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Preface
This ”Lecture notes” is a basic material written as a basis for the lectures The Hardy inequality-

prehistory, history and current status and The interplay between Convexity, Interpolation and
Inequalities presented at my visit at Collège de France in November 2015 on invitation by Pro-
fessor Pierre-Louis Lions.

I cordially thank Professor Pierre-Louis Lions and Collège de France for this kind invitation.
I also thank Professor Natasha Samko, Luleå University of Technology, for some related late
joint research and for helping me to finalize this material.

I hope this material can serve not only as a basis of these lectures but also as a source of
inspiration for further research in this area. In particular, a number of open questions are pointed
out.

The material is closely connected to the following books:

[1] A. Kufner and L.E. Persson, Weighted Inequalities of Hardy Type, World Scientific Pub-
lishing Co. Inc., River Edge, NJ, 2003.

[2] A. Kufner, L. Maligranda and L.E. Persson, The Hardy Inequality. About its History and
Some Related Results, Vydavatelsky Servis Publishing House, Pilsen, 2007.

[3] L. Larsson, L. Maligranda, J. Pečaric and L.E. Persson, Multiplicative Inequalities of
Carlson Type and Interpolation, World Scientific Publishing Co., New Jersey-London-Singapore-
Beijing-Shanghai-Hong Kong-Chennai, 2006.

[4] C. Niculescu and L.E. Persson, Convex Functions and their Applications- A Contempo-
rary Approach. Canad. Math. Series Books in Mathematics, Springer. 2006.

[5] V. Kokilashvili, A. Meskhi and L.E. Persson, Weighted Norm Inequalities for Integral
transforms with Product Weights, Nova Scientific Publishers, Inc., New York, 2010.

But also some newer results and ideas can be found in this Lecture Notes, in particular from
the following manuscript:

[6] L.E. Persson and N. Samko, Classical and New Inequalities via Convexity and Interpola-
tion, book manuscript, in preparation.

Collège de France, November, 2015

Lars-Erik Persson
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LECTURE I

The Hardy inequality: Prehistory, history and current status
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and Narvik University College, Norway

larserik@ltu.se
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1 The prehistory of the Hardy inequality
We consider the following statements of the Hardy inequality: the discrete inequality asserts that
if {an}∞1 is a sequence of non-negative real numbers then

∞∑
n=1

(
1

n

n∑
n=1

ai

)p

≤
(

p

p− 1

)p ∞∑
n=1

apn, p > 1, (1.1)

the continuous inequality informs us that if f is a non-negative p-integrable function on (0,∞),
then f is integrable over the interval (0, x) for each positive x and∫ ∞

0

(
1

x

∫ x

0

f(y)dy

)p

dx ≤
(

p

p− 1

)p ∫ ∞

0

f p(x)dx), p > 1. (1.2)

The development of the famous Hardy inequality in both discrete and continuous forms dur-
ing the period 1906 to 1928 has its own history or, as we call it, prehistory. Contributions of
mathematicians other than G.H.Hardy, such as E.Landau, G.Pòlya, E.Schur and M.Riesz, are
important here.

This prehistory was recently described in detail in

[∗] A.Kufner, L.Maligranda and L.E.Persson. The prehistory of the Hardy inequality, Amer.
Math. Monthly, 113(8):715–732, 2006

In particular, the following is clear:

(a) Inequalities (1.1) and (1.2) are the standard forms of the Hardy inequalities that can be
found in many text books on Analysis and were highlighted first in the famous book Inequalities
by Hardy, Littlewood and Pólya.

(b) By restricting (1.2) to the class of step functions one proves easily that (1.1) implies
(1.2).

(c) The constant (p/(p − 1))p in both (1.1) and (1.2) is sharp: it cannot be replaced with
a smaller number such that (1.1) and (1.2) remain true for all relevant sequences and functions,
respectively.

(d) The main motivation for Hardy to begin this dramatic history in 1915 was to find a
simpler proof of the Hilbert inequality from 1906:

∞∑
n=1

∞∑
m=1

ambn
m+ n

≤ π

(
∞∑

m=1

a2m

)1/2( ∞∑
n=1

b2n

)1/2

(1.3)

(In Hilbert’s version of (1.3) the constant 2π appears instead of the sharp one π.) We remark that
nowadays the following more general form of (1.3) is also sometimes is referred in the literature
as Hilbert’s inequality

∞∑
n=1

∞∑
m=1

ambn
m+ n

≤ π

sin π
p

(
∞∑

m=1

apm

)1/p( ∞∑
n=1

bqn

)1/q

, (1.4)

where p > 1 and p′ = p/(p− 1). However, Hilbert was not even close to consider this case (the
lp-spaces appeared only in 1910).
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(e) The first weighted version of (1.2) was proved by Hardy himself in 1928:∫ ∞

0

(
1

x

∫ x

0

f(y)dy

)p

xadx ≤
(

p

p− 1− a

)p ∫ ∞

0

fp(x)xadx, (1.5)

where f is a measurable and non-negative function on (0,∞) whenever a < p− 1, p > 1.

1.1 A new look on the inequalities (1.1) and (1.5)

Observation 1.1. We note that for p > 1∫ ∞

0

(
1

x

∫ x

0

f(y)dy

)p

dx ≤
(

p

p− 1

)p ∫ ∞

0

f p(x)dx,

⇔∫ ∞

0

(
1

x

∫ x

0

g(y)dy

)p
dx

x
≤ 1 ·

∫ ∞

0

gp(x)
dx

x
, (1.6)

where f(x) = g(x1−1/p)x−1/p.

This means that Hardy’s inequality (1.2) is equivalent to (1.6) for p > 1 and, thus, that
Hardy’s inequality can be proved in the following simple way (see form (1.6)): By Jensen’s
inequality and Fubini’s theorem we have that

∫ ∞

0

(
1

x

∫ x

0

g(y)dy

)p
dx

x
≤
∫ ∞

0

(
1

x

∫ x

0

gp(y)dy

)
dx

x
=

∫ ∞

0

gp(y)

∫ ∞

y

dx

x2
dy =

∫ ∞

0

gp(y)
dy

y
.

By instead making the substitution f(t) = g(t
p−1−a

p )t−
1+a
p in (1.5) we see that also this

inequality is equivalent to (1.6). These facts imply especially the following:
(a) Hardy’s inequalities (1.1) and (1.5) hold also for p < 0 (because the function φ(u) = up

is convex also for p < 0) and hold in the reverse direction for 0 < p < 1 (with sharp constants(
p

1−p

)p
and

(
p

a+1−p

)p
, a > p− 1, respectively).

(b) The inequalities (1.1) and (1.5) are equivalent.
(c) The inequality (1.6) holds also for p = 1 which gives us a possibility to interpolate and

get more information about the mapping properties of the Hardy operator.
More information about the development of this idea can be found in

[∗] L.E.Persson and N. Samko, What should have happened if Hardy discovered this?, J. Inequal.
Appl. SpringerOpen 2012, 2012:29.

Remark 1.2. In Section 3.1 of this lecture some of these results are presented.
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2 On the further development of Hardy type inequalities
Some parts of this development are described in the books:

[A] A.Kufner and L.E.Persson, Weighted Inequalities of Hardy Type, World Scientific
Publishing Co. Inc., River Edge, NJ, 2003.

[B] A.Kufner, L.Maligranda and L.E.Persson, The Hardy Inequality. About its History and
Some Related Results, Vydavatelsky Servis Publishing House, Pilsen, 2007.

[C] V.Kokilashvili, A.Meskhi and L.E.Persson, Weighted Norm Inequalities for Integral
Transforms with Product Weights, Nova Scientific Publishers, Inc., New York, 2010.

Next we present some examples of information from each of the chapters of the book [A].

A1 : Introduction
One important question is the following:

For which weights u and v does it hold that(∫ b

0

(∫ x

0

f(t)dt

)q

u(x)dx

)1/q

≤ C

(∫ b

0

fp(x)v(x)dx

)1/p

, 0 < b ≤ ∞

for some finite constant C ?
During the last 80 years it has been a lot of activities to answer this and more general ques-

tions concerning Hardy type inequalities and a lot of interesting results have been developed.
Just as one example we mention the following well known result:

Theorem 2.1. Let 1 < p ≤ q <∞ and u and v be weight functions on R+. Then each of the
following conditions are necessary and sufficient for the inequality b∫

0

 x∫
0

f(t) dt

q

u(x)dx


1
q

≤ C

 b∫
0

fp(x)v(x) dx


1
p

(2.1)

to hold for all positive and measurable functions on R+:
a) the Muckenhoupt-Bradley-type condition,

AMB := sup
x>0

 b∫
x

u(t) dt


1
q
 x∫

0

v(t)1−p′ dt

 1
p′

<∞, (2.2)

with the estimation C ∈ [AMB, λAMB] for the best constant C in (2.1), where

λ = min(p1/q(p′)1/p
′
, q1/q(q′)1/p

′
).

b) The condition

APS := sup
x>0

V (x)−
1
p

 x∫
0

u(t)V (t)q dt

 1
q

<∞, V (x) :=

x∫
0

v(t)1−p′ dt, (2.3)
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with C ∈ [APS, p
′APS] for the best constant in (2.1).

Remark 2.2. The dramatic history until (2.2) was derived can be found in the book [B]. A
simple proof of the characterization (2.2) was given by B.Muckenhoupt in 1972 for p = q and by
J.S.Bradley in 1978 for p ≤ q. In 2002 L.E. Persson and V.D. Stepanov presented an elementary
proof of the alternative condition (2.3).

Remark 2.3. It has recently been discovered that also these two conditions to characterize
(2.1) are not unique and can even be replaced by infinite many conditions even by four scales of
conditions. In Section 3.8 of this lecture also this result will be presented.

A2 : Some weighted norm inequalities
Here we study in particular characterizations of the following more general Hardy-type inequal-
ity

∥Tf∥q,u ≤ C∥f∥p,v, (2.4)

where u and v are weight functions and

Tf(x) :=

∫ x

a

k(x, y)f(y)dx,

k(x, y) denote a positive kernel.
Some facts:
(a) Without restrictions on the kernel k(x, y) the problem is open.
(b) The solution of this problem is known for a number of special cases and parameters.

Remark 2.4. The really newest knowledge can be found in the following review article:
[∗] A.Kufner, L.E.Persson and N.Samko, Hardy type inequalities with kernels: the current status
and some new results, research report (submitted in 2015).
Some of these newer result will be presented in Sections 3.5 and 3.7 of this lecture.

A3 : The Hardy-Steklov operator

Here we consider the Hardy-Steklov operator
b(x)∫
a(x)

and the ”moving averaging operator”

Sb
af(x) =

1

b(x)− a(x)

∫ b(x)

a(x)

f(t)dt,

where a(x) and b(x) are increasing functions on (0,∞) such that a(0) = b(0) = 0, and a(x) <
b(x).
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Special case: The Steklov operator

(Sγf) (x) =
1

2γ

∫ x+γ

x−γ

f(t)dt.

The corresponding mapping properties of the operator Sb
a as those for the Hardy operator H are

investigated as characterizations of weighted inequalities.

A4 : Higher order Hardy inequalities
Hardy’s inequality in modern form can be formulated b∫

0

(g(x))q u(x)dx


1
q

≤ C

 b∫
0

(g′(x))pv(x) dx


1
p

, (2.5)

where g(a) = 0 (g(x) =
x∫
0

f(t)dt).

Remark 2.5. This problem can be handled also when the condition ”g(a) = 0” is replaced
by the condition g(b) = 0 (the dual situation). It can also be handled for the case when g(a) =
g(b) = 0 and g ∈ C∞

0 [a, b] but not of course without restrictions in the end points.

The inequality (2.5) with appropriate boundary conditions is referred to as a Hardy inequality
of first order.

Hardy’s inequality of second order:

 b∫
0

(g(x))q u(x)dx


1
q

≤ C

 b∫
0

(g′′(x))pv(x) dx


1
p

.

The first crucial question is : Under which conditions on g(a), g′(a), g(b) and g′(b) is it reason-
able to study this Hardy-type inequality? And after that study the corresponding Hardy-type
inequality in each of these cases.

Hardy’s inequality of n:th order: b∫
0

(g(x))q u(x)dx


1
q

≤ C

 b∫
0

(g(n)(x))pv(x) dx


1
p

.

Remark 2.6. A number of open questions remains to be solved in this case.
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A5 : Fractional order Hardy inequalities
A very guiding result was the following classical Jakovlev- Grisvard inequality:

Example 2.7. Let 1 < p <∞, 0 < λ < 1, λ ̸= 1/p. Then for every g ∈ C∞
0 (0,∞),(∫ ∞

0

∣∣∣∣g(x)xλ

∣∣∣∣p dx)1/p

≤ C

(∫ ∞

0

∫ ∞

0

|g(x)− g(y)|p

|x− y|1+λp
dxdy

)1/p

. (2.6)

Remark 2.8. The inequality (2.6) was independently derived in 1961 by G.N.Jakovlev and
in 1963 by P.Grisvard but it seems to be known much earlier by J.L.Lions and others.

It is easy to derive the following complement of (2.6):

Example 2.9. Let 1 < p <∞, 0 < λ < 1. Then for every g ∈ AC(0,∞),(∫ ∞

0

∫ ∞

0

|g(x)− g(y)|p

|x− y|1+λp
dxdy

)1/p

≤ C

(∫ ∞

0

|g′(x)|px(1−λ)pdx

)1/p

(2.7)

where C = 21/pλ−1(p(1− λ))−1/p is the best possible constant.

Remark 2.10. If both the inequalities (2.6) and (2.7) hold, we have a refinement of the
classical Hardy inequality (2.5) in differential form:

∥g∥p,u ≤ C∥g′∥p,v

with (a, b) = (0,∞), u(x) = x−λp, v(x) = x(1−λ)p.

Next we present the following more precise version of the Grisvard-Jakovlev inequality:

Theorem 2.11. Let 1 ≤ p < ∞, 0 < λ < 1, λ ̸= 1/p. Assume that
∫ x

0
g(t)dt exists for every

x > 0 and that either
1

p
< λ < 1 and lim

x→0

1

x

∫ x

0

g(t)dt = 0

or
0 < λ <

1

p
and lim

x→∞

1

x

∫ x

0

g(t)dt = 0.

Then (∫ ∞

0

∣∣∣∣g(x)xλ

∣∣∣∣p dx)1/p

≤ Cλ,p

(∫ ∞

0

∫ ∞

0

|g(x)− g(y)|p

|x− y|1+λp
dxdy

)1/p
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with

Cλ,p = 2−1/p

(
1 +

p

|λp− 1|

)
.

Remark 2.12. This result from 2000 is due to N.Krugljak, L.Maligranda and L.E.Persson and
the original motivation for this result was to try to supplement the theory so that the disturbing
condition λ ̸= 1/p in Example 2.7 can be understood from an interpolation point of view. This
theory was further developed by the same authors and led to a satisfactory explanation in terms
of interpolation between subspaces. This phenomenon appears also for usual power weighted
Hardy inequalities. In Section 3.2 we give a simple explanation of this idea.

The key to prove Theorem 2.11 is the following Lemma of independent interest:

Lemma 2.13. Let 1 ≤ p < ∞, α ∈ R \ {0}. Assume that
∫ x

0
g(t)dt exists for every x > 0

and that either
α > 0 and lim

x→0

1

x

∫ x

0

g(t)dt = 0

or
α < 0 and lim

x→∞

1

x

∫ x

0

g(t)dt = 0.

Then (∫ ∞

0

∣∣∣∣g(x)xα

∣∣∣∣p dxx
)1/p

≤ C(α)

(∫ ∞

0

∣∣∣∣g(x)− 1
x

∫ x

0
g(t)dt

xα

∣∣∣∣p dxx
)1/p

with C(α) = 1 + 1/|α|.
By combining this Lemma and using the Minkowski and Hardy inequalities in the reversed

direction we obtain the following remarkable mapping property of the I −H operator:

Example 2.14. Let g ∈ Lp(x−αp−1) with p ≥ 1 and α > −1, α ̸= 0. Then(∫ ∞

0

∣∣∣∣g(x)− 1
x

∫ x

0
g(y)dy

xα

∣∣∣∣p dxx
)1/p

≈
(∫ ∞

0

∣∣∣∣g(x)xα

∣∣∣∣p dxx
)1/p

with the equivalence constants 1 + 1/|α| and (α + 1)/(α + 2).

Remark 2.15. In fact for the special case α = −1/2 and p = 2 we can even prove the
following more precise isometry of the I −H operator in L2 :∫ ∞

0

(
g(x)− 1

x

∫ x

0

g(y)dy

)2

dx =

∫ ∞

0

g2(x)dx.
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A6 : Integral operators on the cone of monotone functions
Recall that, for 0 < p < ∞, the weighted Lorentz spaces Λp(w), 1 < p < ∞, are defined as
follows:

Λp(w) :=
{
f ∥f ∗∥p,w =

(∫ ∞

0

(f ∗(t))pw(t)dt
)1/p

<∞
}
,

where f is a measurable function on a measure spaceX (for example Rn), f ∗ being the equimea-
surable decreasing rearrangement of |f | defined by

f ∗(t) := inf{y > 0 : λf (y) ≤ t}.

Here λf is the distribution function defined by

λf (y) := meas{x ∈ X : |f(x)| > y}.

Note that ∥f ∗∥p,w is a norm on Λp(w) if and only if w is decreasing. But the expression ∥f ∗∗∥p,w
with

f ∗∗(x) =
1

x

∫ x

0

f ∗(t)dt

gives a norm which is equivalent to ∥f ∗∥p,w.
In what follows, we take the measure in the definition of λf (y) to be the Lebesgue measure.
Recall that the rearrangement of the Hardy-Littlewood maximal function Mf is equivalent

to the Hardy (averaging) operator of the rearrangement of |f |. To be more precise, if

(Mf)(x) = sup
x∈Q

1

|Q|

∫
Q

|f(z)|dz, x ∈ Rn,

whereQ is a cube in Rn with sides parallel to the coordinate axes and |Q| is its Lebesgue measure,
then

(Mf)∗(t) ≈ 1

t

∫ t

0

f ∗(s)ds, t > 0.

Hence, to prove that
M : Λp(v) → Λq(u), 1 < p, q <∞,

is a bounded mapping, or, in other words, to characterize the weight functions u and v for which
M is bounded between Lorentz spaces, it is equivalent to prove that the Hardy (averaging) oper-
ator H , defined now by

(Hf)(t) :=
1

t

∫ t

0

f(s)ds, t ≥ 0,

and considered on the cone of non-negative decreasing functions (notation: 0 ≤ f ↓), is bounded
from Lp(v) to Lq(u), 1 < p, q < ∞. This means that one desires to characterize the weight
functions u and v for which the (Hardy) inequality(∫ ∞

0

(1
t

∫ t

0

f(s)ds
)q
u(t)dt

)1/q
≤ C

(∫ ∞

0

f p(t)v(t)dt
)1/p

holds whenever 0 ≤ f ↓ .
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A useful duality principle is given by

sup
f≥0

∫∞
0
f(x)g(x)dx

(
∫∞
0
f p(x)v(x)dx)1/p

= ∥g∥p′,v1−p′ , (2.8)

where p > 1, p′ = p/(p− 1) and v is a measurable locally integrable weight function. Another
key result is the following duality principle of E. Sawyer (from 1990):

Theorem 2.16. Suppose 1 < p < ∞. Let g, v be non-negative measurable functions on
(0,∞) with v locally integrable. Then

sup
0≤f↓

∫∞
0
f(x)g(x)dx

(
∫∞
0
f p(x)v(x)dx)1/p

≈
(∫ ∞

0

(∫ x

0

g(t)dt
)p′(∫ x

0

v(t)dt
)−p′

v(x)dx
)1/p′

+

∫∞
0
g(x)dx

(
∫∞
0
v(x)dx)1/p

. (2.9)

Remark 2.17. Let us consider an operator T defined by

(Tf)(x) =

∫ ∞

0

k(x, y)f(y)dy,

where k is a non-negative kernel. In order to characterize the weight functions u and v for which
the inequality (∫ ∞

0

(Tf)q(x)u(x)dx
)1/q

≤ C
(∫ ∞

0

f p(x)v(x)dx
)1/p

(2.10)

with 1 < p, q < ∞ holds for all f , 0 ≤ f ↓, we can use the duality principles (2.8) and (2.9).
They show that (2.10) is equivalent to the inequality(∫ ∞

0

(∫ x

0

(T̃ g)(t)dt
)p′(∫ x

0

v(t)dt
)−p′

v(x)dx
)1/p′

≤ C
(∫ ∞

0

gq
′
(x)u1−q′(x)dx

)1/q′
,

where T̃ is the conjugate of T and g is an arbitrary non-negative measurable function.

Example 2.18. If T = H is the Hardy averaging operator

(Hf)(x) =
1

x

∫ x

0

f(t)dt,

then its conjugate is given by

(H̃g)(y) =

∫ ∞

y

g(t)

t
dt.
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A simple calculation shows that∫ x

0

(H̃g)(y)dy =

∫ x

0

g(t)dt+ x

∫ ∞

x

g(t)

t
dt,

so that
∫ x

0
(H̃g)(y)dy is essentially the sum of the Hardy operator and the adjoint of the Hardy

averaging operator. Therefore, to characterize (2.10) is equivalent to characterize two Hardy-type
inequalities from our previous Sections.

In connection to the results presented in this Section there are many open questions. We just
mention the following ones:

Open problem 1 Find necessary and sufficient conditions on the weights u = u(x), 0 ≤ x ≤
b, and v = v(x, y), 0 ≤ x, y ≤ b, so that(∫ b

0

|g(x)|pu(x)dx
)1/p

≤ K
(∫ b

0

∫ b

0

|g(x)− g(y)|p

|x− y|1+λp
v(x, y)dxdy

)1/p
holds for some finite K > 0.

Open problem 2 Find necessary and sufficient conditions on the weights v = v(x), 0 ≤ x ≤
b, and u = u(x, y), 0 ≤ x, y ≤ b, so that(∫ b

0

∫ b

0

|g(x)− g(y)|q

|x− y|1+λp
u(x, y)dxdy

)1/q
≤ K

(∫ b

0

|g′(x)|pv(x)dx
)1/p

holds for some finite K > 0.

Open problem 3 Find necessary and sufficient conditions on the (averaging) operator T such
that

∥g∥2 = ∥(I − T )g∥2
holds for all g ∈ L2 = L2(0,∞).

Remark 2.19. In Section 3.6 we present some multidimensional inequalities involving kernel
type operators and decreasing functions (and with sharp constant in each case).
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3 Examples of complementary and newer results

3.1 Further consequences of the new look presented in Section 1.1
For the finite interval case we need the following extention of our basic observation in Section
1.1.

Lemma 3.1. Let g be a non-negative and measurable function on (0, ℓ), 0 < ℓ ≤ ∞.
a) If p < 0 or p ≥ 1, then

∫ ℓ

0

(
1

x

∫ x

0

g(y)dy

)p
dx

x
≤ 1 ·

∫ ℓ

0

gp(x)
(
1− x

ℓ

) dx
x
. (3.1)

(In the case p < 0 we assume that g(x) > 0, 0 < x ≤ ℓ).

b) If 0 < p ≤ 1, then (3.1) holds in the reversed direction.

c) The constant C = 1 is sharp in both a) and b).

By using this Lemma and straightforward calculations the following can be proved:

Theorem 3.2. Let 0 < ℓ ≤ ∞, let p ∈ R+ \ {0} and let f be a non-negative function. Then
a) the inequality ∫ ℓ

0

(
1

x

∫ x

0

f(y)dy

)p

xadx ≤(
p

p− 1− a

)p ∫ ℓ

0

fp(x)xa
[
1−

(x
ℓ

) p−a−1
p

]
dx (3.2)

holds for all measurable functions f, each ℓ, 0 < ℓ ≤ ∞ and all a in the following cases:

(a1) p ≥ 1, a < p− 1,

(a2) p < 0, a > p− 1.

b) For the case 0 < p < 1, a < p− 1, inequality (3.2) holds in the reversed direction under the
conditions considered in a).
c) The inequality∫ ∞

ℓ

(
1

x

∫ ∞

x

f(y)dy

)p

xa0dx ≤
(

p

a0 + 1− p

)p ∫ ∞

ℓ

f p(x)xa0

[
1−

(
ℓ

x

)a0+1−p
p

]
dx (3.3)

holds for all measurable functions f, each ℓ, 0 ≤ ℓ <∞ and all a in the following cases:

(c1) p ≥ 1, a0 > p− 1,

12



(c2) p < 0, a0 < p− 1.

d) For the case 0 < p ≤ 1, inequality (3.3) holds in the reversed direction under the conditions
considered in c).
e) All inequalities above are sharp.
f) Let p ≥ 1 or p < 0. Then, the statements in a) and c) are equivalent for all permitted a and
a0 because they are in all cases equivalent to (3.1) via substitutions.
g) Let 0 < p < 1. Then, the statements in b) and d) are equivalent for all permitted a and a0.

3.2 The failure of the Hardy inequality and interpolation of intersections
There are many examples of inequalities which hold except for one or more values of the pa-
rameters involved, Sometimes this phenomenon can be explained via interpolation. We give the
following example:

Example 3.3. : The (classical) Hardy inequality in differential form(∫ ∞

0

∣∣∣∣1xg(x)
∣∣∣∣p xβdx)1/p

≤ C

(∫ ∞

0

|g′(x)|p xβdx
)1/p

(3.4)

holds with p ≥ 1 and g ∈ C∞
0 (0,∞) for every β ̸= p− 1 but does not hold for β = p− 1.

In order to be able to understand this phenomenon we first note that inequality (3.4) can be
rewritten as (∫ ∞

0

∣∣∣∣1x
∫ x

0

f(y)dy

∣∣∣∣p xβdx)1/p

≤ C

(∫ ∞

0

|f(x)|p xβdx
)1/p

(3.5)

for β < p− 1 and as(∫ ∞

0

∣∣∣∣1x
∫ ∞

x

f(y)dy

∣∣∣∣p xβdx)1/p

≤ C

(∫ ∞

0

|f(x)|p xβdx
)1/p

(3.6)

for β > p − 1. When (3.4) is written in this form we see that it is impossible to interpolate
between β < p− 1 (see (3.5)) and β > p− 1 (see (3.6)) to obtain the inequality for β = p− 1.
The reason is that we have in fact two different operators involved:

(Hf) (x) =
1

x

∫ x

0

f(y)dy for β < p− 1,

(Hf) (x) = −1

x

∫ ∞

x

f(y)dy for β > p− 1.

in order that these two operators coincide it is necessary that

1

x

∫ x

0

f(y)dy = −1

x

∫ ∞

x

f(y)dy

13



i.e. that ∫ ∞

0

f(y)dy = 0.

Denote by N the set of locally integrable functions satisfying this condition. In order to
interpolate the Hardy operator on weighted Lebesgue spaces we have to consider not the spaces
themselves but their intersection with N.

Remark 3.4.: Notice that for weighted Lebesgue spaces the following interpolation formula
holds:

(Lp(v1), L
p(v2))θ,p = Lp(v1−θ

1 vθ2),

i.e., the interpolation with two different weight functions v1, v2 produces a new weight function
vθ = v1−θ

1 vθ2. In the case mentioned in Example 3.3 we need to interpolate between Lp(v1) ∩N
and Lp(v2) ∩N with v1(x) = xγ, γ < β − 1, and v2(x) = xδ, δ > β − 1.

These observations lead to the investigation of interpolation spaces of the type(
N ∩ Lp(xβ), N ∩ Lp(xγ)

)
λ,p
.

In our mentioned paper from 2000 (see also the book [A]) we in particular proved the following:

Theorem 3.5. Let 1 ≤ p <∞ and γ < p− 1 < β. Then(
N ∩ Lp(xβ), N ∩ Lp(xγ)

)
λ,p

= N ∩ Lp(x(1−λ)β+λγ)

if λ ̸= (β + 1− p)/(β − γ) and(
N ∩ Lp(xβ), N ∩ Lp(xγ)

)
λ,p

= Cp(xp−1) ∩ Lp(xp−1)

if λ = (β + 1− p)/(β − γ).
Here Cp(v) denotes the Cesàro function space of non-absolute type:

Cp(v) =

{
g(x), x ∈ (0,∞) :

∥g∥Cp(v) :=

(∫ ∞

0

∣∣∣∣1x
∫ x

0

g(y)dy

∣∣∣∣p v(x)dx)1/p

<∞
}
.

Finally, let us note that Theorem 3.5 is only a special case of a more general result (with power
weights replaced by general weights), which allows to describe situations where some Hardy
inequality fails not just for one value of the parameter but even for an interval of parameters. For
illustration let us give a concrete example.

Example 3.6. : Let v0(x) = max{xα0 , xα1} with 0 ≤ α0 ≤ α1 and v1(x) = min{x−β0 , x−β1}
with 0 < β0 ≤ β1. Assume that α0/α1 ≤ β0/β1. Then, for

λ ∈ (0, 1) \
[

α0

α0 + β0
,

α1

α1 + β1

]
14



and f ∈ N we have both the Hardy inequalities(∫ ∞

0

∣∣∣∣1x
∫ x

0

f(y)dy

∣∣∣∣p v1−λ
0 (x)vλ1 (x)dx

)1/p

≤ C

(∫ ∞

0

|f(x)|p v1−λ
0 (x)vλ1 (x)dx

)1/p

and (∫ ∞

0

∣∣∣∣1x
∫ ∞

x

f(y)dy

∣∣∣∣p v1−λ
0 (x)vλ1 (x)dx

)1/p

≤ C

(∫ ∞

0

|f(x)|p v1−λ
0 (x)vλ1 (x)dx

)1/p

.

It follows that (
N ∩ L1(v0), N ∩ L1(v1)

)
λ,1

= N ∩ L1(v1−λ
0 vλ1 ).

Moreover, for λ ∈
[

α0

α0+β0
, α1

α1+β1

]
none of these Hardy inequalities is true and we only have that(

N ∩ L1(v0), N ∩ L1(v1)
)
λ,1

= N ∩ C1(v1−λ
0 vλ1 ) ∩ L1(v1−λ

0 vλ1 ).

Remark 3.7.: In the same paper also the exception λ ̸= 1/p in the Jakovlev-Grisvard in-
equality (2.6) was explained in a similar way from an interpolation point of view.

3.3 A further development of Bennett’s inequalities with two sharp con-
stants

There exists very few Hardy type inequalities with sharp constant in the limit case and when the
interval (0,∞) is replaced by a finite interval (0, ℓ), ℓ < ∞. We continue by giving two such
examples (Bennett’s inequalities from 1973), which have direct applications e.g. to Interpolation
Theory.

Proposition A: Let α > 0, 1 ≤ p ≤ ∞ and f be a non-negative and measurable function on
[0, 1]. Then (∫ 1

0

[log(e/x)]αp−1

(∫ x

0

f(y)dy

)p
dx

x

)1/p

≤

α−1

(∫ 1

0

xp[log(e/x)](1+α)p−1f p(x)
dx

x

)1/p

, (3.7)

and (∫ 1

0

[log(e/x)]−αp−1

(∫ 1

x

f(y)dy

)p
dx

x

)1/p

≤

α−1

(∫ 1

0

xp[log(e/x)](1−α)p−1f p(x)
dx

x

)1/p

(3.8)

with the usual modification if p = ∞.
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The next refinements of the inequalities (3.7) and (3.8) in Proposition A was proved in 2014
by S. Barza, L.E. Persson and N. Samko:

Theorem 3.8. Let α, p > 0 and f be a non-negative and measurable function on [0, 1].
(a) If p > 1, then

αp−1

(∫ 1

0

f(x)dx

)p

+

αp

∫ 1

0

[log(e/x)]αp−1

(∫ x

0

f(y)dy

)p
dx

x
≤

≤
∫ 1

0

xp[log(e/x)](1+α)p−1f p(x)
dx

x
(3.9)

and

αp−1

(∫ 1

0

f(x)dx

)p

+

αp

∫ 1

0

[log(e/x)]−αp−1

(∫ 1

x

f(y)dy

)p
dx

x
≤

≤
∫ 1

0

xp[log(e/x)](1−α)p−1f p(x)
dx

x
. (3.10)

Both constants αp−1 and αp in (3.9) and (3.10) are sharp. Equality is never attained unless f is
identically zero.
(b) If 0 < p < 1, then both (3.9) and (3.10) hold in the reverse direction and the constants in
both inequalities are sharp. Equality is never attained unless f is identically zero.
(c) If p = 1 we have equality in (3.9) and (3.10) for any measurable function f and any α > 0.

3.4 The sharp constant for the power weighted case when 1 < p < q

By applying the general results (see Theorem 2.1 and the corresponding dual result) for the power
weighted case we get the following:

Example 3.9. The inequality ∞∫
0

 x∫
0

f(t)dt

q

xαdx


1
q

≤ C

 ∞∫
0

fp(x)xβdx

 1
p

holds for 1 < p ≤ q <∞ , if and only if

β < p− 1 and
α + 1

q
=
β + 1

p
− 1.
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Example 3.10. The inequality ∞∫
0

 ∞∫
x

f(t)dt

q

xαdx


1
q

≤ C

 ∞∫
0

fp(x)xβdx

 1
p

holds for 1 < p ≤ q <∞ , if and only if

β > p− 1 and
α + 1

q
=
β + 1

p
− 1.

For the next result we need the following Lemma.

Lemma 3.11. Let 1 < p < q < ∞. The following statements (a) and (b) hold and are
equivalent:
(a) The inequality(∫ ∞

0

(∫ x

0

f(t)dt

)q

xαdx

)1/q

≤ C

(∫ x

0

f p(x)xβdx

)1/p

(3.11)

holds for all measurable functions f(t) on (0,∞) if and only if

β < p− 1 and
α + 1

q
=
β + 1

p
− 1. (3.12)

(b) The inequality(∫ ∞

0

(∫ ∞

x

f(t)dt

)q

xα0dx

)1/q

≤ C

(∫ ∞

0

fp(x)xβ0dx

)1/p

(3.13)

holds for all measurable functions f(t) on (0,∞) if and only if

β0 > p− 1,
α0 + 1

q
=
β0 + 1

p
− 1. (3.14)

Moreover, it yields that
(c) the formal relation between the parameters β and β0 is β0 = −β − 2 + 2p and in this case
the best constants C in (3.11) and (3.13) are the same.

The next result was recently proved in 2015 by L.E.Persson and S.Samko and thus finally an
old question, where G.A.Bliss in 1930 found the best constant for the case β = 0 in (3.11), was
finally solved.

Theorem 3.12. Let 1 < p < q < ∞ and the parameters α and β satisfy (3.12). Then the
sharp constant in (3.11) is C = C∗

pq, where

C∗
pq =

(
p− 1

p− 1− β

) 1
p′+

1
q
(
p′

q

) 1
p

 q−p
p
Γ
(

pq
q−p

)
Γ
(

p
q−p

)
Γ
(

p(q−1)
q−p

)


1
p
− 1

q

. (3.15)
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Equality in (3.11) occurs exactly when f(x) = cx
− β

p−1(
dx

p−1−β
p−1 ·( q

p−1)+1

) q
q−p

. Moreover,

C∗
pq →

p

p− 1− β
as q → p.

By using this result and Lemma 3.11 we obtain the following sharp constant in (3.13):

Theorem 3.13. The sharp constant in (3.13) with parameters satisfying (3.14) for the case
1 < p < q < ∞ is C♯

p,q, where C♯
p,q coincides with the constant C∗

p,q with β replaced by −β0 −
2 + 2p.
Equality in (3.13) occurs if and only if f(x) is of the form

f(x) =
cxβ0/p−1

(dx(
β0+1−p

p−1
)( q

p
−1) + 1)

q
q−p

a.e..

Moreover, we have the continuity between sharp constants when q → p, i.e.

C♯
p,q →

p

β0 + 1− p
as q → p.

Remark 3.14. In the same paper also the sharp constants in the corresponding multi-
dimensional Hardy type inequalities were derived.

3.5 Another new result for the kernel operator case
The following new result was recently proved for the general kernel operator case (in the previ-
ously mentioned review article by A.Kufner, L.E.Persson and N.Samko from 2015):

Theorem 3.15. Let 1 < p ≤ q < ∞, a < b ≤ ∞, u and v are weights. Let k(x, y) be a
non-negative kernel.
(a) Then (2.4) holds if

As := sup
a<y<b

(∫ b

y

kq(x, y)u(x)V (
q(p−s−1)

p
)(x)dx

)1/q

V s/p(y) <∞, (3.16)

for any s < p− 1.
(b) The condition (3.16) can not be improved in general for s > 0 because for product kernels
it is even necessary and sufficient for (2.4) to hold.
(c) For the best constant C in (2.4) we have the following estimate

C ≤ inf
s<p−1

(
p

p− s− 1

)1/p′

As.
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Here and the sequel we use the following notations

U(x) :=

∫ b

x

u(y)dy, V (x) :=

∫ x

a

v1−p′(y)dy, (3.17)

Remark 3.16. This result opens a possibility that the condition (3.16) can be a candidate to
solve the open question we have pointed out in Section A2.

Remark 3.17. In Section 3.6 we present some multidimensional inequalities involving kernel
type operators and decreasing functions (and with sharp constant in each case).

3.6 Some multidimensional weighted inequalities involving generalized ker-
nel operators and non-increasing functions

Let (Mj, µj), j = 1, 2, denote two σ-finite measure spaces. Further, for every x ∈ Mj let
dσx

j (y) denote a positive measure on Rn
+ and define Tj by

(Tjf)(x) :=

∫
Rn
+

f(y)dσx
j (y), j = 1, 2.

In the next Theorem by S.Barza, L.E.Persson and S.Soria from 2000 we give sharp estimates of
the type (∫

M1

(T1f)
q(x)dµ1(x)

)1/q
≤ C

(∫
M2

(T2f)
p(x)dµ2(x)

)1/p
.

Definition 3.18. We say that a set D ∈ Rn
+ is decreasing (and write D ∈ ∆d) if the function

χD is decreasing (separately in each variable). Similarly, we say that a set I ∈ Rn
+ is increasing

(and write I ∈ ∆i) if the function χI is increasing (in each variable).

We need the following constant:

Cn = Cn(p, q, T1, T2) = sup
D∈∆d

(
∫
M1

(T1χD)
q(x)dµ1(x))

1/q

(
∫
M2

(T2χD)p(x)dµ2(x))1/p
. (3.18)

Theorem 3.19. Let Cn be defined by (3.18) and let f be non-negative and decreasing.
(i) Let 0 < p ≤ 1 < q <∞. Then the inequality(∫

M1

(T1f)
q(x)dµ1(x)

)1/q
≤ C

(∫
M2

(T2f)
p(x)dµ2(x)

)1/p
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holds with C > 0 independent of f if and only if Cn <∞.
(ii) Let 0 < max(1, p) ≤ q <∞ and T1 = Id (identity operator). Then the inequality(∫ ∞

0

f q(x)dµ1(x)
)1/q

≤ C
(∫

M2

(T2f)
p(x)dµ2(x)

)1/p
holds with C > 0 independent of f if and only if Cn <∞.
(iii) Let 0 < p ≤ min(1, q) <∞ and T2 = Id. Then the inequality(∫

M1

(T1f)
q(x)dµ1(x)

)1/q
≤ C

(∫ ∞

0

f p(x)dµ2(x)
)1/p

holds with C > 0 independent of f if and only if Cn <∞.
(iv) Let 0 < p ≤ q <∞ and T1 = T2 = Id. Then the inequality(∫ ∞

0

f q(x)dµ1(x)
)1/q

≤ C
(∫ ∞

0

f p(x)dµ2(x)
)1/p

holds with C > 0 independent of f if and only if Cn <∞.
(v) In all cases, C = Cn is the sharp constant.

3.7 Some sharp inequalities for multidimensional integral operators with
homogeneous kernel

We consider the inequality(∫
Rn

|Kf(x)|p dx
) 1

p

≤ Ck,p

(∫
Rn

|f(x)|pdx
) 1

p

, 1 ≤ p ≤ ∞, (3.19)

for multidimensional integral operators

Kf(x) :=

∫
Rn

k(x, y)f(y) dy (3.20)

with a kernel k(x, y).

We assume the following:
10. the kernel k(x, y) is homogeneous of degree −n, i.e.

k(tx, ty) = t−nk(x, y), t > 0, x, y ∈ Rn, (3.21)

20. it is invariant with respect to rotations, i.e.

k[ω(x), ω(y)] = k(x, y), x, y ∈ Rn (3.22)

for all rotation ω(x) in Rn. Let

κp =

∫
Rn

|k(σ, y)| dy
|y|

n
p

, σ ∈ Sn−1, (3.23)
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where Sn−1 is the unit sphere in Rn. In the sequel

|Sn−1| = 2π
n
2

Γ
(
n
2

)
denotes its surface measure.

The following result was proved in 2015 by D.Lukkassen, L.E.Persson, S.Samko and P.Wall:

Theorem 3.20. Let 1 ≤ p ≤ ∞ and κp be defined by (3.23). Moreover, let the kernel k(x, y)
satisfy the assumptions (3.21)-(3.22). If

κp <∞,

then the inequality (3.19) (with Kf(x) defined by (3.20)) holds withC(k, p) = κp. If k(x, y) ≥ 0,
then the condition κp <∞ is also necessary for (3.19) to hold and κp is the sharp constant.

The following multidimensional Hilbert type inequality is obtained from Theorem 3.20 by
just calculating the integral in (3.23).

Example 3.21. (Hilbert type inequality) Let λ > 0, α > 0 and 1 ≤ p <∞. Then

∫
Rn

∣∣∣∣∣∣|x|β+λα−n

∫
Rn

f(y) dy

|y|β (|x|λ + |y|λ)α

∣∣∣∣∣∣
p

dx ≤ κp,β

∫
Rn

|f(x)|pdx

holds if and only if β < n
p′

and αλ > n
p′
− β and

κp,β =

∫
Rn

|y|−β−−n
p dy

(1 + |y|λ)α
=

|Sn−1|
λ

∞∫
0

ϱ
1
λ

(
n
p′−β

)
−1

(1 + ϱ)α
=

|Sn−1|
λ

B

(
1

λ

(
n

p′
− β

)
, α− 1

λ

(
n

p′
− β

))

is the sharp constant.

Our next interest is the best constant in the following multidimensional Hardy inequalities
with power weights:

∥∥∥∥∥∥∥|x|α−n

∫
|y|<|x|

f(y) dy

|y|α

∥∥∥∥∥∥∥
Lp(Rn)

≤ C1(p, α)∥f∥Lp(Rn), 1 ≤ p <∞, α <
n

p′
, (3.24)

∥∥∥∥∥∥∥|x|β−n

∫
|y|>|x|

f(y) dy

|y|β

∥∥∥∥∥∥∥
Lp(Rn)

≤ C2(p, β)∥f∥Lp(Rn), 1 ≤ p <∞, β >
n

p′
. (3.25)
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The best constant for (3.24) was calculated before only in the non-weighted case α = 0,
where it was shown that

C1(p, 0) = |B(0, 1)|p′,

where |B(0, 1)| = |Sn−1|
n

= 2π
n
2

nΓ(n
2 )

is the volume of the unit ball. The weighted case with general

weights was studied before, but by using Theorem 3.20 the sharp constant can never be obtained.
However, by applying our result we obtain the following:

Proposition 3.22. The sharp constants for (3.24) and (3.25) are given by

C1(p, α) =
|Sn−1|
n
p′
− α

, resp. C2(p, β) =
|Sn−1|
β − n

p′
.

Remark 3.23. The result in Theorem 3.20 can be used to obtain most of the results which
in the literature are called Hardy-Hilbert-type inequalities both in one- and multi-dimensional
cases.

3.8 Some new scales of conditions to characterize the modern forms of
Hardy’s inequality

We have recently proved that the conditions AMB < ∞ and APS < ∞ in Theorem 2.1 can be
replaced by infinite many equivalent conditions even by scales of conditions as presented below.
We refer to a review article by A.Kufner, L.E.Persson and N.Samko from 2013, and references
therein.

Theorem 3.24. Let 1 < p ≤ q < ∞ , 0 < s < ∞, and define, for the weight functions u,

v, the functions U and V by (3.17). Then (2.1) can be characterized by any of the conditions
Ai(s) <∞, where Ai(s), i = 1, 2, 3, 4 are defined by:

A1(s) := sup
0<x<b

(∫ b

x

u(t)V
q( 1

p′−s)
(t)dt

)1/q

V s(x);

A2(s) := sup
0<x<b

(∫ x

0

v1−p′(t)Up′( 1
q
−s)(t)dt

)1/p′

U s(x);

A3(s) := sup
0<x<b

(∫ x

0

u(t)V
q( 1

p′+s)
(t)dt

)1/q

V −s(x);

A4(s) := sup
0<x<b

(∫ b

x

v1−p′(t)Up′( 1
q
+s)(t)dt

)1/p′

U−s(x).
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Remark 3.25. Note that

AMB = A1

(
1

p′

)
, APS = A3

(
1

p

)
.

Also all other known alternative conditions are just points on these cases.

The main result for the case 1 < q < p < ∞ (Theorem 3.26) is taken from a paper 2007 by
L.E. Persson, V. Stepanov and P. Wall. For simplicity we here only consider the case b = ∞.

Let 1/r := 1/q−1/p.We now introduce the following scales of constants related to previous
constants and their dual ones:

For s > 0 we define the following functionals:

B
(1)
MR(s) :=

(∫ ∞

0

[∫ ∞

t

uV q(1/p′−s)

]r/p
V q(1/p′−s)+rs(t)u(t) dt

)1/r

,

B
(1)
PS(s) :=

(∫ ∞

0

[∫ t

0

uV q(1/p′+s)

]r/p
u(t)V q(1/p′+s)−sr(t) dt

)1/r

,

B
(2)
MR(s) :=

(∫ ∞

0

[∫ t

0

Up′(1/q−s)dV

]r/p′
U rs−1(t)u(t) dt

)1/r

,

B
(2)
PS(s) :=

(∫ ∞

0

[∫ ∞

t

U q(1/p′+s)dV

]r/p
U q(1/p′+s)−rs(t) dV (t)

)1/r

.

The main theorem in this case reads:

Theorem 3.26. a) Let 0 < q < p < ∞, 1 < p < ∞ and q ̸= 1. Then the Hardy inequality
(2.4) with b = ∞ holds for some finite constant C > 0 if and only if any of the constants
B

(1)
MR(s) or B(1)

PS(s) is finite for some s > 0. Moreover, for the best constant C in (2.4) we have

C ≈ B
(1)
MR(s) ≈ B

(1)
PS(s).

b) Let 1 < q < p < ∞. Then the Hardy inequality (2.4) with b = ∞ holds for some finite
constant C > 0 if and only if any of the constants B(2)

MR(s) or B(2)
PS(s) is finite for some s > 0.

Moreover, for the best constant C in (2.4) we have

C ≈ B
(2)
MR(s) ≈ B

(2)
PS(s).

Remark 3.27. Note that Theorem 3.26 is a generalization of the original results of Maz’ya-
Rozin in 70:th and Persson-Stepanov from 2002 since B(1)

MR(
1
p′
) = BMR and B(1)

PS(
1
p
) = BPS.
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3.9 More on multidimensional Hardy-type inequalities
In this Section by a weight we mean a non-negative, measurable and locally integrable function
on Rn

+, n ∈ Z. The main information in this section can be found in recent papers by L.E.Persson
and his students A.Wedestig (PhD 2004) and E.Ushakova (PhD 2006). We refer to the book
[C] and the review article by L.E.Persson and N.Samko from 2011, where also complementary
information can be found.

Some two-dimensional results
We first recall that the following two-dimensional inequality, which was proved by E.T.

Sawyer in 1985:

Theorem 3.28. Let 1 < p ≤ q <∞ and u and v be weights on R2
+. Then the inequality ∞∫

0

∞∫
0

 x1∫
0

x2∫
0

f(t1, t2)dt1dt2

q

u(x1, x2) dx1dx2


1
q

≤

≤ C

 ∞∫
0

∞∫
0

f p(x1, x2)v(x1, x2) dx1dx2

 1
p

(3.26)

holds for all non-negative and measurable functions on R2
+, if and only if the following three

conditions are satisfied:

sup
(y1,y2)∈R2

+

 ∞∫
y1

∞∫
y2

u(x1, x2)dx1dx2

 1
q
 y1∫

0

y2∫
0

v(x1, x2)
1−p′dx1dx2

 1
p′

<∞, (3.27)

sup
(y1,y2)∈R2

+

(
y1∫
0

y2∫
0

(
x1∫
0

x2∫
0

v(t1, t2)
1−p′dt1dt2

)q

u(x1, x2)dx1dx2

) 1
q

(
y1∫
0

y2∫
0

v(x1, x2)1−p′dx1dx2

) 1
p

<∞, (3.28)

sup
(y1,y2)∈R2

+

∞∫
y1

∞∫
y2

(
∞∫
x1

∞∫
x2

u(t1, t2)dt1dt2

)p′

v(x1, x2)
1−p′dx1dx2

 1
q

(
∞∫
y1

∞∫
y2

u(x1, x2)dx1dx2

) 1
q′

<∞. (3.29)

All three conditions (3.27)-(3.29) are independent and no one may be removed.

Remark 3.29. Note that (3.27) corresponds to the Muckenhoupt-Bradley condition (2.2),
(3.33) corresponds to the condition (2.3) and (3.29) corresponds to the dual condition of (2.3).
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According to Theorem 3.24 and Remark 3.25 all these conditions are equivalent in the one-
dimensional case but it is not so in the two-dimensional case.

One of the recent progresses related to Theorem 3.28 was obtained in A. Wedestig’s PhD
thesis from 2004. It was shown there that in the case where the weight v(x1, x2) on the right-
hand side of (3.26) has the form of the product v1(x1)v2(x2), then only one condition appears
(but this condition is not unique and can in fact be given in infinite many forms). Namely, the
following statement holds:

Theorem 3.30. Let 1 < p ≤ q < ∞ and let u be a weight on R2
+ and v1 and v2 be weights

on R+. Then the inequality ∞∫
0

∞∫
0

 x1∫
0

x2∫
0

f(t1, t2)dt1dt2

q

u(x1, x2) dx1dx2


1
q

≤

≤ C

 ∞∫
0

∞∫
0

fp(x1, x2)v1(x1)v2(x2) dx1dx2

 1
p

(3.30)

holds for all non-negative and measurable functions f on R2
+, if and only if

AW (s1, s2) := sup
(t1,t2)∈R2

+

(V1(t1))
s1−1

p (V2(t2))
s2−1

p ×

 ∞∫
t1

∞∫
t2

u(x1, x2)(V1(x1))
q
p−s1

p (V2(x2))
q
p−s2

p dx1dx2

 1
q

<∞

holds for some s1, s2 ∈ (1, p) (and, hence, for all s1, s2 ∈ (1, p))), where Vi(ti) :=
ti∫
0

vi(ξ)
1−p′dξ, i = 1, 2.Moreover, for the best constantC in (3.30) it yields thatC ≈ AW (s1, s2).

A limit result of Theorem 3.30 is the following two-dimensional Pólya-Knopp type inequal-
ity, which was also proved in the same PhD thesis:

Theorem 3.31. Let 0 < p ≤ q <∞ and u and v be weights on R2
+. Then the inequality ∞∫

0

∞∫
0

exp
 1

x1x2

x1∫
0

x2∫
0

log f(t1, t2)dt1dt2

q

u(x1, x2)dx1dx2


1
q

≤ C

 ∞∫
0

∞∫
0

f p(x1, x2)v(x1, x2)dx1dx2

 1
p

(3.31)
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holds for all non-negative and measurable functions f on R2
+ if and only if

sup
y1>0,y2>0

y
s1−1

p

1 y
s2−1

p

2

 ∞∫
y1

∞∫
y2

x
− s1q

p

1 x
− s2q

p

2 w(x1, x2)dx1dx2

 1
q

<∞,

holds for some s1 > 1, s2 > 1 (and thus for all s1 > 1, s2 > 1 ) and where

w(x1, x2) := u(x1, x2)

exp
 1

x1x2

x1∫
0

x2∫
0

log
1

v(t1, t2)
dt1dt2


q
p

.

Remark 3.32. Observe that this limit inequality indeed holds for all weights (and not only
for product weights on the right hand side) and also for 0 < p ≤ 1. The reason for this comes
from the useful technical details when we perform the limit procedure, e.g. that we first do a
substitution so we only need to use the case when the weight in the right hand side in (3.30) is
equal to 1. Also here we have a good estimate of the best constant C in (3.31).

Remark 3.33. The corresponding statements as those in Theorems 3.30 and 3.31 hold also
for any dimension n. However, in our next Subsection we will present some results mainly from
the PhD thesis of E.Ushakova from 2006, where also the case with product weights on the left
hand side was considered. The proofs there are completely different from those before and the
obtained characterizations are different.

Some more multidimensional results
In the sequel we assume that f is a non-negative and measurable function.
Let x = (x1, ..., xn), t = (t1, ..., tn) ∈ Rn

+, n ∈ Z+ and 1 < p ≤ q < ∞. We consider the
n− dimensional Hardy type operator

(Hnf)(x) =

x1∫
0

· · ·
xn∫
0

f(t)dt

and study the inequality∫
Rn
+

(Hnf)
q(x)u(x)dx


1
q

≤ C

∫
Rn
+

f p(x)v(x)dx


1
p

. (3.32)

Sometimes we assume that one of the involved weight functions v and u is of product type,
i.e. that

u(x) = u1(x1)u2(x2) · · · un(xn), (LP )
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or
v(x) = v1(x1)v2(x2) · · · vn(xn). (RP )

Moreover,

U(t) = U(t1, · · ·, tn) :=
∫ ∞

t1

· · ·
∫ ∞

tn

u(x)dx

and

V (t) = V (t1, · · ·, tn) :=
∫ t1

0

· · ·
∫ tn

0

(v(x))1−p′dx.

The next Statement gives a necessary condition for (3.32) to hold with help of some n−
dimensional versions of the constants AMB and APS in Theorem 2.1.

Theorem 3.34. Let 1 < p ≤ q < ∞ and assume that (3.32) holds for all non-negative and
measurable functions f on Rn

+ with a finite constant C, which is independent on f . Then

A
(n)
MB := sup

ti>0
(U(t1, · · · , tn))1/q(V (t1, · · ·, tn))1/p′ <∞,

and

A
(n)
PS := sup

ti>o
(V (t1, · · · , tn))−1/p

(∫ ∞

t1

· · ·
∫ ∞

tn

u(x)V q(x)dx

)1/q

<∞.

Our next result is that in the case of product weights on the right hand side we get a complete
characterization of (3.32).

Theorem 3.35. Let 1 < p ≤ q < ∞ and the weight v be of product type (RP ). Then (3.32)
holds for all non-negative and measurable functions f on Rn

+ with some finite constant C, which
is independent on f, if and only if A(n)

MB < ∞ or A(n)
PS < ∞. Moreover, C ≈ A

(n)
MB ≈ A

(n)
PS with

constants of equivalence only depending on the parameters p and q and the dimension n.

Note that here it yields that V (t1, · · ·, tn) = V1(x1)V2(x2) · · · Vn(xn), where Vi(ti) :=∫ ti
0
(vi(xi))

1−p′dxi, i = 1, · · ·, n. For a proof we refer to the mentioned PhD thesis (see also the
book [C]).

We can also consider the case when u is of product type (LP ) and where we need the dual
of the constants A(n)

MB and A(n)
PS :

A
∗(n)
MB := sup

ti>0

(
U1(t1) · · · Un(tn)

)1/q(
V (t1, · · · , tn)

)1/p′
<∞,

and
A

∗(n)
PS := sup

ti>0

(
U1(t1) · · ·

· · ·Un(tn)
)−1/q′

(∫ ∞

t1

· · ·
∫ ∞

tn

v1−p′(x)
(
U1(x1) · · ·Un(xn)

)p′
dx

)1/p′

.
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Theorem 3.36. Let 1 < p ≤ q < ∞ and the weight u be of product type (LP ). Then (3.32)
holds for all non-negative and measurable functions f on Rn

+ with some finite constant C, which
is independent of f , if and only if A

∗(n)
M <∞ or A

∗(n)
PS <∞. Moreover, C ≈ A

∗(n)
M ≈ A

∗(n)
PS

with constants of equivalence only depending on the parameters p and q and the dimension n.

Also the case 1 < q < p < ∞ can be considered and the following multidimensional
versions of the usual Mazya-Rosin and Persson-Stepanov constants in one dimension can be
defined:

B
(n)
MR :=

(∫
Rn
+

(
U(t)

)r/q(
V1(t1)

)r/q′ · · · (Vn(tn))r/q′dV1(t1) · · · dVn(tn))1/r

,

B
(n)
PS :=

(∫
Rn
+

(∫ t1

0

· · ·
∫ tn

0

u(x)(V1(x1) · · ·Vn(xn))qdx
)r/q

×

×
(
V1(t1) · · ·Vn(tn)

)−r/q

dV1(t1) · · · dVn(tn)
)1/r

.

Here, as usual, 1/r = 1/q−1/p. For technical reasons we also need the following additional
condition:

V1(∞) = · · · = Vn(∞) = ∞.

Theorem 3.37. Let 1 < q < p < ∞ and 1/r = 1/q − 1/p. Assume that the weight
v is of product type (RP ). Then (3.32) holds for all non-negative and measurable functions f
on Rn

+ with some finite constant C, which is independent on f , if and only if B(n)
MR < ∞, or

B
(n)
PS <∞. Moreover, C ≈ B

(n)
MR ≈ B

(n)
PS with constants of equivalence depending only on p and

q and the dimension n.

Remark 3.38. Also for 1 < p < q < ∞ the case when the left hand side is of product
type can be considered and a theorem similar to Theorem 3.37 can be proved by using some dual
forms of the constants B(n)

MR and B(n)
PS .

We finalize this Section by shortly discussing some limit multidimensional (Pólya-Knopp
type) inequalities. Consider the inequality(∫

Rn
+

(
Gnf

)q
(x)u(x)dx

)1/q

≤ C

(∫
Rn
+

f p(x)v(x)dx

)1/p

, (3.33)

where the n− dimensional geometric mean operator Gn is defined by

(Gnf
)
(x) = exp

(
1

x1 · · · xn

∫ x1

0

· · ·
∫ xn

0

lnf(x1, . . . , xn) dx1 . . . dxn

)
.
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We denote

A
(n)
G := sup

ti>0
(t1 · · · tn)−1/p

(∫ t1

0

· · ·
∫ tn

0

w(x)dx

)1/q

with
w(x) :=

((
Gnv

)
(x)
)−q/p

u(x).

Theorem 3.39. Let 0 < p ≤ q < ∞. Then (3.33) holds for all non-negative and measurable
functions on Rn

+ if and only if A(n)
G < ∞. Moreover, C ≈ A

(n)
G with constants of equivalence

depending only on the parameters p and q and the dimension n.

Remark 3.40. Our proof shows that Theorem 3.39 may be regarded as a natural limit case
of Theorem 3.35 characterized by the condition A

(n)
PS < ∞. For n = 2 we get another

characterization than that in Theorem 3.31. Note that also in this case the limit result holds in a
wider range of parameters and for general weights.

Remark 3.41. A similar result can be derived also for the case 0 < q < p < ∞ now as a
limiting case of Theorem 3.37.
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