Learning streaming and distributed big data using core-sets

Dan Feldman

Robotics & BigData Lab University of Haifa

Challenges of this talk

- Forge links between:
 - Computational Geometry
 - Core-sets
 - Machine Learning of Big Data
 - Robotics

Challenges of this talk

Forge links between:

- Approximated Caratheodory Theorem
- Core-sets for mean queries
- Google's PageRank
- Real time pose estimation

Big Data

- Volume: huge amount of data points
- Variety: huge number of sensors
- Velocity: data arrive in real-time streaming

Need:

- Streaming algorithms (use logarithmic memory)
- Parallel algorithms (use networks, clouds)
- Simple computations (use GPUs)
- No assumption on order of points

Big Data Computation model

- = Streaming + Parallel computation
- Input: infinite stream of vectors
- n = vectors seen so far
- ~log *n* memory
- M processors
- ~log (n)/M insertion time per point (Embarrassingly parallel)

Challenge: Find RIGHT data from Big Data

Given data *D* and Algorithm *A* with *A*(*D*) intractable, can we efficiently reduce *D* to *C* so that *A*(*C*) fast and *A*(*C*)~*A*(*D*)?

Provable guarantees on approximation with respect to the size of C

Naïve Uniform Sampling (RANSAC)

Naïve Uniform Sampling

Sample a set U of m points uniformly

Coreset for Image Denoising [F, Feigin, Sochen [SSVM'13]

 Existing de-noising algorithms works only on small (low-definition) images off-line

• For HD or real-time streaming: Use random sampling (RANSAC)

RANSAC will not find rare but important parts

(g) Image

(h) Runtime vs. Quality

(i) Size vs. Quality

From Big Data to Small Data

Suppose that we can compute such a corset C of size $\frac{1}{\epsilon}$ for every set P of n points

- in time n^3 ,
- off-line, non-parallel, non-streaming algorithm

Read the first $\frac{2}{\epsilon}$ streaming points and reduce them into $\frac{1}{\epsilon}$ weighted points in time $\left(\frac{2}{\epsilon}\right)^5$

$1 + \epsilon$ corset for P_1

Read the next $\frac{2}{\epsilon}$ streaming point and reduce them into $\frac{1}{\epsilon}$ weighted points in time $\left(\frac{2}{\epsilon}\right)^5$

Merge the pair of ϵ -coresets into an ϵ -corset of $\frac{2}{\epsilon}$ weighted points

 $1 + \epsilon$ -corset for $P_1 \cup P_2$

Delete the pair of original coresets from memory

$1 + \epsilon$ -corset for $P_1 \cup P_2$

Reduce the $\frac{2}{\epsilon}$ weighted points into $\frac{1}{\epsilon}$ weighted points by constructing their coreset

 $1 + \epsilon$ -corset for $1 + \epsilon$ -corset for $P_1 \cup P_2$

Reduce the $\frac{2}{\epsilon}$ weighted points into $\frac{1}{\epsilon}$ weighted points by constructing their coreset

 $1 + \epsilon$ -corset for

 $1 + \epsilon$ -corset for $P_1 \cup P_2$

=
$$(1 + \epsilon)^2$$
-corset for $P_1 \cup P_2$

$(1 + \epsilon)$ -corset for P_3

$(1 + \epsilon)$ -corset for P_3 $(1 + \epsilon)$ -corset for P_4

$(1 + \epsilon)$ -corset for $P_3 \cup P_4$

$$(1 + \epsilon)^2$$
-corset for $P_3 \cup P_4$

 $(1 + \epsilon)^2$ -coreset for $P_1 \cup P_2 \cup P_3 \cup P_4$

 $(1 + \epsilon)^3$ -coreset for $P_1 \cup P_2 \cup P_3 \cup P_4$

Parallel Computation

Parallel Computation

Parallel Computation

Run off-line algorithm on corset using single computer

Parallel+ Streaming Computation

ICRA'14 (With Rus, Paul and Newman)

Video (32X)

Raw GPS Points Coreset Segment

Example Coresets

. . .

- Graph/Vector Summarization [F, Rus, Ozer]
- LSA/PCA/SVD [F, Rus, and Volkob, NIPS'16]
- k-Means [F, Barger, SDM'16]
- Non-Negative Matrix Factorization [F, Tassa, KDD15]
- Robots Localization [F, Cindy, Rus, ICRA'15]
- Robots Coverage [F, Gil, Rus, ICRA'13]
- Segmentation [F, Rosman, Rus, Volkob, NIPS'14]
- Dictionary Learning and Image Denoising
 [F, Sochen, J. of Math. Image & Vision, 12]
- Mixture of Gaussians [F Krause, NIPS'11]
- k-Line Means [F, Fiat, Sharir, FOCS'06]

Coreset for robotics (video)

Mean Queries

² Input: P in R^d

Mean Queries

- ² Input: P in R^d
- ² Query: a point q 2 R^d

Mean Queries

- ² Input: P in R^d
- ² Query: a point q 2 R^d
- Output: $f(P,q) = \sum_{p \in P} (\operatorname{dist}(p,q))^2$

Coreset For Mean Queries

$$dist(p;q)^{\psi_2} = kp_i qk^2$$
$$= kpk^2 + kqk^2 i 2p \phi q$$

 $\frac{1}{p^2 P} \int \frac{\psi_2}{p^2 P} = \frac{1}{p^2 P} \frac{1}{p^2 P$

Coreset For Mean Queries

 $\frac{1}{p^2 P} \frac{1}{p^2 P} \frac{1}$

Problem: compute a small weighted subset deterministically. [ICML'17, with Rus and Ozer]

Relation to Google's PageRank

- Input: Binary adjacency matrix *G* of a graph.
- Scale every column to have sum of 1
 - (*G* is now a stochastic matrix)
- Let d = 0.85 to get a positive stochastic matrix: $A = d * G + (1 - d) \cdot \mathbf{1}$
- There is a distribution x such that Ax = x(Perron–Frobenius theorem)
- Bx = 0 for B = A I
- Output: x (PageRank vector)

Relation to Google's PageRank

- Input: Binary adjacency matrix *G* of a graph.
- Scale every column to have sum of 1
 - (*G* is now a stochastic matrix)
- Let d = 0.85 to get a positive stochastic matrix: $A = d * G + (1 - d) \cdot \mathbf{1}$
- There is a distribution x such that Ax = x(Perron–Frobenius theorem)
- Bx = 0 for B = A I
- Output: *x* (PageRank vector)
- Core-set: a sparse x' such that $||Bx'|| < \epsilon$

Common Localization of quadcopter

- Many sensors: GPS, Kinect, GoPro, LiDAR, IMU, Sonar
- Good: Easy to hover and navigate
- Bad:
 - Dangerous, expensive, heavy
 - Hard to compare & analyze

Our Robotics & Big Data lab

- Toy-drones, no sensors or tiny analog camera
- Good:
 - Safe for indoor navigation, and low-cost
 - Easy to model
- Bad:
 - Unstable
 - Need ~ 30 location updates per second

Expensive Tracking System

Prime 41 for \$5,999

OptiTrack's premium motion capture camera. With 4.1 M tracking range, and 51° field of view, the Prime 41 is idea production mocap with impeccable fidelity.

4 1 MID 100 FDC 510 FOUL CHE

Challenge: use weak hardware

Sony PlayStation Eye Camera (Bulk Packaging)

by Sony Platform : Sony PSP

288 customer reviews

Only 16 left in stock.

Want it tomorrow, June 8? Order within 7 hrs 56 mins and choose One-Day Sold by Park Deals and Fulfilled by Amazon.

PlayStation Eye PS3 USB Camera - Black

26 new from \$0.01 16 used from \$0.52 2 collectible from \$1.94

More in Video Games

Best Sellers in Video Games

Video Game Accessories

Using stronger algorithms

Exact Translation Recovery

Exact Translation Problem

Exact Translation Recovery

Solution:

$$t = q_1 - p_1$$

Noisy Observations

Added Gaussian noise due to:

- Low resolution
- Few Frames Per Second (FPS)
- Latency (delay)
- Communication errors
- Camera Tilting

Translation Estimation

Added Gaussian noise due to:

- Low resolution
- Few Frames Per Second (FPS)
- Latency (delay)
- Communication errors
- Camera Tilting

Translation Estimation

Compute a translation t of P that minimizes the sum of squared distances to Q

Q = Translation & Rotation of P

The object not only moves, but also rotates in space

The Pose-Estimation Problem

 $P \rightarrow R \cdot P \rightarrow R \cdot P + t$

A rotation corresponds to a rotation matrix R in $\mathbb{R}^{d \times d}$: $q_i = Rp_i + t$

The Pose-Estimation Problem

Compute Rotation & Translation of P that minimizes its sum of squared distances to Q:

$$\min_{t,R} \sum_{i=1}^{n} \operatorname{dist}^{2}(R \cdot p_{i} + t, q_{i})$$

Matching & Pose-Estimation

• Matching of each p_i to its q_i is also unknown.

- Needs to compute a permutation $\pi: \{1, \dots, n\} \rightarrow \{1, \dots, n\}$ where p_i is assigned to $q_{\pi(i)}$

Matching & Pose-Estimation

Compute **Permutation**, Rotation & Translation of **P** that minimizes its sum of squared distances to Q:

$$\min_{\pi,t,R}\sum_{i=1}^{k} \operatorname{dist}^{2}(R \cdot p_{i} + t, q_{\pi(i)})$$

Existing Solutions

- Optimal Translation is simply the mean
- Let UDV^T be a Singular Value Decomposition (SVD) of the matrix P^TQ . That is:

 $UDV^T = P^TQ$

- Theorem 1 (*Kabsch algorithm*).
- The matrix $R^* = VU^T$ is the optimal rotation and can be computed in $O(nd^2)$ time.

Core-set For Pose Estimation Observed ordered set Q (now) of n markers

Ordered set |P| of n markers. Initial position of object.

Core-set For Pose Estimation

A weight vector $w_1, \dots, w_n \ge 0$ whose most entries are zeroes and for every R and t:

$$\sum_{i=1}^{n} \operatorname{dist}^{2}(R \cdot p_{i} + t, q_{i}) = \sum_{i=1}^{n} \operatorname{w_{i}dist}^{2}(R \cdot p_{i} + t, q_{i})$$

$$Q$$

$$R \cdot p_{2} + t$$

$$R \cdot p_{3} + t$$

The Pose-Estimation Problem "Full version"

Matching. Assuming *P* is an initial set of *n* markers (points in \mathbb{R}^d), and *Q* is the observed set of markers, we need to match each point in *P* to it's corresponding point in *Q*.

O(n!) Permutations

Main Theorem [S. Nasser, I. Jubran, F]

Every set of n points has a core-set of size $O(d^2)$ that can be computed in O(nd) time.

$$\sum_{\substack{i=1\\n}}^{n} \operatorname{dist}^{2}(R \cdot p_{i} + t, q_{i}) =$$
$$\sum_{i=1}^{n} \operatorname{w}_{i} \operatorname{dist}^{2}(R \cdot p_{i} + t, q_{i})$$

Off-line solution

Solving the Problem cont.

•
$$A_{3x3} \cong A_{1x9} = \sum_{i=1}^{n} a_{i_{1x9}} = \sum_{i=1}^{k} \omega_i a_{i_{1x9}}$$

 $a_{i_{3x3}} \cong a_{i_{1x9}}$ Coreset

Matrix Approximation by rows subset

For every matrix A there is a diagonal matrix W of only d^2 non-zeros entries such that for every $x \in R^d$

$$||Ax|| = ||WAx||$$

Proof: $||Ax||^2 = x^T (A^T A) x = x^T (\sum_i a_i a_i^T) x$ = $x^T (\sum_i w_i a_i a_i^T) x$

 $=x^{T}(A^{T}W^{T}WA)x = ||WAx||^{2}$

Intuition (d = 2)

Caratheodory's Theorem

If a point x lies in the convex hull of a set, there is a subset consisting of at most d + 1 points such that x lies in the convex hull of P'.

Caratheodory's Theorem (Illustration)

Caratheodory's Theorem (Illustration)

1) Initialize

1) Initialize 2) Farthest Point

Open Problems

- More Coresets
 - Deep learning, Topological Data, Sparse data
 - 3D Navigation and Mapping, Robotics
- Sensor Fusion (GPS+Video+Audio+Text+..)
- Private Coresets, [STOC'11, with Fiat et al.]
 - For biometric face database (with R. Osadchy)
- Coresets for Cybersecurity (with S. Goldwasser)
- Generic software library
 - Coresets on Demand on the cloud

Thank you !

Dan Feldman

dannyf@csail.mit.edu

Theorem [Feldman, Langberg, STOC'11] Suppose that

$$\operatorname{cost}(P,q) \coloneqq \sum_{p \in P} w(p)\operatorname{dist}(p,q)$$

where
$$\operatorname{dist:} P \times Q \to [0,\infty).$$

A sample $C \subseteq P$ from the distribution

sensitivity(p) = $\max_{q \in Q} \frac{dist(p,q)}{\sum_{p}, dist(p',q)}$

is a coreset if $|C| \ge \frac{\text{dimension of } Q}{\epsilon^2} \cdot \sum_p \text{sensitibity}(p)$

Theorem [Feldman, Langberg, STOC'11] Suppose that

$$\operatorname{cost}(P,q) \coloneqq \sum_{p \in P} w(p)\operatorname{dist}(p,q)$$

where
$$\operatorname{dist:} P \times Q \to [0,\infty).$$

A sample $C \subseteq P$ from the distribution

sensitivity(p) = $\max_{q \in Q} \frac{dist(p,q)}{\sum_{p}, dist(p',q)}$

is a coreset if $|C| \ge \frac{\text{dimension of } Q}{\epsilon^2} \cdot \sum_p \text{sensitibity}(p)$

Surprising Applications

1. (1-epsilon) approximations: Heuristics work better on coresets

2. Running constant factor on epsiloncoresets helps

3. Coreset for one problem is good for a lot of unrelated problems

4. Coreset for O(1) points

Implementation

- The worst case and sloppy (constant) analysis is not so relevant
- In Thoery:

a random sample of size $1/\epsilon$ yields $(1 + \epsilon)$ approximation with probability at least $1 - \delta$. In Practice: Sample s points, output the

approximation ϵ and its distribution

• Never implement the algorithm as explained in the paper.

Coreset for k-means can be computed by choosing points from the distribution:

sensitivity(p) =
$$\frac{dist(p,q^*)}{\sum_{p}, dist(p',q^*)} + \frac{1}{n_p}$$

q* = k-means of P

$$|\mathsf{C}| = \frac{k \cdot d}{\epsilon^2}$$

Coreset for k-means can be computed by choosing points from the distribution:

sensitivity(p) =
$$\frac{dist(p,q^*)}{\sum_{p'} dist(p',q^*)} + \frac{1}{n_p}$$

 $q^* = k$ -means of P Or approximation [SoCg07, Feldma, Sharir, Fiat]

$$|\mathsf{C}| = \frac{k \cdot d}{\epsilon^2}$$

Coreset for k-means can be computed by choosing points from the distribution:

sensitivity(p) =
$$\frac{dist(p,q^*)}{\sum_{p'} dist(p',q^*)} + \frac{1}{n_p}$$

 $q^* = k$ -means of P Or approximation [SoCg07, Feldma, Sharir, Fiat]

 n_p = number of points in the cluster of p

 $|\mathsf{C}| = \frac{k \cdot d}{\kappa} \frac{k \cdot \left(\frac{\kappa}{\varepsilon}\right)}{\kappa}$

[SODA'13, Feldman, Schmidt, ..]

Coreset for k-means can be computed by choosing points from the distribution:

sensitivity(p) =
$$\frac{dist(p,q^*)}{\sum_{p}, dist(p',q^*)} + \frac{1}{n_p}$$

q* = k-means of P

$$|\mathsf{C}| = \frac{k \cdot d}{\epsilon^2}$$

Coreset for k-means can be computed by choosing points from the distribution:

sensitivity(p) =
$$\frac{dist(p,q^*)}{\sum_{p'} dist(p',q^*)} + \frac{1}{n_p}$$

 $q^* = k$ -means of P Or approximation [SoCg07, Feldma, Sharir, Fiat]

$$|\mathsf{C}| = \frac{k \cdot d}{\epsilon^2}$$

Coreset for k-means can be computed by choosing points from the distribution:

sensitivity(p) =
$$\frac{dist(p,q^*)}{\sum_{p'} dist(p',q^*)} + \frac{1}{n_p}$$

 $q^* = k$ -means of P Or approximation [SoCg07, Feldma, Sharir, Fiat]

$$|\mathsf{C}| = \frac{k \cdot d}{\epsilon^2}$$

Coreset for k-means can be computed by choosing points from the distribution:

sensitivity(p) =
$$\frac{dist(p,q^*)}{\sum_{p'} dist(p',q^*)} + \frac{1}{n_p}$$

 $q^* = k$ -means of P Or approximation [SoCg07, Feldma, Sharir, Fiat]

 n_p = number of points in the cluster of p

 $|\mathsf{C}| = \frac{k \cdot d}{\kappa} \frac{k \cdot \left(\frac{\kappa}{\varepsilon}\right)}{\kappa}$

[SODA'13, Feldman, Schmidt, ..]

The chicken-and-egg problem

- 1. We need approximation to compute the coreset
- 2. We compute coreset to get a fast approximation to a problem

Lee-ways:

- I. Bi-criteria approximation
- II. Heuristics

III. polynomial time reduced to linear time by the merge-reduce tree