
Introduction GAUVAL Results SCC Uncertainty Paris & COPs Conclusions Cali Un Bon Tail IRA App

Analytic Integrated Assessment and Uncertainty

Christian Traeger

ARE, UC Berkeley

College de France, 10/29/15

I GAUVAL: An Analytic IAM (Integrated Assessment Model)

II Optimal Carbon Tax: Quantification in Closed Form

III Uncertainty: A Teaser

IV Smart Cap, COP, and “Optimal Compromise”
(Cooling the Climate Debate)

1 / 14



Introduction GAUVAL Results SCC Uncertainty Paris & COPs Conclusions Cali Un Bon Tail IRA App

Contributions

GAUVAL: An integrated assessment model (IAM) with
closed-form solution for opt carbon tax and welfare loss

(At least) As realistic as the numeric “DICE” model

Analytic insights into quantitative assessment

Avoids curse of dimensionality in numeric stochastic IAMs

GAUVAL explains

detailed discounting sensitivities (certain and uncertain)

relation between shocks and epistemological uncertainty

why the marginal damage curve is mostly flat

→֒ Std. Cap not so good ⇒ use “smart cap” instead

The Smart Cap: A better emission control mechanism

Implications for the COP negotiations

(Based on work with Larry Karp)
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What is an Integrated Assessment Model (IAM) ?
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Joint representation of climate system & economy

Integrates cause and effect of climate change

Matches stylized market and climatic observations
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Modeling Progress w.r.t. Literature

Closest are Golosov et. al (2014, E), Gerlagh & Liski (2012).

GAUVAL adds a full climate change model consisting of:

carbon cycle (also in Golosov, Gerlagh & Liski)

radiative forcing

ocean-atmosphere temperature dynamics

→֒ First analytic model with realistic temperature dynamics

GAUVAL adds general disentangled risk attitude

unit elasticity only for intertemporal substitutability
(good approximation)

risk aversion calibrated to long-run risk literature
(in macro and finance, clear evidence that larger than IES)

→֒ Better calibrate of discount rate and risk premia
(numeric IAM applications: Crost & Traeger (2014), Jensen & Traeger (2014))
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Results

First Theory Result: Characterization of a class of IAMs
with closed-form solution (see paper).

Calibration:

Damage function close to DICE
(initially slightly less convex, then more convex)

→ damage parameter ξ0
(semi-elasticity of output to exp temperature increase)

Carbon cycle taken from DICE:

→ Carbon transition matrix Φ

Temperature dynamics calibrated to Magicc 6.0:

→ “Heat” transition matrix σ and, in particular:
speed of atmospheric temperature response to forcing σforc

Time preference, output, and consumption rate are
based on 2015 IMF forecast
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Temperature Dynamics

Calibration of Atmosphere-Ocean Temperature Dynamics

Match Magicc 6.0 for IPCC’s RCP scenarios,
Magicc6.0 emulates AOGCMS (“big models”) used in Assessment

Reports by the Intergovernmental Panel on Climate Change IPCC
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The Social Cost of Carbon: Formula

The optimal carbon tax:

SCCt =
βYt

Mpre
ξ0
︸︷︷︸

damages

[
(1− βσ)−1

]

1,1
σforc

︸ ︷︷ ︸

climate dynamics

[
(1− βΦ)−1

]

1,1
︸ ︷︷ ︸

carbon dynamics

discount factor β

production Yt
preindustrial carbon Mpre

damage parameter ξ0 (semi-elasticity of net production)

temperature dynamics σ and, in particular:

speed of atmospheric temperature response to forcing σforc

carbon dynamics Φ (transition matrix)
[

(1− βΦ)−1
]

1,1
interpretation by Neumann series expansion:

∞ sum over β discounted emission persistence & return to atmosphere
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The Social Cost of Carbon: Quantitative

Quantifying the optimal carbon tax:

SCCt =
βYt

Mpre
ξ0

[
(1− βσ)−1

]

1,1
σforc

[
(1− βΦ)−1

]

1,1
= 57

$

tC
,

Quantitative: The optimal carbon tax in 2015 in USD

is 57$/ton carbon or 16 $/tCO2

Increases with output (“policy ramp”)

Proportion to damage (semi-) elasticity ξ0

temperature response delay: cuts tax by 60%

temperature persistence: increases tax by 40%

→֒ Together: temperature dynamics cut tax by 30%

Carbon persistence: Increases tax by factor 3.7
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Discounting: A Sensitivity Result

Second Theory Result:

A carbon cycle whose transition matrix Φ satisfies mass

conservation of carbon implies a factor (1− β)−1 ≈ 1
ρ
in the

closed form solution of the optimal carbon tax.
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Discounting: A Sensitivity Result

Second Theory Result:

A carbon cycle whose transition matrix Φ satisfies mass

conservation of carbon implies a factor (1− β)−1 ≈ 1
ρ
in the

closed form solution of the optimal carbon tax.

Recall Ramsey equation “r = ρ+ ηg”.

Countering wide-spread belief (e.g. Nordhaus 2007, JEL):

SCC is (very) sensitive to composition of cons. disc. rate r:

not sensitive to growth term, highly sensitive to p.r.t.p. ρ
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Discounting: A Sensitivity Result

Second Theory Result:

A carbon cycle whose transition matrix Φ satisfies mass

conservation of carbon implies a factor (1− β)−1 ≈ 1
ρ
in the

closed form solution of the optimal carbon tax.

Reduce pure time preference from ρ = 1.75% to ρ = 0.1%

Normative: Stern Review

Descriptive: Long-run risk model

Both: Disentangle individual and generational time pref

SCCt =
βYt

Mpre
ξ0

[
(1− βσ)−1

]

1,1
︸ ︷︷ ︸

✟✟1.4 2

σforc

︸ ︷︷ ︸

0.42

[
(1− βΦ)−1

]

1,1
︸ ︷︷ ︸

✟✟3.7 26

=✟✟57660
$

tC
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A Glimpse of Uncertainty

Summary/“Teaser”:

I analyze uncertainty governing carbon flows and temperature
response uncertainty

Better information over temperature response to emissions
(“climate sensitivity”) is much more valuable than learning
about carbon flows (“missing sink”)

I analyze and compare shocks, epistemological uncertainty, and
anticipated learning

Crucial role: uncertainty distribution’s cumulants (≈
moments) weighted by intertemporal risk aversion
( ≈ difference between Arrow Pratt risk aversion and

desire for intertemporal smoothing (Traeger (2015))

“Learning shocks” are similar to fully persistent shocks,
→֒ Learning model most sensitive to time preference
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To Paris: Flat Marginal Damages!

The SCCt =
βYt

Mpre
ξ0

[
(1− βσ)−1

]

1,1
σforc

[
(1− βΦ)−1

]

1,1

is independent of

the level of CO2 (& T , in present and future)

→֒ Flat marginal damage curve! (SCCt not function of Et or Mt)

Add technological and macroeconomic uncertainty:

→֒ Optimal policy keeps price fix, NOT quantity

Why flat marginal damages? Three effects balance each other

Falling marginal impact of CO2 on temperature T

Increasing marginal impact of T on production

Decreasing marginal impact of consumption on welfare
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To Paris: Instrument Choice & Consequences

COPs including Paris:

Countries negotiate quantity target

Re-negotiation periods long = involve major technological
and macroeconomic uncertainties

→֒ Negotiating a quantity target is very inefficient

How about negotiating a tax? Theory:

Static world:
Gentle slope of MD(Et) ≡ SCC(Et) << MB(Et)

MD =marginal damages & MB= marginal benefits from emissions

→֒ Tax quite efficient

However, climate change is a dynamic problem:
Technological progress shifts MB(Et) & MD(Et) curves

Slope of MD(Et) vs MB(Et) not the relevant measure of tax
vs quantity performance (Karp & Traeger 2015)

→֒ Tax/negotiating carbon price not great either /

12 / 14
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To Paris: The “Optimal Compromise” is a Smart Cap

Cooling Down the Climate Debate: The Smart Cap!

National implementation: See Karp & Traeger (2015)

Idea: Trade certificates whose quantity denomination is a
function of the certificate price

→֒ Efficient for any slope of MD curve

Practical implications for negotiations:

A compromise between tax and cap advocates
(and more efficient than either)

Uses existing cap and trade markets/institutions

Enables a compromise in negotiations

If abatement turns out cheaper: agree to do more

If abatement turns out expensive: agree to do less

→֒ Eases practical compromise
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Conclusions

GAUVAL

DICE-style realism in closed form

Decoding of optimal carbon tax contributions

explains & quantifies uncertainty contributions

Deterministic SCC impact: carbon cycle >> temperature

Uncertainty impact on welfare:
Climate sensitivity uncert >> carbon flow uncertainty

“Choice” of discount rate remains major issue

Implications for COPs & Paris:

Negotiate a SMART Cap

Ease the compromise & be more efficient:

Make quantity target a function of abatement price

14 / 14



Introduction GAUVAL Results SCC Uncertainty Paris & COPs Conclusions Cali Un Bon Tail IRA App

Conclusions

GAUVAL

DICE-style realism in closed form

Decoding of optimal carbon tax contributions

explains & quantifies uncertainty contributions

Deterministic SCC impact: carbon cycle >> temperature

Uncertainty impact on welfare:
Climate sensitivity uncert >> carbon flow uncertainty

“Choice” of discount rate remains major issue

Implications for COPs & Paris:

Negotiate a SMART Cap

Ease the compromise & be more efficient:

Make quantity target a function of abatement price

14 / 14



Introduction GAUVAL Results SCC Uncertainty Paris & COPs Conclusions Cali Un Bon Tail IRA App

Conclusions

GAUVAL

DICE-style realism in closed form

Decoding of optimal carbon tax contributions

explains & quantifies uncertainty contributions

Deterministic SCC impact: carbon cycle >> temperature

Uncertainty impact on welfare:
Climate sensitivity uncert >> carbon flow uncertainty

“Choice” of discount rate remains major issue

Implications for COPs & Paris:

Negotiate a SMART Cap

Ease the compromise & be more efficient:

Make quantity target a function of abatement price

14 / 14



Introduction GAUVAL Results SCC Uncertainty Paris & COPs Conclusions Cali Un Bon Tail IRA App

Extensions

Extensions that the model can handle

model ambiguity

incorporate adaptation

limited substitutability of environmental goods

become regional

model sea level rise, ocean acidification, geoengeneering

endogenize non-CO2 GHGs

...

What the model cannot do

Certain non-linearities and interactions simply not allowed

Accompanying paper will analyzes uncertainty impact on tax
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Economy

Structure of the Economy:

log-utility (deterministic)

Cobb-Douglas production, using the additional

Energy composite: general function of energy sources,
each produced with labor (control) and exog. technology

Emissions endog. from dirty energy sectors, exog. LUCF

Resources, assumption: if scarce then essential

Decadal time step, because capital structure:
10 years w/o depreciation, 20 years: full depreciation.

I will derive the class of analytically solvable

Damage functions: fraction of global output loss
as a function of atmospheric temperature increase

16 / 14
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Climate System

Climate system:

Carbon cycle: I will use DICE 2013

Mt+1 = ΦMt + e1(
∑Id

i=1Ei,t + E
exogenous
t ) (1)

first unit vector e1 send emissions to atmospheric layer

Radiative forcing (direct greenhouse effect)

Ft = η
log

M1,t+Gt

Mpre

ln 2
. (2)

Standard in numeric & new to analytic IAMs
Gt: exogenous non-CO2 forcing

I will derive the class of analytically solvable models for the

Atmosphere-ocean temperature dynamics

New to analytically tractable models.
17 / 14
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Damages & Temperature Dynamics: Functional Forms

Golosov et al. & others solve because ⇔
Linear-in-state model, which are solved by affine value fct

Proposition 1:

An affine value function of the form

V (kt, τt,Mt,Rt, t) = ϕkkt +ϕ⊤

MMt +ϕ⊤

τ τt +ϕ⊤

R,tRt + ϕt

solves GAUVAL if

1 kt = logKt, τt is vector of τi = exp(ξiTi), i ∈ {1, ..., L}

2 Damages: D(T1,t) = 1− exp[−ξ0 exp[ξ1T1,t] + ξ0], ξ0 ∈ IR ,

Damage parameter ξ0 is the semi-elasticity of net
production to transformed atmospheric temperature
τ1,t = exp(ξ1T1,t).
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R,tRt + ϕt

solves GAUVAL if

1 kt = logKt, τt is vector of τi = exp(ξiTi), i ∈ {1, ..., L}

2 Damages: D(T1,t) = 1− exp[−ξ0 exp[ξ1T1,t] + ξ0], ξ0 ∈ IR ,

3 Temperature: Ti,t+1 =
1
ξi
log

(

(1−σi,i+1−σi,i−1)exp[ξiTi,t]

+σi,i+1exp[ξiw
−1
i Ti−1,t] +σi,i−1exp[ξiwi+1Ti+1,t]

)

,

with weighting matrix σ capturing heat exchange

4 Parameters: ξ1 =
log 2
s

≈ 1
4 and ξi+1 = wiξi =

T i−1
eq

T i
eq

ξi.
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Testing the Necessary Assumptions

Damage assumption & calibration: One free parameter ξ0

Match Nordhaus’ DICE damage calibration points:
T = 0◦C and T = 2.5◦C ⇒ green line (ξ0 ≈ 0.022)
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The dashed lines are ξ0 ± 50%
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Testing Necessary Assumptions

Atmosphere-Ocean Temperature dynamics calibration:

Match Magicc6.0 for IPCC’s RCP scenarios,
Magicc6.0 emulates AOGCMS (“big models”) used in Assessment

Reports by the Intergovernmental Panel on Climate Change IPCC
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The Social Cost of Carbon: Formula

The optimal carbon tax:

SCCt =
βYt

Mpre
ξ0
︸︷︷︸

damages

[
(1− βσ)−1

]

1,1
σforc

︸ ︷︷ ︸

climate dynamics

[
(1− βΦ)−1

]

1,1
︸ ︷︷ ︸

carbon dynamics

discount factor β

production Yt
preindustrial carbon Mpre

damage parameter ξ0 (semi-elasticity of net production)

temperature dynamics σ and, in particular:

speed of atmospheric temperature response to forcing σforc

carbon dynamics Φ (transition matrix)
[

(1− βΦ)−1
]

1,1
interpretation by Neumann series expansion:

∞ sum over β discounted emission persistence & return to atmosphere
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The Social Cost of Carbon: Quantitative

Quantifying the optimal carbon tax:

SCCt =
βYt

Mpre
ξ0

[
(1− βσ)−1

]

1,1
σforc

[
(1− βΦ)−1

]

1,1
= 57

$

tC
,

Quantitative: The optimal carbon tax in 2015 in USD

is 57$/ton carbon or 16 $/tCO2

Increases with output (“policy ramp”)

damages ξ0 → ±50% implies tax ±50%

temperature response delay: cuts tax by 60%

temperature persistence: increases tax by 40%

→֒ Together: temperature dynamics cut tax by 30%

Carbon persistence: Increases tax by factor 3.7

skip welfare 22 / 14
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Discounting: A Sensitivity Result

Proposition 2:

A carbon cycle whose transition matrix Φ satisfies mass

conservation of carbon implies a factor (1− β)−1 ≈ 1
ρ
in the

closed form solution of the optimal carbon tax.

Recall Ramsey equation “r = ρ+ ηg”.
Countering wide-spread belief (e.g. Nordhaus 2007, JEL):

SCC is (very) sensitive to composition of cons. disc. rate r:

not sensitive to growth term, highly sensitive to p.r.t.p. ρ

Reduce pure time preference from ρ = 1.75% to ρ = 0.1%

Normative: Stern Review

Descriptive: Long-run risk model

Mix: Generational disentanglement

SCCt =
βYt

Mpre
ξ0

[
(1− βσ)−1

]

1,1
︸ ︷︷ ︸

✟✟1.4 2

σforc

︸ ︷︷ ︸

0.42

[
(1− βΦ)−1

]

1,1
︸ ︷︷ ︸

✟✟3.7 26

=✟✟57660
$

tC
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Uncertainty

Evaluating Uncertainty

1. Logarithmic utility is

Reasonable estimate for intertemporal substitution

Miserable estimate for risk aversion

2. Expected utility model is

unable to match high observed risk premia together with

low observed risk-free discount rate

Solution:

Epstein-Zin-Weil preferences
I show that closed-form solution of non-linear Bellman for

IES=1 (logarithmic), deterministic tradeoffs
General CRRA risk attitude

Observed Arrow-Pratt RRA∈ [6, 9.5] translates into
intertemporal risk aversion coeff in formulas of −α ∈ [1, 1.5]

details
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Carbon Sink Uncertainty

Issue(s):

About 10-20% of CO2 released to atm “goes missing”
How will carbon sinks respond to climate change?

Mt+1 = ΦMt + e1(
∑Id

i=1Ei,t) + ǫt(1,−1, 0, ..., 0)⊤

where ǫt characterizes uncertain carbon flow between
atmosphere and upper-ocean-biosphere reservoir

Model I: Unforeseen changes in sink uptake
iid. shocks χt moving VAR carbon flows: ǫt+1 = γǫt + χt

Calibration to scientific
model-comparison study
(Joos et al. 2013)

γ = 0.997, and guesstimate
σχ ≈ 20Gt/decade

Illustration along DICE BAU 2000 2050 2100 2150 2200 2250 2300
0

1000

2000

3000

4000
Stochastic Carbon Flows

year

G
t C
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bo

n

 

 

Atmosphere "Data"
Atmosphere GAUVAL
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mean
random paths
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Carbon Sinks: VAR Shocks back

Welfare loss in the vector auto-regressive shock model (VAR)

∆W V AR = 1
α

β
1−β

log
[
IE exp

[
αϕǫχ

]]

= 1
α

β

1− β
︸ ︷︷ ︸

time

[
∑

∞

i=1 κi
︸︷︷︸

cumulants

(αϕǫ)
i

i!
︸ ︷︷ ︸

econ

]

.

“time”: “sums” over discounted loss from all future shocks

“cumulants”: κi ≈ moments
κ1: mean =0 κ2: variance κ3: skewness

“econ”: powers of risk aversion α weighted

shadow value of the carbon flow: ϕǫ =
β

1−γβ
[ϕM1 − ϕM2 ]

Persistence γ & discount factor β weighted difference in
shadow value of M1 in the atmosphere and
shadow value of M2 in the shallow ocean & biosphere
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Epistemological Uncertainty

Model II: Bayesian uncertainty & anticipated learning (normal)

Model III: Joint VAR-epistemological, non-Bayesian learning

general distributions (needed for temperature uncertainty)

tracking epistemological uncertainty by cumulant expansion

Analytic insights comparing the models

VAR-shocks (Model I):

shocks build up slowly over time

Learning implies:

anticipated updating similar to VAR shocks
Uncertainty is prior + stochasticity and falls over time
Initially learning acts like fully persistent shocks to mean
As decision maker learns, model converges to iid model
(model with zero persistence, not sensitive to time pref.)

details
27 / 14
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VAR-shocks (Model I):
shocks build up slowly over time

Learning implies:
anticipated updating similar to VAR shocks
Uncertainty is prior + stochasticity and falls over time
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Carbon Sinks

Welfare loss along DICE 2013 BAU scenario

Carbon cycle uncertainty for ρ = 1.75%, best guess ρ =✘✘✘✘❳❳❳❳1.75% 0.1%, b

VAR: 28 billion

Bayes: 29 billion

≈ 1.5-2 years of NASA budget

VAR: 500 billion

Bayes: 60 trillion
≈ 73% world output

goto: willingness to pay

Temperature uncertainty :

Based on 20 science estimates of climate sensitivity (Meinshausen09)

Welfare loss for ρ = 1.75% (left) and ρ = 0.1% (right), lower bound

≈ 20-25% of world output

half from present epistem.
uncertainty

≈ 10 × world output

95% from “future shocks”
28 / 14
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The Optimal Carbon Tax - It’s quite Independent

Remark: The shadow value of carbon

SCCt =
βYt

Mpre
ξ0

[
(1− βσ)−1

]

1,1
σforc

[
(1− βΦ)−1

]

1,1
= 56.5

$

tC
,

is independent of absolute temperature andb carbon levels!

Implications:

That is why SCC=optimal tax

Optimal mitigation effort is independent of past emissions!

→֒ If we over-emit today (BAU),
future optimal policy does not over-compensate

→֒ Live forever with consequences of over-emitting today

Intuition: “Saturation” of atmospheric CO2 and damage
convexity “approximately offset each other”
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The Social Cost of Carbon: Formula

The optimal carbon tax:

SCCt =
βYt

Mpre
ξ0

[
(1− βσ)−1

]

1,1
σforc

[
(1− βΦ)−1

]

1,1
︸ ︷︷ ︸

carbon dynamics

Interpretation of (1− βΦ)−1:

Neumann series: (1− βΦ)−1 =
∑

∞

i=0 β
iΦi . (3)

E.g. second order contribution [β2Φ2]1,1 = β2
∑

j Φ1jΦj1

is carbon flow (or “heat” flow for σ) that
starts out in layer 1 (atmosphere) and
is back in layer 1 after two periods
valued after two periods with β2.

→֒ Discounted sum of future carbon in the atmosphere

resulting from a ton released today
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Other Quantitative Results

Some net present value calculations:

The cost of present atmospheric warming (and only that)

∆W
Temp
USD 2015(T ≈ 0.77C) = Y ξ0

[
(1− βσ)−1

]

1,1
(exp(ξ1T )− 1)

≈ $5 trillion

The cost of the present atmospheric CO2 level

∆WCO2
USD 2015(M1 ≈ 397ppm) = SCC (M −Mpre) ≈ $14 trillion

These add up (+ Warming of and CO2 in oceans)

Similarly to atmospheric carbon tax can calculate value of
carbon in deep and shallow ocean

→֒ Benefit of sequestering carbon into shallow ocean ≈ 41 $
tC

(Though: Should use better than DICE carbon cycle & ocean
damages to quantify value of sequestering to ocean level or ecosystem)
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Carbon Sinks: Results

Willingness to pay for a risk reduction back
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VAR shocks
Bayesian Learning
Cost Orbiting Carbon Observatory
Cost of Satellite
Cost of NCAR supercomputer

Bayes: Better measurement and faster learning
VAR: Less emissions → less risk
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VAR shocks
Bayesian Learning

Initial sensitivity (updates as if full shock persistence)
in Bayesian learning case dominates
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Temperature Uncertainty: Tails

Assume:

Normal distribution on T1,t

Issue:

Implies log-normal distribution on τ1,t = exp(ξ1T1,t)

→֒ moment generating function of log-normal for welfare loss

→֒ Infinite welfare loss! “Weiztman-style” dismal result

Interpretation:

Results very sensitive to temperature uncertainty

No IAM is built to evaluate T1,t → ∞

Expected utility model not build for it either
(rational preferences require some form of boundedness)
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Temperature Uncertainty: Lower Bound

Approach:

Model is reasonable for perhaps 10-15C warming

Meinshausen et al. (2009) offer survey of probability
distributions of temperature increase with doubling of CO2
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Average

I derive lower bound on welfare loss conditional on
temperature increase with CO2 doubling less than 10C
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Temperature Uncertainty: Model & Result

Adjusted equation of motion temperature

τt+1 = στt + σforcM1,t +Gt

Mpre
e1 + ǫτt e1 .

ǫτt captures epistemological uncert. & stochastic changes
ǫτt characterized through its cumulants κi,t, i ∈ N

with equations of motion

κi,t+1 = γiκi,t + χτ
i,t ,

γ captures persistence of
epistemological uncertainty
shocks to the distribution

Quantification: Lower bound present value welfare loss

γ = 0.6: 21 billion (26% world output)

γ = 0.9: 16 billion (20% world output)

ρ = 0.1% & γ = 0.6: 13 times world output

ρ = 0.1% & γ = 0.9: 9 times world output 35 / 14



Introduction GAUVAL Results SCC Uncertainty Paris & COPs Conclusions Cali Un Bon Tail IRA App

Temperature Uncertainty: Model & Result

Adjusted equation of motion temperature

τt+1 = στt + σforcM1,t +Gt

Mpre
e1 + ǫτt e1 .

ǫτt captures epistemological uncert. & stochastic changes
ǫτt characterized through its cumulants κi,t, i ∈ N

with equations of motion

κi,t+1 = γiκi,t + χτ
i,t ,

γ captures persistence of
epistemological uncertainty
shocks to the distribution

Quantification: Lower bound present value welfare loss

γ = 0.6: 21 billion (26% world output)

γ = 0.9: 16 billion (20% world output)

ρ = 0.1% & γ = 0.6: 13 times world output

ρ = 0.1% & γ = 0.9: 9 times world output 35 / 14



Introduction GAUVAL Results SCC Uncertainty Paris & COPs Conclusions Cali Un Bon Tail IRA App

Temperature Uncertainty: Model & Result

Adjusted equation of motion temperature

τt+1 = στt + σforcM1,t +Gt

Mpre
e1 + ǫτt e1 .

ǫτt captures epistemological uncert. & stochastic changes
ǫτt characterized through its cumulants κi,t, i ∈ N

with equations of motion

κi,t+1 = γiκi,t + χτ
i,t ,

γ captures persistence of
epistemological uncertainty
shocks to the distribution

Quantification: Lower bound present value welfare loss

γ = 0.6: 21 billion (26% world output)

γ = 0.9: 16 billion (20% world output)

ρ = 0.1% & γ = 0.6: 13 times world output

ρ = 0.1% & γ = 0.9: 9 times world output 35 / 14



Introduction GAUVAL Results SCC Uncertainty Paris & COPs Conclusions Cali Un Bon Tail IRA App

Temperature Uncertainty: Model & Result

Adjusted equation of motion temperature

τt+1 = στt + σforcM1,t +Gt

Mpre
e1 + ǫτt e1 .

ǫτt captures epistemological uncert. & stochastic changes
ǫτt characterized through its cumulants κi,t, i ∈ N

with equations of motion

κi,t+1 = γiκi,t + χτ
i,t ,

γ captures persistence of
epistemological uncertainty
shocks to the distribution

Quantification: Lower bound present value welfare loss

γ = 0.6: 21 billion (26% world output)

γ = 0.9: 16 billion (20% world output)

ρ = 0.1% & γ = 0.6: 13 times world output

ρ = 0.1% & γ = 0.9: 9 times world output 35 / 14



Introduction GAUVAL Results SCC Uncertainty Paris & COPs Conclusions Cali Un Bon Tail IRA App

Integrated Assessment Models & Contribution I

Types of IAMs: Contribution

Highly stylized analytic models (e.g. “prices vs quantities”)

Golosov et al. (2014, Econometrica): Analytic model
Gerlagh & Liski (2012): Added lag in emission impacts

Climate: Historic emissions affect production
(Impulse response model)

This paper: Analytic model
Economy & Energy: general(ized) Golosov et al.
Climate: Carbon Cycle, Radiative Forcing,

Temperature of Atmosphere-Ocean System

Complex numeric models

Climate: Carbon Cycle, Radiative Forcing,
Temperature of Atmosphere-Ocean System
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Uncertainty in Integrated Assessment & Contribution II

Issue with full uncertainty integration in numeric IAMs

.  .  .  .  ..

. . . . . .

. . . . . .

. . . . . .

. . . . . .

rational decision making & climate states → numeric curse

Modeling contribution: Uncertainty

“Computationally” tractable many states model

with non-logarithmic risk attitude

that separates risk premia from risk-free discount rate

Closed-form solution for welfare loss from uncertainty
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Temperature Dynamics

If forcing Feq constant, atmospheric temperature increase

T1,t → T1,eq =
s

η
Feq (4)

But: Takes decades to centuries & usually Ft not constant.

→֒ Need a model of Temperature Dynamics
Standard models defy analytic traction

My approach:

Formalize general properties of dynamics:
Track temperature of atmosphere & several ocean layers
Next period temperature is general mean of temperatures in
adjacent layers
Correct for asymmetry in atmosphere vs ocean warming

Derive embedded class of tractable models (Proposition 1)

Calibrate to see whether any good
38 / 14
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How to solve the model

Solve:

Reformulate equations of motions in terms of kt and τi,t

Reformulate Bellman equation using consumption rate xt

V (kt, τt,Mt,Rt, t) = max
xt,Nt

log xt + at + κkt + (1− κ− ν) logN0,t

+ ν logEt − ξ0τt + ξ0 + βV (kt+1, τt+1,Mt+1,Rt+1, t+1)

Use affine trial solution for value function

Solve r.h.s. max for labor inputs and consumption rate

→֒ controls are functions of unknown shadow values
(labor input also function of energy sector specification)

Match coefficients in Bellman equation

→֒ delivers shadow values
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Standard Part of the Calibration

Calibrate Economy:

Standard (and DICE) capital share of 0.3

Annual rate of pure time preference of 1.75% calibrated to
match IMF’s 2015 consumption rate forecast of 75%

Output is IMF’s 2015 forecast of 81.5 trillion USD

Carbon Cycle:

Take DICE 2013 carbon cycle

10 year (instead of 5 year) time step

Rescaling of transition coefficients
→ perfect match of DICE’s carbon dynamics
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Policy Impact of Uncertainty: General Remarks

Uncertainty affects

welfare through the curvature of the value function
VAR setting evaluates general scenarios

choice variables by shifting their marginal value
Additive separable uncertainty no effect at all

→֒ Cannot use linear-in-state-model for policy analysis

Need to model how uncertainty

scales with the states

Introduce such a non-linear in state model where

shocks scale in square root of states

quadratic equations for shadow values

generally solves in closed form

41 / 14
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Policy Uncertainty: Carbon Sinks

Model of carbon cycle uncertainty:

Mt+1 = ΦMt + e1(
∑Id

i=1Ei,t + Eexo
t ) + ǫt(1,−1, 0, ..., 0)⊤

now with

ǫt+1 = γǫt +
√
M1,t χt with χt ∼ N(0, σ2)

Result: taxunc = taxdet
(
1 + θ + 2θ2 + 5θ3 +O(θ4)

)

with θ proportional to

deterministic tax

Variance of shock χt

1
1−βγ

(shock persistence)

risk attitude α
([
(1− βΦ)−1

]

1,1
−
[
(1− βΦ)−1

]

2,2

)2
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Quantitative Policy Impact

Quantification of carbon uncertainty:

Negligible impact on tax (+1-3%) more

Quantification of damage uncertainty: more

Stochstic nature of damages: Very small
(percentage order)

Epistemological uncertainty: Big
(similar order of deterministic contribution)

Qualification:

Square-root-scaling of shock impact stacks cards against
uncertainty impact for both carbon and damage
uncertainty
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Policy Impact of Uncertainty: Damages

Damage uncertainty

Make log-technology level endogenous state at = logAt

at+1 = at + gt − θτ1,t +
√
τ1,t − 1 χt .

Uncertain shock scales with (exponential) temperature state
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Policy Impact of Uncertainty: Damages

Find ϕa = 1+βϕk

1−β
and

ϕτ = −

[

ξ0(1 + βϕk) + βθϕa − αβ2ϕ2
a

σ2
z

2

]

e⊤1 (1− βσ)−1 .

Results:

Relocate damages from Yt to At: set θ = ξ0 and then ξ0 = 0
(as is the case for the FUND model)

→֒ cost difference: ϕa = 1+βϕk

1−β
versus 1 + βϕk:

→֒ perfect level persistence increases SCC by factor β
1−β

≈ 5.

Magnitude uncertainty contribution over deterministic

contribution to SCC:
(−α)β2(ϕa+ϕz)2

σ2
z
2

ξ0(1+βϕk)

→֒ For “low scenario”: 8%

→֒ For “high scenario”: 200% back
45 / 14



Introduction GAUVAL Results SCC Uncertainty Paris & COPs Conclusions Cali Un Bon Tail IRA App

Policy Impact of Uncertainty: Damages

Find ϕa = 1+βϕk

1−β
and

ϕτ = −

[

ξ0(1 + βϕk) + βθϕa − αβ2ϕ2
a

σ2
z

2

]

e⊤1 (1− βσ)−1 .

Results:

Relocate damages from Yt to At: set θ = ξ0 and then ξ0 = 0
(as is the case for the FUND model)

→֒ cost difference: ϕa = 1+βϕk

1−β
versus 1 + βϕk:

→֒ perfect level persistence increases SCC by factor β
1−β

≈ 5.

Magnitude uncertainty contribution over deterministic

contribution to SCC:
(−α)β2(ϕa+ϕz)2

σ2
z
2

ξ0(1+βϕk)

→֒ For “low scenario”: 8%

→֒ For “high scenario”: 200% back
45 / 14



Introduction GAUVAL Results SCC Uncertainty Paris & COPs Conclusions Cali Un Bon Tail IRA App

Policy Impact of Uncertainty: Carbon Cycle

Uncertain carbon flow from before now scales with Mt:
ǫt+1 = γM ǫt +

√
M1,t χt

2000 2050 2100 2150 2200 2250 2300
0

1000
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Stochastic Carbon Flows

year

G
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Atmosphere "Data"
Atmosphere GAUVAL
90% Sim Conf
median
mean
random paths

Value impact proportional to

SCC difference
atmosphere-ocean

σ of shock

persistence

all in higher &
coinciding orders

Policy impact:

Beautiful formula
Quantitatively irrelevant back
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Intertemporal risk neutrality

Why does uncertainty have virtually no impact?

Assume you are indifferent in following choice over 4 periods:
( , , , ) ∼ ( , , , )

What is your preference in the following choice:

✑
✑✑

◗
◗◗

( , , , )

( , , , )

( , , , ).

?

1
2

1
2
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( , , , ) ∼ ( , , , )

What is your preference in the following choice:

✑
✑✑

◗
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( , , , )

( , , , )

( , , , ).

∼

1
2

1
2

The only preference that can be represented by the
standard discounted expected utility model
(intertemporal risk neutral)
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Intertemporal risk neutrality

Why does uncertainty have virtually no impact?

Assume you are indifferent in following choice over 4 periods:
( , , , ) ∼ ( , , , )
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Intertemporal risk averse
(found in asset pricing observations)
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Solving the Model

The equivalent “linear-in-state” system

Replace control consumption by consumption rate

xt =
Ct

Yt[1−Dt(Tt)]
(5)

Define

kt ≡ logKt

τi,t ≡ exp(ξiTi,t) (vector τt ∈ IRO)
Then: ∃ a linear transition matrix σ for τ -states

Then Bellman equation

V (kt, τt,Mt,Rt, t) = max
xt,Nt

log xt + log Yt + log[1−Dt(Tt)]

+βV (kt+1, τt+1,Mt+1,Rt+1, t+1) .

To Results
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Solving the Model

subject to the linear equations of motion

kt+1 = at + κkt + (1−κ−ν) logN0,t + ν logEt (6)

− ξ0τ1,t + ξ0 + log(1−xt) (7)

Mt+1 = ΦMt + e1(
∑Id

i=1Ei,t) + e1(E1,t + E2,t) (8)

τt+1 = στt + σe1
M1,t +Gt

Mpre
(9)

Rt+1 = Rt −Ed
t (10)

and the constraints

Et = g(Et(At,Nt))
∑I

i=0Ni,t = Nt

Rt ≥ 0 and R0 given.

To Results
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Solving the Model

Solution “algorithm”

Trial solution

V (kt, τt,Mt,Rt, t) = ϕkkt +ϕMMt +ϕττt +ϕR,tRt + ϕ∗

t

Solve r.h.s. FOCs

Solve and verify solution of (maximized) Bellman by
coefficient matching

Solve for initial resource price using boundary condition

Summary:

We found a system that is

Linear in the (transformed) states

Separable in controls and states

It is solved by an affine value function
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Results

Shadow values

ϕk =
κ

1− βκ
(11)

ϕτ = −ξ1(1 + βϕk)e
⊤

1 (1− βσ)−1 (12)

ϕM =
βϕτ,1σ

forc

Mpre
e⊤1 (1− βΦ)−1 (13)

ϕR,t = βtϕR,0 , (14)

where σforc is weight of atm. temp. on radiative forcing,
and ϕR,t follows Hotelling (boundary cond→ ϕR,0),
and e⊤1 X returns first row of the corresponding matrix X.

From shadow values ϕ in utils to consumption (IMF 2015)

dC = 10xY2015 du ≈ 610 du in trillion 2015 USD.
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The Social Cost of Carbon

Shadow value of carbon:

ϕM,1 = −ξ0(1 + βϕk)
[
(1− βσ)−1

]

1,1

βσforc

Mpre

[
(1− βΦ)−1

]

1,1
.

Interpretation of (1− βΦ)−1:

Neumann series: (1− βΦ)−1 =
∑

∞

i=0 β
iΦi . (15)

E.g. second order contribution

(β2Φ2)11 = β2
∑

j Φ1jΦj1

is carbon flow (or “heat” flow for σ) that

starts out in layer 1 (atmosphere) and

is back in layer 1 after two periods

valued after two periods with β2.
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The Optimal Carbon Tax

Shadow value of carbon:

ϕM,1 = −ξ0(1 + βϕk)
[
(1− βσ)−1

]

1,1

βσforc

Mpre

[
(1− βΦ)−1

]

1,1
.

Quantitative: The optimal carbon tax is

56.5$/ton carbon or 15.5 $/tCO2

damage parameter variation from Fig 1: ±50%

Compare to DICE 2013:

2020 SCC: 21$/tCO2

at IMF’s predicted growth rate of 4%:

→֒ GAUVAL’s 2020 SCC: 15.5 ∗ 1.045 ≈ 19$/tCO2
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damage parameter variation from Fig 1: ±50%

Compare to DICE 2013:

2020 SCC: 21$/tCO2

at IMF’s predicted growth rate of 4%:

→֒ GAUVAL’s 2020 SCC: 15.5 ∗ 1.045 ≈ 19$/tCO2
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is independent of absolute temperature and carbon levels!

Implications:

The SCC along the optimal path is the optimal carbon tax

→֒ The SCC is the optimal tax (there is only one)

Optimal mitigation effort is independent of past emissions!

→֒ If we over-emit today (BAU),
future optimal policy does not over-compensate

→֒ Live with consequences of over-emitting today forever
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Uncertainty: The Carbon Sinks

General solution of persistent shock case: Welfare loss

∆W = 1
α

∑
∞

i=t β
i−t log

[
IE exp

[
αβϕǫχi

]]

=
1

α

1

1− β

[

κ1(αβϕǫ) + κ2
(αβϕǫ)

2

2!
+ κ3

(αβϕǫ)
3

3!
+ ...

]

.

Discounted sum of log of moment generating function of
χt-shocks
cumulant weighted order of shadow value ϕǫ times risk
aversion α

κ1: mean
κ2: variance
κ3: skewness

where shadow price ϕǫ =
β

1−γβ
[ϕM1 − ϕM2 ] ,

persistence weighted cost of carbon switching reservoirs
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Learning: The Carbon Sinks

Model II: Bayesian uncertainty & anticipated learning

Prior

ǫt ∼ N(µt, σ
2
ǫ,t) , µǫ,0 = 0.

and stochasticity

νt ∼ N(0, σ2
ν,t)

which restricts learning

Here,

The carbon cycle follows a given though unknown
(stochastic) motion

But we don’t know it (slowly learn it)
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Uncertainty vs Learning: The Carbon Sinks

Welfare loss for normally distributed, stationary models:

1) VAR(1) Uncertainty model:

∆W = αβ
β

1− β

( β

1− γβ

)2
(ϕM1 − ϕM2)

2 σχ

2
.

2) The Bayesian Learning Model

∆W =
∑

∞

i=t β
i−t+2 σ

2
ǫ,i+σ2

ν,i

2 α (ϕM1−ϕM2)
2
(

β
1−β

)2

( σ2
ǫ,t

σ2
ν,t+1 + σ2

ǫ,t
︸ ︷︷ ︸

1 ∗ weight

+(1−β)
σ2
ν,t

σ2
ν,t+1 + σ2

ǫ,t
︸ ︷︷ ︸

(1− β) ∗ (1-weight)

)2
.

Initially weight≈ 1 and acts as perfectly persistent model
While learning weight→ 0 and acts as iid model

Magnitude: Trill. USD. Enough to pay NASA’s budget & supercomputers.
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Uncertainty: Risk Attitude

Recursive preferences change Bellman equation to return

V (kt, τt,Mt,Rt, t) =

max
xt,N

1

α
log

(

IEtexp
[
α
(
log ct + βV (kt+1, τt+1,Mt+1,Rt+1, t)

)])

.

where

Non-linear uncertainty aggregator, a generalized mean
f−1IEtf with f(·) = exp[α·]
replaces usual linear uncertainty aggregation IEt

RRA=1− α∗ = 1− α
(1−β) : Epstein-Zin’s coefficient of

relative risk aversion
Long-run risk literature: RRA∈ [6, 9.5] → α ∈ [−1.5,−1]

Expected value operator at beginning of current period
allows absolute consumption to be uncertain (xt fix)
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Calibrating Risk Aversion

What is your risk aversion RRA = 1− α?

.5 probability: consumption loss of 5% (left) or 25% (right)

.5 probability: consumption gain of X% (y-axis)

that leaves you indifferent to original position

0 0.5 1 1.5 2 2.5
  5%

5.2%

5.4%

5.6%

5.8%
Risk Aversion Illustration

0 0.5 1 1.5 2 2.5
20%

30%

40%

50%

60%

70%
Risk Aversion Illustration

It’s consumption (!) loss or gain during one decadal period
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