High Throughput Connectomics

Nir Shavit MIT, Tel-Aviv University, and Neural Magic Inc

Connectome = Brain Graph

Fly: 100 thousand neurons (nodes) x 100 synapses (per node) = 10 Million edges

Mouse Cortex: 4 million neurons (nodes) x 10 thousand synapses (per node) = 40 Billion edges

Human Cortex: 30 billion neurons (nodes) x 10 thousand synapses (per node) = 300 Trillion edges

Implications for Machine Learning

Common wisdom: Deep learning is compute imtensive like brain – need special accelerator hardware like GPUs or TPUs ...

A Fully connected neural network

<u>Our cortex is very sparse</u>: ...understanding its structure will be key to efficient ML as we move forward to mimicking brains...

Past: Full EM based connectome of nematode C. Elegans 302 Neurons 7500 synapses in 10 years (Brenner et al in 1986)

Today: single multibeam microscope will image 1 cubic mm in a matter of months

The Bottleneck: Reconstruction of the connectome from the EM images

Try to do what neurobiologists do...

- First: Skeletonization
- Then: Expansion of objects

(Unlike existing automated pipelines that create expanded objects and then agglomerate them)

Skeletonization

- Human:
 - Neurobiologist skeletonizes objects perfectly
 - By picking one seed per object per slice
- Automatic:
 - To Date: Primarily by shrinking a dense segmentation
 - New Approach: learn to pick one seed per object based on EM and skeletonization of prior slices

Galileo's Telescope and the future of Connectomics

