Les amas de galaxies vus en rayon X

M. Arnaud (Département d'Astrophysique - CEA Saclay)

ROSAT/PSPC

.

 \bigcirc

Un amas de galaxies

- Galaxies 2% (Herschel 1785)
- Matière noire 85%
 (Zwicky 1933)
- Gaz dans le MIA 13% (X-rays 1960s-1970s; SZ 1970s)

Credit: X-ray: NASA/CXC/CfA/M.Markevitch et al.; Optical: NASA/STScI; Magellan/U.Arizona/D.Clowe et al.; Lensing Map: NASA/STScI; ESO WFI; Magellan/U.Arizona/D.Clowe et al.

Masse	~ 1-15 10 ¹⁴	M₀ ~ 10 ⁴⁷ g
Taille	~ 1-2 Mpc	~ 10 ²⁴ cm

Le gas chaud intra-amas

$$S_{X} \alpha \int_{los} n_{e}^{2} \Lambda(T) dl$$

$$\frac{GM_{\delta}}{R_{\delta}} \propto kT$$

Gas chaud $\Rightarrow T \sim 10^{6} - 10^{8} \text{ K}$ (1- 15 keV) très peu dense $\Rightarrow n_{e} \sim 10^{-2} - 10^{-4} \text{ cm}^{-3}$

Observer en rayon X

17/12/2018

Seminaire Collège de France

Monique ARNAUD

La mesure en rayon X

Sources de faible intensité

~ 1 - 10^{-3} photons/s

Détection de chaque photon

- ⇒ Position, Energie
- ⇒ Images ; spectres

 $dN(E)/dE \sim n_e^2 V [g(E,T) T^{-1/2} exp(-E/kT)]$

⇒ densité et température du gaz

Une observation depuis l'espace

Le montage du satellite XMM-Newton

Photos: ESA/XMM-Newton

Les observatoires X

Une grande collaboration internationale

17/12/2018

Seminaire Collège de France

Monique ARNAUD

des performances complémentaires

3 télescopes 2000 cm² champ 30' résolution 10"

1 télescope 340 cm² champ 17' résolution < 0.5"

Voir les amas en rayon X

Credit: Optical: NASA/STScI; Magellan/U.Arizona/D.Clowe et al. 2006;

Plus facile d'identifier et de caracteriser l'état dynamique \Rightarrow formation et évolution

Seminaire Collège de France

Croissance des amas

Amas et formation des structures

Springel, Frenk & White, 06

Les noeuds de la toile cosmique

The Early Stages of Galaxy Cluster Formation @ ESO

Structuration de la matière noire

Evolution, gravité et matière noire

Formation et évolution par fusion/accrétion le long des filaments

Dominée par la matière noire

Physique complexe: effondrement grav. ; chauffage du gaz

Etude des amas

- ⇒ Tester le modèle cosmologique
- ⇒Comprendre la physique de formation des structures (MN, gas, *)
 - ⇒ Etude détaillée d'amas "bien choisis "
 - \Rightarrow Etude de population

Etude de cas la dynamíque du gaz

Chocs

Fronts froids

Fronts froids

promotech software demonstra

Propagation d'onde

Sanders et al 2016; Walker et al, 2017

Credit: NASA's Goddard Space Flight Center

après le passage/fusion d'un petit groupe

Les régions extérieures

Les régions extérieures

Eckert et al., 2015

Les régions extérieures

Eckert et al., 2015

ESO+CFHT+HST

26/07/2018

Etude de population

Détection d'amas en X/SZ

Emission X étendue

(d) Cluster-filtered map, zoomed in to 1° -by- 1°

Effet SZ : "trou" dans le FDC

Catalogues d'amas de galaxies

La population d'amas

individuellement complexes

...mais globalement simples

Une certaine similarité

17/12/2018

Le modèle auto-similaire

Le modèle auto-similaire

Gaz évolue dans le potentiel de la matière noire

Tester le modèle auto-similaire

La distribution de masse (MN)

Universelle jusqu'à grand redshift

jusque dans les régions extérieures

Cohérence des mesures de masse

Fraction de gaz universelle

Peu d'écart à l'équilibre hydrostatique du gaz

Estimation de masse correcte

Fig. 1. Hydrostatic gas fraction profiles $f_{\text{gas},\text{HSE}}(R) = M_{\text{gas}}(\langle R)/M_{\text{HSE}}(\langle R)$ as a function of scale radius R/R_{500} for the X-COP clusters. The gray shaded area shows the *Planck* universal baryon fraction Ω_b/Ω_m (Planck Collaboration XIII 2016).

Ecarts à l'auto-similarité

Evolution des coeurs froids

McDonald et al.,14,17

Distribution auto-similaire + coeur froid constant équilibre refroidissement/chauffage établi très tôt

Effets de sélection

Andrade-Santos et al 17

Quelle est la vraie population d'amas ?

Luminosité & morphologie

Morphologie & détectabilité

Monique ARNAUD

Les nouveaux relevés

From: Pillepich+12, Sartoris+16, Planck 2015 results XXVII, J Bartlett priv. comm., B.Benson invited talk

Effets de sélection et évolution

Seminaire Collège de France

Combiner observations X et SZ

Spectrocopie à haute résolution

Sanders er al 2016; Hitomi collaboration 2016

17/12/2018

Monique ARNAUD

The Advanced Telescope for High-ENergy Astrophysics

ATHENA

Spectro-imagerie à haute résolution

Imagerie grand champ

A. Rau / T. Dauser / J. Wilms / T. Brand

Conclusions

- Etude des amas en rayons X: observer le gaz chaud intra-amas
 ⇒ Comprendre la physique de formation des structures (MN, gas, *)
 ⇒ Comparaison observations/simulations et simulation/observations
- L'état et l'histoire d'un amas particulier est compliquée
 - ⇒ chauffage complexe du gaz dans le potentiel MN (choc, ondes etc..)
 - ⇒ processus physique additionnels (refroidissement etc..)
- Mais la population d'amas est relativement simple
 - \Rightarrow Formation et évolution régie d'abord par la gravitation (MN)
 - \Rightarrow Population ~ auto-similaire
 - \Rightarrow Attention aux effets de sélection !