgrade of CSMPC	Statistical	Comp. (FHE $+$ CSMPC)	Stat. upgrade of CSMPC
Abort	Unanimous	Unanimous	Identifiable	Unanimous
Composability	Composable	Stand-Alone	Stand-Alone	Composable
Max Malicious Players	N-1	$\lfloor \frac{C_{dist} - 1}{2} \rfloor$	N-1	N-1
Protocol Nature	Symmetric	Symmetric	Semi-Delegated	Delegated
Network Topology	Q and C: Complete	Q and C: Complete	Q and C: Complete	Q: Star / C: Complete
Q Operations	F.T. Q. Comp	FT Q Comp	FT Q Comp	Cl.: Single Qubit Serv.: FT Q Comp
Classical SMPC	Clifford Computation, Operations in \mathbb{Z}_2 , CT	CT	Clifford Computation, FHE verification	Operations in \mathbb{Z}_8 , \mathbb{Z}_2 , CT
Rounds (C or CSMPC)	$\mathcal{O}(g + \eta(N + t))$	d+2	$\mathcal{O}(1)$	d+5
Rounds (Q)	Par.: $\mathcal{O}(Nd)$ Seq.: $\mathcal{O}(N(N+t+c))$	Par.: 3 (2 if C output) Seq.: $\mathcal{O}(\eta^2(N+t))$	Par.: $\mathcal{O}(N^4)$	Par.: 2 (1 if C output) Seq.: $\mathcal{O}(\eta N d)$
Size of Q Memory	Par.: $\mathcal{O}(\eta^2(N+t)))$ Seq.: $\mathcal{O}(\eta^2 N)$	Par.: $\mathcal{O}(\eta^2 N(N+t))$ Seq.: $\mathcal{O}(N^2)$	Par.: $\mathcal{O}(tN^9\eta^2)$	Cl.: 3 (0 if C I&O) Serv. (par.): $\mathcal{O}(\eta N^2 d)$ Serv. (seq.): $\mathcal{O}(\eta N d)$

Dulek, Grilo, Jeffery, Majenz, Schaffner 2020

Alon, Chung, Chung, Huang, Lee, Shen

Lipinska, Ribeiro, Wehner 2020

Practical Efficient Malicious Clients - Malicious Server ?

Practical Efficient Malicious Clients - Malicious Server ?

Each Module Can be Optimised

- SMPC : angles evaluations and permutations
- Remote State Prep : Hardware Dependent
- Blind QC : Not every qubits being hidden
- Verifiable QC : No Need for dummies

Key component - Remote State Preparation

Key component - Remote State Preparation

The Most Optimal Client-Server RSP

Quantum Enclave - Remote State Rotation

Arapinis, Chakraborty, Kaplan, Kashefi, Ma, 2021

The Most Optimal Multi Party QSMPC

VeriQloud's fully connected quantum network with a single optical fibre

A Secure New World

