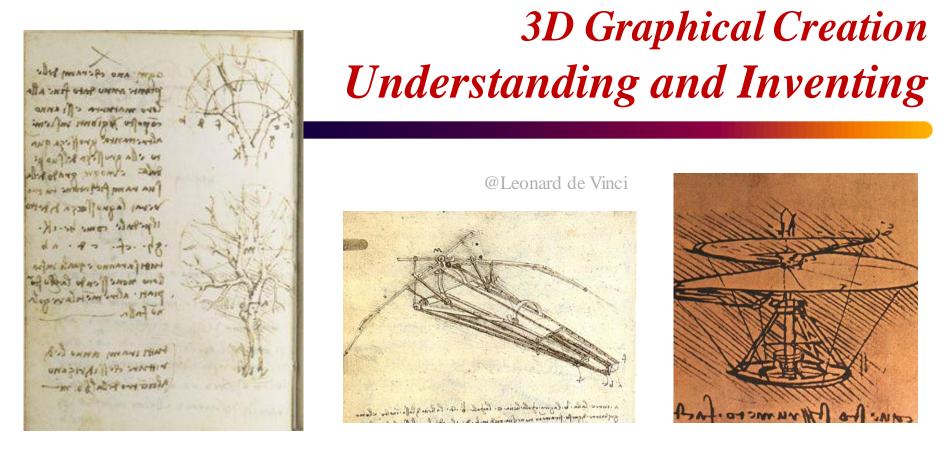


Shaping Imaginary Content

from 3D Digital Design to Animated Virtual Worlds

Marie-Paule Cani

Univ. Grenoble-Alpes, CNRS & Inria



3D Graphical Creation See and touch imaginary worlds?

@Grenoble-INP avec Lyon 1, Inria

- Shaping and printing an imaginary 3D shape
- Giving life to a populated and animated virtual world... *Playful dimension... and a wonderful tool!*

"Graphics designs must be seen as cognitive tools, enhancing and extending our brain ."

Colin Ware

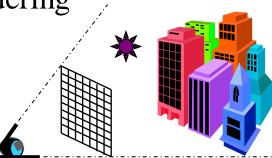
3D Graphical Creation Which tools?

• Painting... drawing... sculpting...

3D Graphical Creation Which tools?

- Digital media
 - « Drawing », but in 3D?
 - « Sculpting » shapes and motions?
 - Overcoming constraints
 - Size of the support, of fingers, of tools
 - Undo/Redo... Copy/Paste...

Can we do better than a pen, to shape imaginary content?


Organization of this lecture

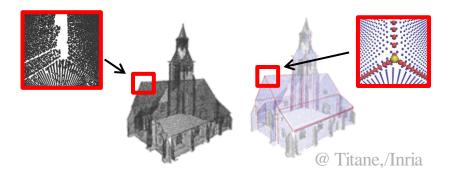
- 1. Creation of 3D digital content
- 2. Towards "expressive" modeling
 - Which gestures to create in 3D?
 - Knowledge in the models!
 - Controlling animated virtual worlds
- 3. Shaping imaginary content: Challenges

Digital creation in 3D Computer Graphics

Not "image processing", not "imaging"

- Input: mathematical models... Output: images!
- 3 steps
- 1. Geometric modeling
- 2. Animation
- 3. Rendering

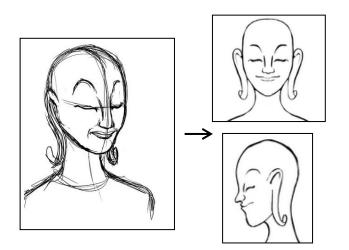
Digital creation in 3D "Realistic" virtual worlds

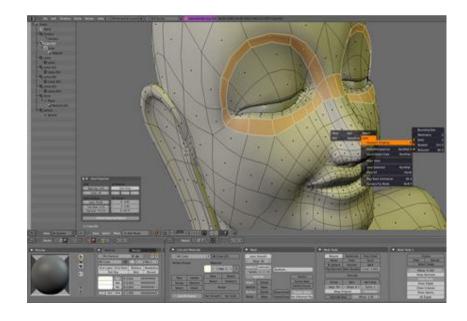

[@Crytek]

But how can we create all this content?

Digital creation in 3D Data reconstruction? / Automatic generation?

- We cannot capture everything!
- How can we create new content?




@Grenoble-INP, Lyon1, Inria

- Peut-on tout exprimer par des lois ?
- Quel contrôle ?

Digital creation in 3D Interactive modeling?

Standard software (Blender, Maya, 3ds max)

Main challenge: "Make tools as transparent to the artistsasspecial effects were made transparent to the public!"[Rob Cook, scientific director of Pixar, Siggraph Asia 2008]

Shaping imaginary content! Towards « Expressive » modeling

Make tools and models "transparent"?

Two principles

- Enable gesture-based design
- Develop "user-centered" graphical models, integrating knowledge

Questions

- 1. Which gestures?
- 2. Which knowledge, and how?
- 3. Adaptation to a full virtual world?

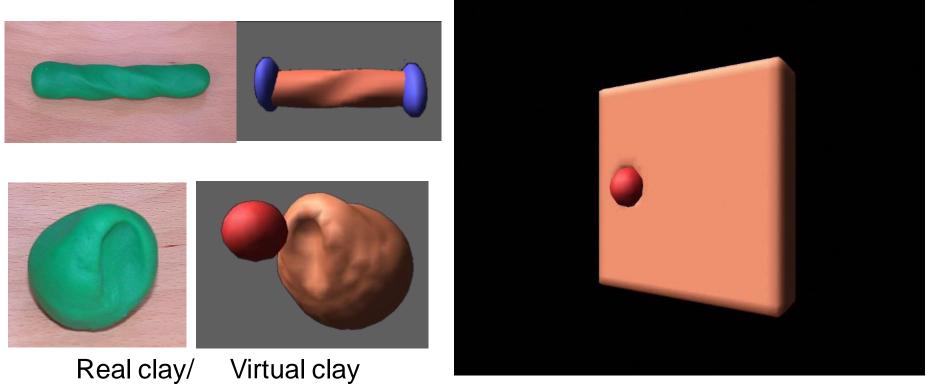
- Which gestures to create in 3D?
- ✓ Knowledge-based models
 ✓ Extension to Virtual Worlds


Painting in 3D

Painting in 3D space?

- Lacks precision
- Tiring

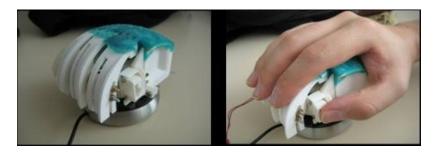
Force feedback: rely on the objet


Cave Painting @ACM, 2001

@Grenoble-INP, Inria, 2001

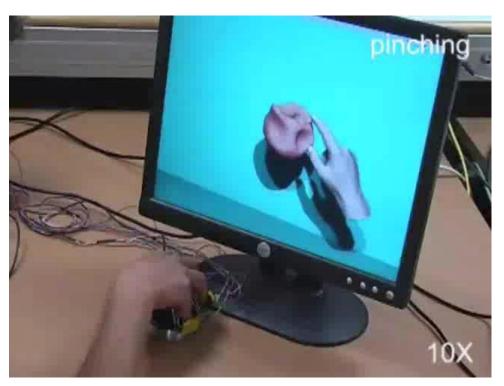
- ✓ Which gestures to create in 3D?
- ✓ Knowledge-based models
- Extension to Virtual Worlds

Modeling some realistic virtual clay?

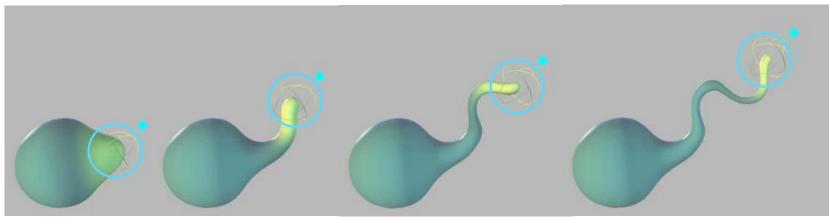


- Which gestures to create in 3D?
- ✓ Knowledge-based models
- Extension to Virtual Worlds



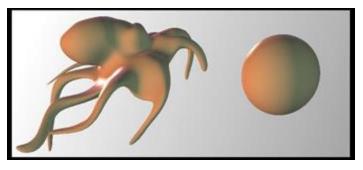

Controlling a virtual hand?

"Hand Navigator"



@Grenoble-INP, Inria, 2008

- Which gestures to create in 3D?
- ✓ Knowledge-based models
- Extension to Virtual Worlds


Constant volume space deformations?

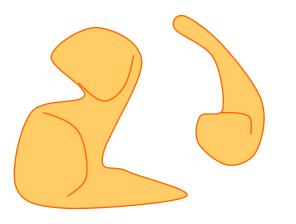
@Grenoble-INP, Inria, 2004

In summary

• Inspire from real, do not copy it!

- Which gestures to create in 3D?
- ✓ Knowledge-based models
- Extension to Virtual Worlds

2D drawing


Sculpting virtual clay?

or *drawing in 2D*?

• « sketch-based modeling »

Why do we "see" 3D shapes?

Unknown shapes

- We « see » the simplest one
- i.e. the most symmetric one!

Well-known shapes

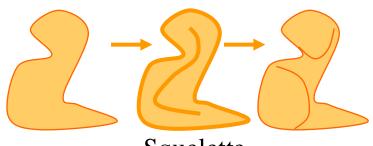
- We use existing knowledge
- Enables to infer missing data

Which gestures to create in 3D?

- Knowledge-based models
- Extension to Virtual Worlds

Sketching: Unknown shapes

How can we infer depth?

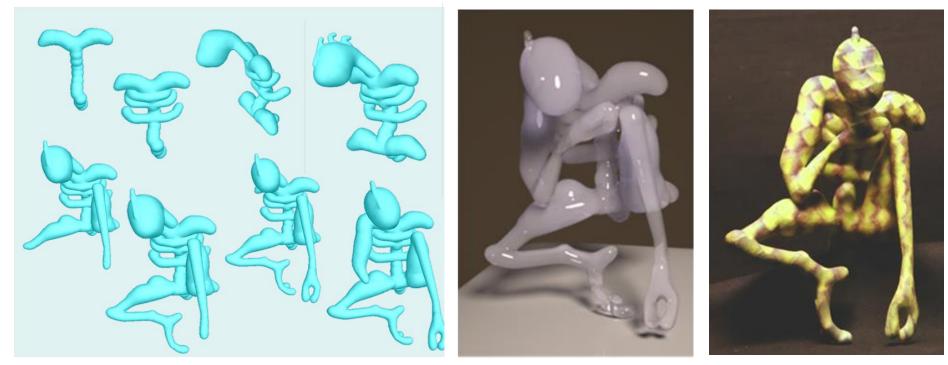

Symmetry around a skeleton!

How can we add details?

- Over-sketch from another viewpoint
- Depth from the support surface

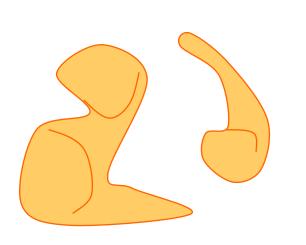
Needs

- Create volumes from skeletons
- Seamlessly blend shapes


Squelette

- Which gestures to create in 3D?
- Knowledge-based models
- Extension to Virtual Worlds

Sketching: Unknown shapes


Creation: 24 sketches, 30 minutes

Virtual shape

@Grenoble-INP, Inria, 2010

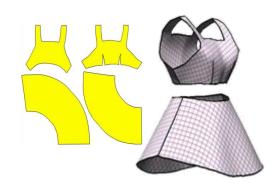
3D print

Why do we "see" 3D shapes?

Well-known shapes

- We use **existing knowledge**
- Enables to infer missing data

Organization of this lecture


- 1. Creation of 3D digital content
- 2. Towards "expressive" modeling
 - Which gestures to create in 3D?
 - Knowledge in the models!
 - Controlling animated virtual worlds
- 3. Shaping imaginary content: Challenges

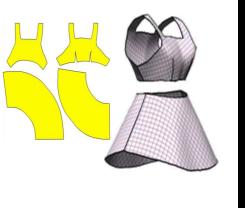
Which gestures to create in 3D?

- Knowledge-based models
- *Extension to Virtual Worlds*

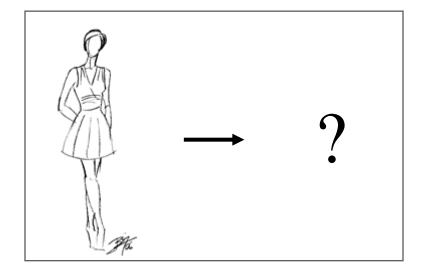
The example of Garments

- Piece-wise developable surface
- Difficult to design in real
- Needed for dressing virtual characters

Which knowledge? (sketch-based modeling, animation, transfer)


Which gestures to create in 3D?

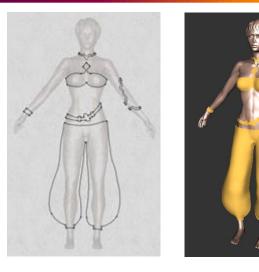
- Knowledge-based models
- *Extension to Virtual Worlds*

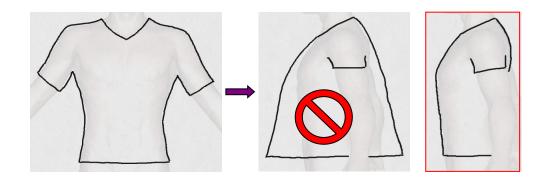

Garments from sketches

Standard pipeline

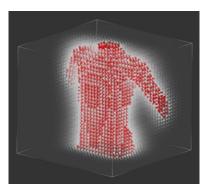
- Sketch and position 2D patterns
- Simulation under gravity
- Iterate to tune parameters!

3D model from a sketch?


 \rightarrow automatic computation of patterns!


Which gestures to create in 3D?

- Knowledge-based models
- *Extension to Virtual Worlds*

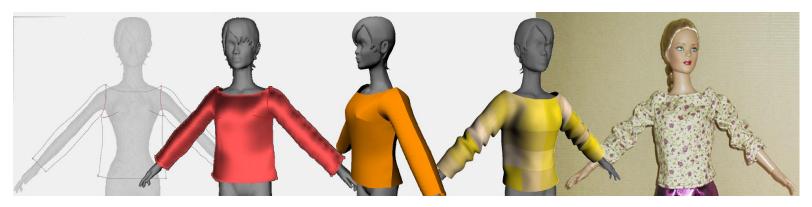

Garments from sketches

- Draw over a view of the mannequin
- Knowledge? Rule of thumb:
 Fitting is constant all around the body!

Sculpt in a distance field!

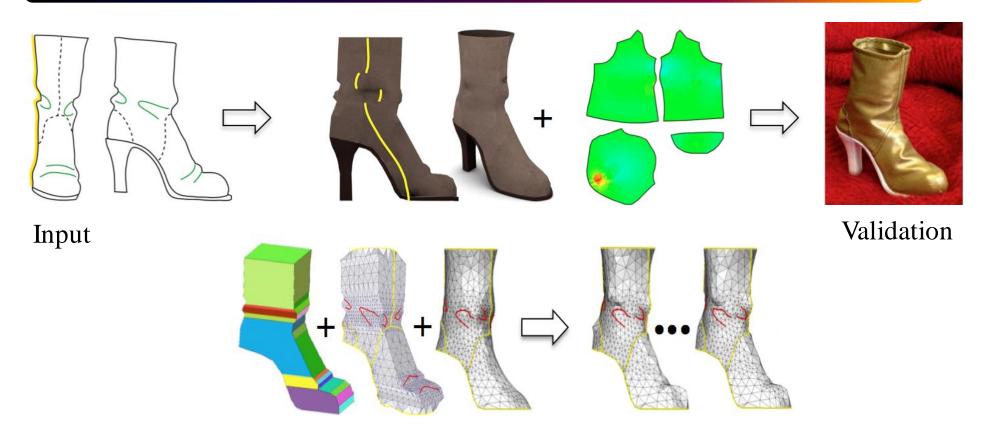
Which gestures to create in 3D?

- Knowledge-based models
- *Extension to Virtual Worlds*


Garments from sketches

The result lacks folds!

- Enable to draw them?
- ... or make use of more knowledge?
 - A garment is piece-wide developable
 - Folds can be computed


@Grenoble-INP, Inria, 2007

Which gestures to create in 3D?

- ✓ Knowledge-based models
 - *Extension to Virtual Worlds*

Garments from sketches

Solution: optimize developability and identify silhouette points!

Which gestures to create in 3D?

- ✓ Knowledge-based models
 - *Extension to Virtual Worlds*

- Real-time simulation
- Measure isometry
- Add folds

@Grenoble-INP, Inria, UBC, 2009

Input Simulation

Our results

Which gestures to create in 3D?

- Knowledge-based models
- *Extension to Virtual Worlds*

Transferring garments

Aim: Automatic adaptation

Can be fabricated

- No self-intersection or collision
- Piece-wise developable

Design preserving

- Proportions
- Fitting parts
- Orientation of surfaces

@Grenoble-INP, Inria, 2012

To express mathematically and convert into algorithm!

Which gestures to create in 3D?

- Knowledge-based models
- *Extension to Virtual Worlds*

Transferring anatomy

Second example: Anatomical knowledge

- Straight symmetric bones, muscles (not skeleton) proportional to fat
- Adequate processing pipeline to be developed

Organization of this lecture

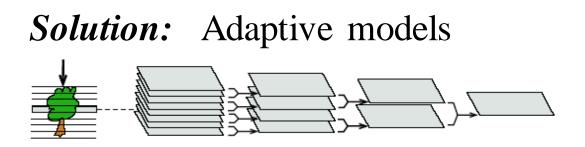
- 1. Creation of 3D digital content
- 2. Towards "expressive" modeling
 - Which gestures to create in 3D?
 - Knowledge in the models!
 - Controlling animated virtual worlds
- 3. Shaping imaginary content: Challenges

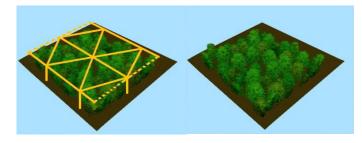
- Which gestures to create in 3D?
- ✓ Knowledge-based models
- *Extension to Virtual Worlds*

Managing complexity

Complexity of shapes, motion, and in terms of number of elements

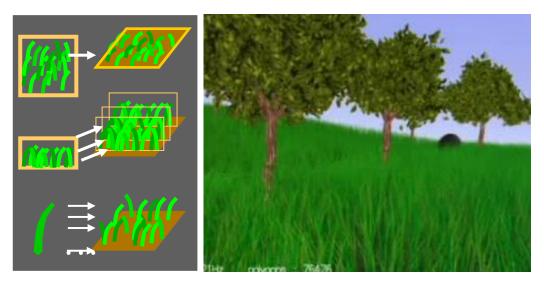
- Opportunity to collaborate with other sciences
- Specific needs





@Inria, Grenoble-INP, U. Toronto 2005-2009

- Which gestures to create in 3D?
- ✓ Knowledge-based models
- Extension to Virtual Worlds


Managing complexity

@Grenoble-INP, Inria, 2004

- Objects appear when looked at
- Adaptive level of details

- Which gestures to create in 3D?
- Knowledge-based models
- *Extension to Virtual Worlds*

Challenges for content creation

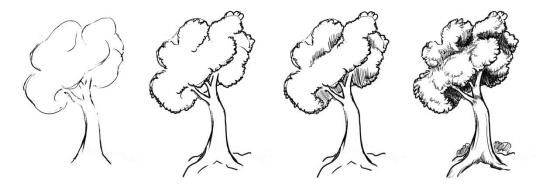
Lots of elements + rules to be maintained

- ✓ Shapes: laws from biology, geology, statics
- ✓ Motion: dynamic laws, action-reaction

Three challenges

- How can we design all these elements?
- How to animate them efficiently?
- Can we combine realism and control?

Methodology: Control to the user, knowledge to the system!


- Which gestures to create in 3D?
- Knowledge-based models
- Extension to Virtual Worlds

1. Too much content for design

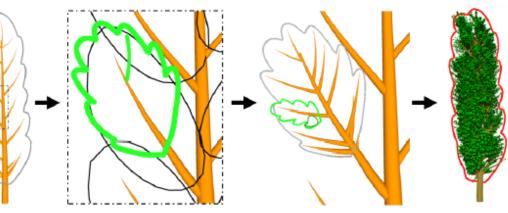
Example: Modeling a tree

- Need to control its specific shape
- Biological and statistical laws to be maintained
- Drawing each branch, and each leaf, would take too long!

Inspiration

Idea

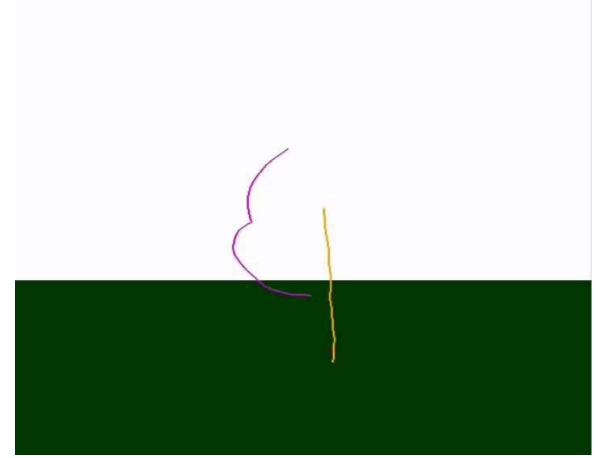
Combine multi-resolution sketches with procedural generation!


- Which gestures to create in 3D?
- Knowledge-based models
- Extension to Virtual Worlds

1. Too much content for design

Tree: Sketching multi-resolution distributions

- Structure from silhouette!
- Use rules from botanic and probabilities to:
 - Infer sub-structures
 - Adapt branching style
 - Extend branches to 3D


- Which gestures to create in 3D?
- ✓ Knowledge-based models
- Extension to Virtual Worlds

1. Too much content for design

Tree: Results

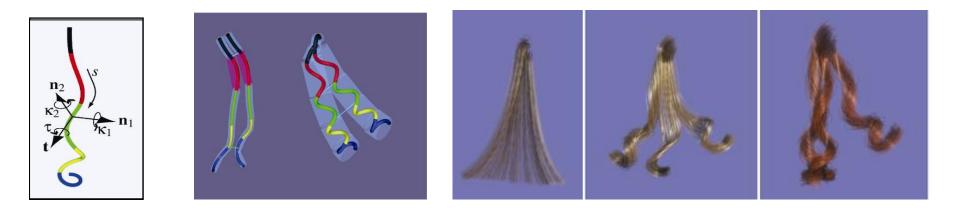
@Grenoble-INP, Inria, 2006

- Which gestures to create in 3D?
- Knowledge-based models
- Extension to Virtual Worlds

2. Too many objects to simulate

Example : creating and animating a full head of hair

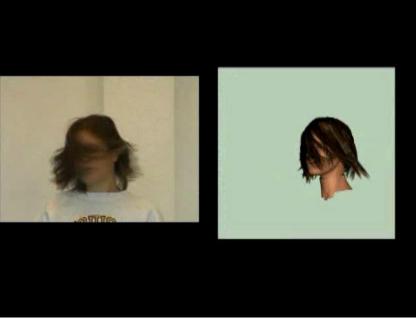
- 100 000 non-extensible, interacting hair-strands
- Both static shape and dynamic motion emerge from interactions


- Which gestures to create in 3D?
- ✓ Knowledge-based models
- Extension to Virtual Worlds

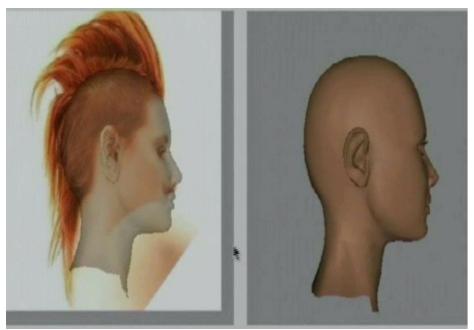
2. Too many objects to simulate

Solution: layered model

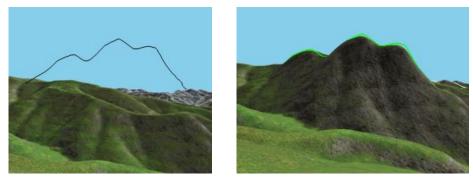
- Animate a few « guide hair » (super-helices)
- Process interactions at the scale of hair wisps
- Add stands using interpolation or extrapolation



- Which gestures to create in 3D?
- ✓ Knowledge-based models
- Extension to Virtual Worlds


2. Too many objects to simulate

@Inria, CNRS, Grenoble-INP, l'Oréal 2006


@Grenoble-INP, Inria, UBC 2007

- Which gestures to create in 3D?
- Knowledge-based models
- Extension to Virtual Worlds

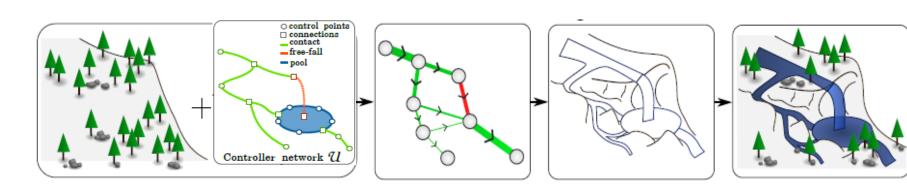
3. Realism and/or Control ?

Example: Creating a waterfall scene

- Trajectory and type of running water dictated by the terrain slope
- Flow consistency to be maintained
- But the user would like some control!

@Grenoble-INP, Inria, Cambridge 2014

- Which gestures to create in 3D?
- Knowledge-based models
- *Extension to Virtual Worlds*


3. Realism and Control

Solution: interleave control and generation

- The user sketches a network
- Consistent flows are computed
- The terrain deforms to match the flow

@Grenoble-INP, Inria 2014

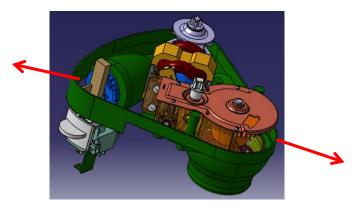
In this Course (fridays 10h30 – 12h30)

Part 1: Creating Digital 3D Shapes

- Geometric representation: Implicit surfaces
- Interaction metaphors: sculpture, sketches, re-use and transfer

Seminars: Loïc Barthe, Sylvain Lefebvre, Adrien Bousseau, Tamy Boubekeur

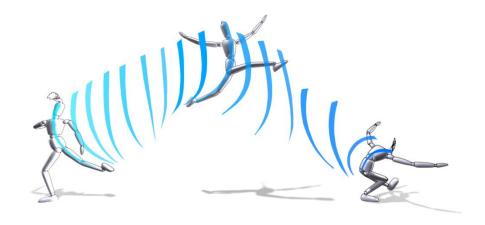
Part 2: Designing animated virtual worlds


- Creating and animating nature
- Populating virtual worlds
- Combining realism and control!

Seminars: Eric Galin, François Faure, Julien Pettré, Florence Bertails-Descoubes

Shaping imaginary content Open challenges

- Adapt to the user
 - New interactions and plasticity of models
- Abstract from specific shapes
 - Draw/Sculpt 1D, 2D, 3D models + distributions
 - Infer function from shape? Preserve it under deformation!



Shaping imaginary content Open challenges

- Extension to animated content
 - Which gestures to design new animations?
 - Can we "sculpt" motion, i.e. deform and refine it?
 - Which knowledge should we embed in the models?

Conclusion

Revolution of 3D graphical design

- Reaching commercial software Zbrush, Sculptris, SketchUp, Jweels... Minecraft, Spore
- Digital design, support for imagination?
 - Create, see and manipulate 3D creations
 - Design shapes & motions from coarse to fine
 - Abstract from difficult or repetitive tasks

Towards augmented humans...

- To my research group (Imagine / LJK-Inria)
- To my colleagues LJK, Inria, Ensimag, Grenoble-INP
- To my collaborators in France and abroad
- To the French Computer Graphics community

And to all the listeners!