Climate and the Nuclear Future

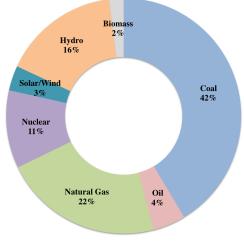
Ujjayant Chakravorty¹ Carolyn Fischer² Marie-Helene Hubert³

¹Department of Economics, Tufts University and RFF ²RFF and FEEM

³Department of Economics, University of Rennes 1

October, 2015 College de France

Ujjayant Chakravorty, Carolyn Fischer, Marie-Helene Hubert


• Discuss the Role of Nuclear Power Today

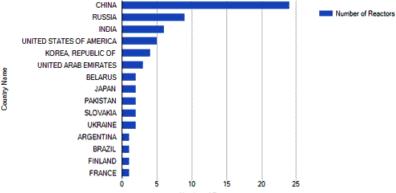
• Preliminary Output from a Modeling Exercise

• Provide Perspective on Nuclear in the Long Run

Ujjayant Chakravorty, Carolyn Fischer , Marie-Helene Hubert

World Electricity Output by Fuel in 2013

Total Production: 23,307 TWh (IEA 2015).


Ujjayant Chakravorty, Carolyn Fischer , Marie-Helene Hubert

Nuclear Capacity by Country, June 2015

	In o	peration	Under co	r construction		
Country	Number	Electr. net output MW	Number	Electr. net output MW		
Argentina	3	1,627	1	25		
Armenia	1	375	-	-		
Belarus	-	-	2	2.218		
Belgium	7	5,921	-			
Brazil	2	1,884	1	1,245		
Bulgaria	2	1,926	-	-		
Canada	19	13,500	-	-		
China	27	23,025	24	23,738		
Czech Republic	6	3,904	-	-		
Finland	4	2,752	1	1,600		
France	58	63,130	1	1,630		
Germany	9	12,074	-			
Hungary	4	1,889	-			
India	21	5,308	6	3,907		
Iran	1	915	-	-		
Japan	43	40,290	2	2.650		
Korea, Republic	24	21,667	4	5,420		
Mexico	2	1,330	-	-		
Netherlands	1	482	-			
Pakistan	3	690	2	630		
Romania	2	1,300	-			
Russian Federation	34	24,654	9	7,371		
Slovakian Republic	4	1,814	2	880		
Slovenia	1	688	-			
South Africa	2	1,860	-			
Spain	7	7,121	-			
Sweden	10	9,651	-	-		
Switzerland	5	3,333	-			
Taiwan, China	6	5,032	2	2,600		
Ukraine	15	13,107	2	1,900		
United Arab Emirates	-	-	3	4,035		
United Kingdom	16	9,373	-	-		
USA	99	98,639	5	5,633		
Total	438	379,261	67	65,482		

Ujjayant Chakravorty, Carolyn Fischer , Marie-Helene Hubert

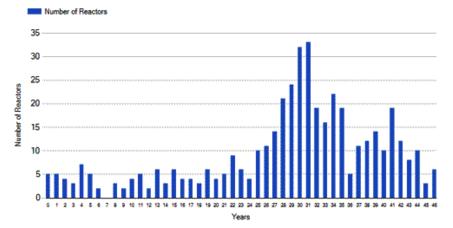
Number of Reactors Under Construction, June 2015

Total Number of Reactors: 67

Number of Reactors

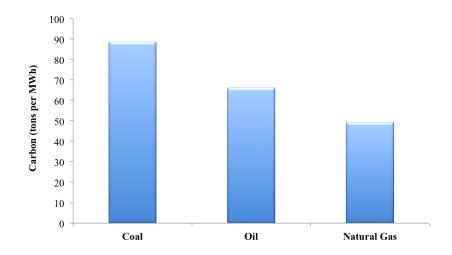
Ujjayant Chakravorty, Carolyn Fischer , Marie-Helene Hubert

Nuclear Power 101


- Current Installed Capacity = 380 GWe
- Total Power Generated from Nuclear in 2014 = 2410 TWh
- Output per GWe of Capacity = 6.34 TWh (Max: 8.76 TWh)
- IEA Projections = 767 GWe by 2040
- Average Annual Growth of Nuclear Capacity = 14.9 GWe
- This translates into an annual growth of power supply from nuclear at 95.3 TWh
- Allocated according to share of plant construction by region
- China: 50%, ROW: 35% and North America: 15%

- For China, this means annual growth of 47.6 TWh
- In 2014, Chinese nuclear output was 124 TWh

Ujjayant Chakravorty, Carolyn Fischer , Marie-Helene Hubert Climate and the Nuclear Future


Reactors by Age, June 2015

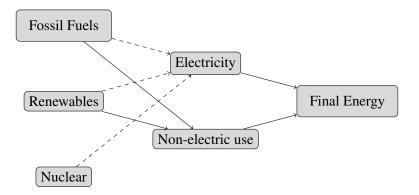
Total Number of Reactors: 438

Ujjayant Chakravorty, Carolyn Fischer , Marie-Helene Hubert

Carbon Content of Fossil Fuels

Objectives of the Paper

• Compare Planned Capacity vs a Moratorium on Nuclear expansion


• Effect on Coal Use, Carbon Emissions and Leakage

• Focus on Chinese Energy Use

Methodology

- Empirically calibrated dynamic partial equilibrium model of energy markets from 2011 to 2030
- Regions
- China
- North America (US, Canada and Mexico)
- Rest Of the World (ROW)
- Energy inputs
 - Coal, oil, natural gas
 - Renewable energy aggregated
 - Nuclear power
- Energy-consuming sectors
 - Transport, industrial, residential/commercial

Schematic of the model

Ujjayant Chakravorty, Carolyn Fischer, Marie-Helene Hubert

Energy Supply

- Energy input production
 - Fossil fuels have upward-sloping curves in each region: Graph

$$C_{ir}^t(s_{ir}^t) = \chi_1 + \chi_2 \{\frac{\Sigma_{\theta=0}^t s_{ir}^\theta}{\bar{S}}\}^{\chi_3}$$

- Coal is cheap and abundant
- Transportation costs equal baseline price differentials
- Final energy production
 - Nested CES production function

Extraction cost of fossil fuels

	North America	China	ROW
Coal (US\$/ton)	87	105	96
Oil (US\$/barrel)	50	52	30
Gas (\$/MMBTu)	2.50	3.50	3

IEA (2014) and BP Statistics (2013);

MMBTu: Million British Thermal Units

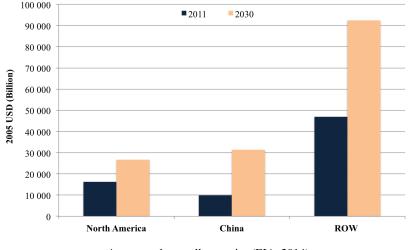
Ujjayant Chakravorty, Carolyn Fischer , Marie-Helene Hubert

Cost of Supplying Electricity by Region/Fuel

Cost in US\$/MWh					
	Coal	Gas	Nuclear	Renewables	
North America	68	76	72	70	
China	29	35	50	30	
ROW	32	54	60	52	

5% discount rate; IEA (2012) and Chakravorty et al. (2012)

Ujjayant Chakravorty, Carolyn Fischer , Marie-Helene Hubert


• Sectoral demand is a function of regional GDP and the price of energy

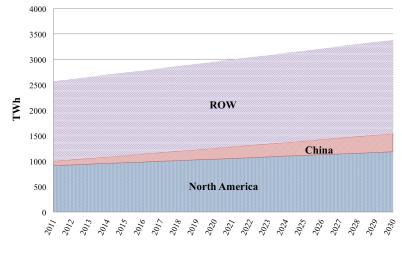
$$D_{jr} = A_{jr} P_{jr}^{\alpha_{jr}} Y_r^{\beta_{jr}}$$

• where *j* represents sector and *r* the region

Ujjayant Chakravorty, Carolyn Fischer , Marie-Helene Hubert Climate and the Nuclear Future

Annual Income Data by Region

Aggregated over all countries (EIA, 2014)


Ujjayant Chakravorty, Carolyn Fischer , Marie-Helene Hubert

Scenarios

- Moratorium on Nuclear Capacity: Assume zero growth in nuclear power from 2011 to 2030 at 380 GWe
- Planned Nuclear Growth: 767 GWe by 2040 (IEA, 2014)

Ujjayant Chakravorty, Carolyn Fischer , Marie-Helene Hubert Climate and the Nuclear Future

Planned Nuclear Growth

IEA (2014)

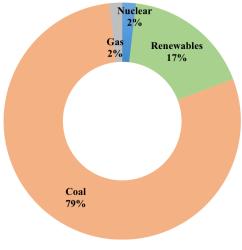
Planned Nuclear: Regional Targets

	Nuclear Generation (TWh)			
	2011	Planned Nuclear, 2040		
North America	911	1,183		
China	86	1,029		
ROW	1,571	2,205		
World	2,568	4,417		

Calculations based on IEA (2014) projections.

Ujjayant Chakravorty, Carolyn Fischer , Marie-Helene Hubert

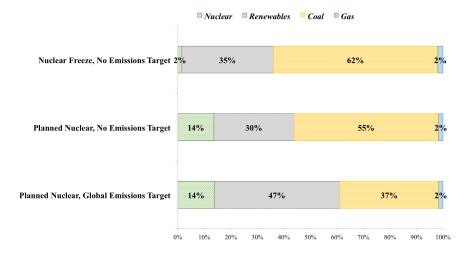
Carbon Taxes and Nuclear Growth


- We impose an annual carbon emissions target
- How did we define this target?
 - Carbon tax with nuclear growth: a tax of \$50 per ton (constant 2005) of *CO*₂ is imposed in each region
 - The annual amount of global carbon emissions from this scenario is defined as the *Global Emissions Target*

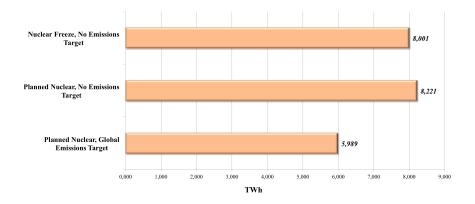
Carbon Taxes and Nuclear Growth

Annual Carbon Emissions in Billion Tons of CO_2 in 2030				
Planned Nuclea without Carbon T		Planned Nuclear with Carbon Tax	Emissions Reduction	
North America	6,726	5,819	-15%	
China	12,099	9,668	-22%	
ROW	20,968	17,054	-20%	

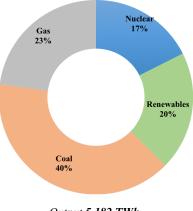
Ujjayant Chakravorty, Carolyn Fischer , Marie-Helene Hubert


Electricity Output by Fuel (2011): China

Output 4,534 TWh


Ujjayant Chakravorty, Carolyn Fischer , Marie-Helene Hubert

Electricity Output by Fuel (2030): China

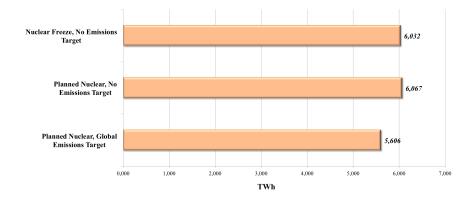

Ujjayant Chakravorty, Carolyn Fischer , Marie-Helene Hubert

Electricity Output in TWh (2030): China

Ujjayant Chakravorty, Carolyn Fischer , Marie-Helene Hubert

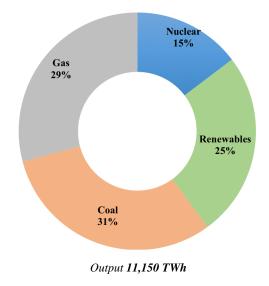
Electricity Output by Fuel (2011): North America

Output 5,182 TWh


Ujjayant Chakravorty, Carolyn Fischer , Marie-Helene Hubert

Electricity Output by Fuel (2030): North America

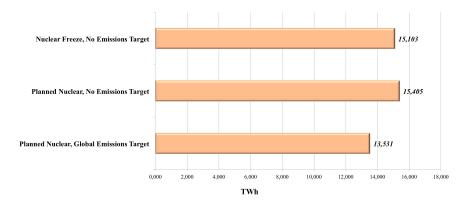
Nuclear Renewables Gas					
Nuclear Freeze, No Emissions Target	15%	33%	27%		25%
Planned Nuclear, No Emissions Target	18%	32%	26%		24%
Planned Nuclear, Global Emissions Target	18%	48%		12%	22%
0%	ő 10%	20% 30% 40%	50% 60%	70% 80%	90% 100


Ujjayant Chakravorty, Carolyn Fischer , Marie-Helene Hubert

Electricity Output in TWh (2030): North America

Ujjayant Chakravorty, Carolyn Fischer , Marie-Helene Hubert

Electricity Output by Fuel (2011): ROW


Ujjayant Chakravorty, Carolyn Fischer , Marie-Helene Hubert

Electricity Output by Fuel (2030): ROW

Ujjayant Chakravorty, Carolyn Fischer, Marie-Helene Hubert

Electricity Output in TWh (2030): ROW

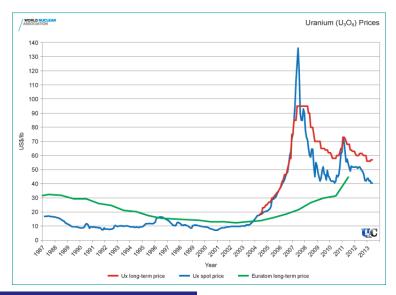
Ujjayant Chakravorty, Carolyn Fischer , Marie-Helene Hubert

- In the scenario, *Global Emissions Target* the carbon tax is USD 50 dollars per ton of *CO*₂
- Global carbon emissions decrease by 18% compared to the scenario without carbon tax

Ujjayant Chakravorty, Carolyn Fischer , Marie-Helene Hubert Climate and the Nuclear Future

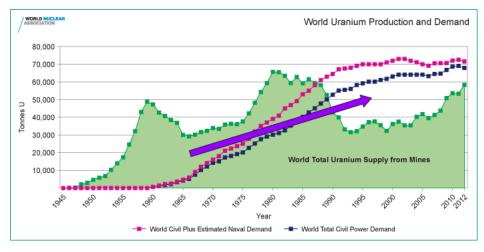
Main Results

- Big reductions in Coal use but only with Carbon Tax
- Nuclear Alone Does not Deliver
- Renewables Occupy Large Share
- Gas Share does not Budge, at least not in China
- Big Impacts are in China and ROW, Not in North America



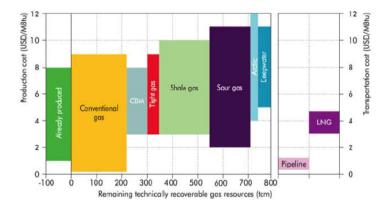
- Need Cost Estimates of Tax and Pro-Nuclear Policies
- Are Large Shares of Renewables Realistic? Which Renewable? Some have Problems
- Need to Disaggregate in Model

Further Extensions


- Break down ROW especially EU; Russia and India, both have aggressive nuclear programs
- How many Old Plants will be replaced?
- Learning in Nuclear Design and Efficiency relative to Learning in Other Technologies
- Our previous estimates suggest The Cost of Meeting Kyoto Type targets was cut in half by nuclear, may not hold today

Trends in Uranium Prices

Ujjayant Chakravorty, Carolyn Fischer , Marie-Helene Hubert


Uranium Supply and Demand

Ujjayant Chakravorty, Carolyn Fischer , Marie-Helene Hubert

- Nuclear Power will continue as a Major Fuel for Electricity
- But It may not be the Panacea for solving the World's Clean Energy Problem

Long Run Supply Curve for Natural Gas

Back