

Chaire Galaxies et Cosmologie

Diagnostics Cosmologiques

Françoise Combes

Laboratoire d'Étude du Rayonnement et de la Matière en Astrophysique

Les grandes questions en cosmologie

Matière dans l'Univers Matières noire/visible vs z (biais)

Energie noire: (BAO, WL, RSD..) Est-ce qu'elle varie avec le temps? **P**= **w** ρ

Gravité modifiée? Le taux de croissance des amas: exposant γ

Comment les baryons s'assemblent dans les structures? Formation et évolution des galaxies Environnement: groupes et amas de galaxies σ_8 =amplitude du spectre de puissance f_{NL} = non-gaussianités

Les amas de galaxies: traceurs de la densité $\delta = \delta \rho / \rho$

Tenir compte du **biais** en densité $\delta_{\text{galaxies}} = \mathbf{b} (\delta_{\text{mass}}) \rightarrow \mathbf{b} > 1$ Jusqu'à b=6 pour les pics à 3σ

Aussi un biais en masse:

Les indicateurs comme les rayons X ou bien le SZ (∫Pe dl) déduisent une masse de l'équilibre hydrostatique, trop faible (vs simulations + lentilles)

b= 0 → aucune différence En fait au moins 20%

Biais en masse b ~0.2

M(Planck-SZ)/M(WL) = 1-b = 0.62 - 0.76

L'estimation de masse déduite de l'équilibre hydrostatique semble trop faible Cisaillement cosmique WL

0.76 (50 amas CCCP, Canada) 0.62 WtG (51 amas, Linden 14)

Hoekstra et al 2015

Fraction d'étoiles

Fraction de baryons détectés

Fraction = Mb / (0.17 M_{500}) M_{500} masse dynamique dans R_{500} R_{500} rayon où la densité est 500 fois la densité cosmique moyenne

Gonzalez et al 2013

Problèmes non-linéaires (baryons)

Ce que l'on croit voir

Ce que l'on voit vraiment

La densité des sources dépend de beaucoup de facteurs **astrophysiques complexes** →Evolution intrinsèque des sources, →Interaction avec l'environnement

Matière noire plus linéaire

La complexité vient des baryons + rayonnement La matière noire relève uniquement de la gravité **Elle est plus diffuse et plus linéaire**

$$ds^{2} = a^{2}(\eta) [(1 + 2\Psi_{N})d\eta^{2} - (1 + 2\Phi_{N})\gamma_{ij}dx^{i}dx^{j}]$$

Il faut donc se servir des baryons pour dériver le potentiel gravitationnel 2 méthodes privilégiées à grande échelle

Cisaillement gravitationnel « WL = Weak Lensing ») $(\Phi + \Psi)$

→ Mesurer les vitesses des baryons dans le potentiel, **RSD** « redshift-space distortions » (Φ)

GR:
$$\Phi = \Psi$$

Cisaillement cosmique

Contrainte intégrée: plus utile pour l'énergie noire que le spectre de puissance -- Avec des difficultés

Bridle et al 2009

Distortions dans l'espace des redshifts

Espace des redshifts

Espace direct

y

Les vitesses sur la ligne de visée sont interprétées comme des distances \rightarrow distortions apparentes

En ajoutant les perturbations de densité

Espace des redshifts

Espace direct

Les deux effets, linéaire ou non, sont du même ordre de grandeur et ne sont pas corrélés.
Plus de puissance dans la direction de la ligne de visée
→ Distingue l'effet des vitesses

Est-ce que les Distortions RSD sont linéaires?

Effet très non linéaire: i.e. $M(x + dx) \neq M(x) + M'(x) dx$ Déplacements en bloc indétectables – Requiert de la modélisation

Fluctuations gaussiennes au départ

Non linéarité → non-gaussianité

Développement des non-linéarités

Le couplage entre les modes (grandes et petites échelles) booste la puissance aux petites échelles

Champ gaussien

De Weygaert 16

a=0.05, z~20

a=1, z=0

Les grandes échelles sont réduites par le lissage des vitesses à petite échelle Shaw & Lewis 2008

Effet significatif dépendant des angles $\mu = \cos(\theta)$

La puissance à petite échelle est boostée par la superposition d'un grand nombre de modes à grande échelle

....: contribution négative Rouge ordre ≥ 3

Shaw & Lewis 2008

Problème de σ_8

 σ_8 Amplitude en masse du spectre de puissance: Planck prévoit **beaucoup plus de structures**, d'amas de galaxies

que ce qui est observé par les autres méthodes


```
Base ACDM

\Sigma m_v < 0.2 \text{ eV}

N_{eff} = 3.05 \pm 0.2

w = -1.02 \pm 0.08

\Omega_k = 8 \ 10^{-4}

H_0 = 67.8 \pm 0.9
```

 $P = w \rho$

Figures de couleur Résultat des études de probabilité: Deux niveaux de confiance 68% et 95%

Joudaki et al 2018

Contraintes sur la masse des neutrinos

Les neutrinos amortissent les structures à petite échelle Spectre de puissance P(k) diminue pour les hautes fréquences (grand k)

Variance en masse (amplitude) $\sigma^2(M) \propto \int P(k) W(k,M) k^2 dk$

Solution avec les neutrinos?

Salvati et al 2018, 2019

Solution avec l'énergie noire?

La variation de w aurait plutôt tendance à aggraver le problème

Salvati et al 2018, 2019

Solution en variant le biais avec z, M?

Le biais b est de 20% dans les études de lentilles et aussi des simulations

Il faudrait 40% pour réconcilier les mesures SZ et les paramètres du CMB Ce qui est exclu

Salvati et al 2018, 2019

Autres solutions à trouver

Les deux solutions ne vont pas dans le bon sens

Douspis et al 2019

Nouvelle opacité pour Planck

Interaction photons-électrons

 $\tau = 0.058 \pm 012$ (*Planck 2016*) moins de galaxies à z>8

Effet de la correction de l'opacité τ

Recalibration de l'opacité de τ = 0.080 à τ = 0.055 Effet dans le bon sens, mais pas suffisant!

Contraintes récentes: Planck + autres

BAO z=0.8-2.2 à partir des quasars e-BOSS (dernière release DR14 SDSS-IV)

Ata et al 2017

147 000 quasars sur 2040 °²

Compatible avec Λ CDM $\Omega_{\rm m} = 0.3, \, \Omega_{\Lambda} = 0.7$

Les QSO sont de très bons traceurs!

Survey des absorptions $\text{Ly}\alpha$

Absorption raie Lyα à z=2.3 *Delubac et al 2014*

Rouge: data versus simul QSO(gris) $H(z)/(1+z) r_d$

Bautista et al 2017

Le problème de H₀

Panthéon= nouvelle compilation de 276 SNIa (Scolnic et al 2018)

Méthodes astrophysiques Céphéides etc.. *Riess et al 18*

θ_{MC} taille de l'horizon à la recombinaison

Planck 2018

L'échelle des distances cosmiques

Cepheides, RR Lyrae, Tully-Fischer, régions HII, SN-Ia,

Spitzer 3.6 microns (bleu), 4.5 microns (vert), et 8.0 microns (rouge)

Les échelles de distance

SN-Ia chandelles standard calibrées à z=0 BAO: règle standard, calibrée sur l'horizon sonore à z~1000 **Echelle inverse?**

SN1a

0.1

BAO

ancre

ancre

Ho

0.01

Cuesta et al 2015

Mesure de H₀ précise et exacte

SKA mesurera plusieurs masers autour de noyaux actifs AGN à différents z

Beaton et al 2016

BAO avec SKA1: Intensity mapping

RSD: constraintes sur w et γ

Dans le futur: Euclid et SKA Croissance d $\ln \delta/d \ln a = \Omega_m(a)^{\gamma}$

Energie noire

Gravité modifiée

Raccanelli et al. 2015

Cisaillement cosmique & LSS en radio

Distortions dans l'espace des redshifts

Distortions dans l'espace des redshifts (RSD)

La théorie linéaire ne prend pas en compte les vitesses dues au **collapse non-linéaire**

$$f(v) \propto \exp(-|v|/\sigma_v)$$

Observation ensemble

Coeur virialisé

Effondrement

Cohérent

vitesses particulières sur la ligne de visée (**doigts de Dieu!**)

Mesure des RSD dans le survey 2dF

Mohammad et al 2018

Avec les Distortions en vitesses (RSD)

Masse des neutrinos, ou énergie dynamique

En pointillés, les valeurs pour ACDM standard La courbure de l'espace peut aussi être variée, mais n'aboutit pas à des améliorations

Joudaki et al 2018

Avec gravité modifiée (MG)

Combinaison de surveys: KIDS-GAMA

P^E cisaillement (KIDS, z~1), P^{gm}: corrélation galaxie-matière (GAMA-KIDS), P^{gg} corrélation galaxie-galaxie (GAMA, z<0.5)

 $S_8 \equiv \sigma_8 \sqrt{\Omega_{\rm m}/0.3} = 0.800^{+0.029}_{-0.027}$

Nouvelles contraintes sur f(R)

fr = df/dR (scalaron)

Planck+SPT+ACT+lenses

Deux modèles f(R) testés qui reproduisent toutes les observations, avec un taux de croissance différent de ∧CDM +Champ scalaire → 5e force Booste la croissance des structures < longueur Compton

A très petite échelle, écrantage (caméléon)

Cataneo et al 2015

Redshift gravitationnel

Différence de potentiel Φ entre un amas et l'observateur, $\Rightarrow z_{gr} = \Delta \Phi/c^2$ Pour un amas de $10^{14}M_{\odot}$, $cz_{gr} \sim 10$ km/s, 100 fois inférieur aux vitesses Doppler

→ Sommer sur ~125 000 galaxies dans qq 10^3 amas

→Eliminer les sous-structures inhomogénéités asymétries..

Gaussienne+ plateau

Wojtak et al 2011

Redshift gravitationnel

 $z_{gr} = -\Phi(0)/c^2$ Négatif: origine prise au centre (BCG) Mesuré à 6 Mpc, $zgr = -7.7 \pm 3$ km/s, compatible avec simulations

8000 amas, 125 000 galaxies Wojtak et al 2011

Cela dépend du potentiel!

Si l'on prend un potentiel MOND et non pas NFW (Λ CDM)

En fait, la distribution de masse est différente En équilibre du Viriel, l'effet z_{gr} ne dépend plus de la gravité?

D'autres effets de biais dus au mouvement des galaxies peuvent changer le signe de l'effet ! (Kaiser 2013)

Bekenstein & Sanders 2012, Zhao et al 2013

Autres mesures de z_{gr}

measured-to-predicted ratio

Mesure de z_{gr} autour du trou noir de la Voie lactée

Plusieurs effets relativistes ~200km/s z_{gr} + Doppler relativiste transverse

GRAVITY Coll, 2018

Redshift gravitationnel

Le temps se dilate à l'intérieur de l'amas

D'autres effets peuvent aussi être source d'asymétrie

- -- Effet Doppler transverse (boosté par le non-équilibre)
- -- Perturbation Distance-Luminosité (évolution)
- -- beaming relativiste

Le redshift gravitationnel devrait dominer dans le régime non-linéaire

Bonvin et al 2014, Alam et al 2017, Zhu et al 2019

Redshift gravitationnel

Tentative de détection sur 272 galaxies elliptiques géantes avec MANGA: seulement limite supérieure sur la matière noire Possible dans le futur avec 100 000 galaxies?

Simulations: $z_{TD} \le z_{gr}$, mais de signe opposé+ effets baryoniques

Zhu et al 2019

Test EG de la gravité

Les lentilles gravitationnelles ψ et Φ , l'attraction des amas seulement Φ

$$ds^{2} = a^{2}(\eta) [(1 + 2\Psi_{N})d\eta^{2} - (1 + 2\Phi_{N})\gamma_{ij}dx^{i}dx^{j}]$$

Tester le « gravitational slip » = $\psi - \Phi$ Croissance des structures \rightarrow vitesses \rightarrow RSD Connaître le biais

 $\delta \rho / \rho$ (bar) = b $\delta \rho / \rho$ (masse) E_G combine lentilles, amas, RSD

$$E_G(R) = \frac{1}{\beta} \frac{\Upsilon_{gm}(R)}{\Upsilon_{gg}(R)}$$

gm Lentilles $\beta = f(z)/b$ f(z) taux de croissance gg 2p-correlation

Reyes et al 2010

70 000 galaxies LRG

Gravité émergente (Verlinde)

Distribution des masses des 2 modèles

Rapport des masses

Pour des amas, comme Coma

Tamosiunas et al 2019

Gravité émergente

Non pas une force fondamentale, mais une maximisation d'entropie Paramètres macros liés aux degrès de liberté micros

Entropie et thermodynamique des trous noirs (Bekenstein-Hawking)

Température \propto accélération (Unruh 1976)

Théorie holographique (Gérard 't Hooft)

Verlinde E.: 2011, Sur l'origine de la gravité
et les lois de Newton
Verlinde E.: 2017, Gravité émergente et l'Univers sombre

Erik Verlinde

La gravité émergente

la force de gravitation est une force entropique:
Gravité: courbure de l'espace-temps (Einstein)
Ou interaction des éléments fondamentaux de
l'espace-temps → gravité émergente
Inutile de connaître les processus micros

Hypothèse: nous vivons dans un espace de Sitter Λ Uniquement $\Omega_b \sim 5\%$ baryons $\Lambda = 0.95$ $\Omega_D^2 = 4/3 \ \Omega_b \Rightarrow \Omega_D = 0.26$

Cette constante Λ est due à l'intrication à gde échelle des éléments microscopiques (quantiques) Le phénomène « matière noire » correspond à la réponse élastique de l'énergie noire Λ à la contribution volumique de l'intrication en présence de matière **L'intrication quantique** $S_{DE}(r) = \frac{r}{L} \frac{A(r)}{4G\hbar}$

Entropie d'intrication du vide quantique

Intrication pour deux systèmes A, B, lorsque leur fonction d'onde est mélangée (vérifiée sur des distances de 100km)

Les variations de l'entropie d'intrication, dues à la présence de matière peut expliquer l'émergence de la gravité *(Verlinde 2016)*

La géométrie de l'espace-temps représente la structure de l'intrication au niveau microscopique (Maldacena and Susskind, 2013 Van Raamsdonk 2010)

Espace de Sitter, dominé par Λ

Approximation, H_0 est constante, l'horizon est $L=ct_0 = c/H_0$ La température T proportionnelle à l'accélération à la surface

$$a_0 = c H_0 = c^2/L \rightarrow T = \frac{\hbar a_0}{2\pi ck}$$

Deux possibles schémas d'intrication quantique Gauche: particule-horizon: Droite particules entre elles

Le cas particule/horizon s'applique à dS, l'entropie d'intrication produit des états d'excitation thermique responsables de l'énergie noire. L'énergie noire et l'accélération de l'expansion sont dues à la lente thermalisation de l'émergence de l'espace-temps

Elasticité de l'espace-temps

A chaque volume d'espace est associé l'entropie de la surface qui entoure le volume (théorie holographique de la gravité quantique)

L'espace de Sitter est imprégné d'une intrication à grande échelle → entropie qui croît avec le volume (et non la surface) Cette différence → effet très similaire à celui de la matière noire.

$$\frac{2\pi}{\hbar a_0} M_D^2 = \frac{A(r)}{4G\hbar} \frac{M_B}{d-1}$$

$$d=4$$

Inclusion de matière

Soit encore $g_D^2 = g_N a_0/6$, qui est la relation de MOND (*Milgrom 1983*)

Cette accroissement de la gravité (matière noire) intervient quand l'entropie de la matière tombe en-dessous de l'entropie de l'énergie noire

Test des lentilles gravitationnelles

KIDS: VST-ESO KiloDegree Survey + GAMA spectro survey 33 000 galaxies

$$M_{
m D}^2(r) = rac{c H_0 r^2}{6G} rac{d \left(M_{
m b}(r) r
ight)}{dr}$$

Rouge ACDM (NFW)

Bleu: Gravité émergente DM apparente

Brouwer et al 2017

Gravité émergente vs MOND dans les amas

La gravité est boostée , dés que l'accélération $\leq a_0 \sim c H$

 $g_{\rm D} = {\rm sqrt} (a_0 \cdot g_{\rm B}/6), \text{ alors } g = g_{\rm D} + g_{\rm B}$

$$\int_0^r \frac{GM_D^2(r')}{r'^2} dr' = \frac{M_B(r)a_0r}{6}.$$

L'accélération devient 2 à 3 fois supérieure à celle de MOND dans les amas $g=g_B (1+1/x)$ avec $x^2=6/(cH) g_B/(1+3 \delta_B)$

Gravité émergente: test sur des amas

r (kpc)

Résumé

Enormément d'informations dans les amas et les grandes structures, surtout à grand z

Aujourd'hui des tensions subsistent, entre CMB et les amas (SZ, X), pas de solution avec les neutrinos ou l'énergie noire

Test du redshift gravitationnel, indépendant de la cosmologie?

Exemple: gravité émergente Pas encore finalisée, mais passe les premiers tests

Joudaki et al 2018

