

Perspectives de solution: instruments futurs

Françoise Combes

Laboratoire d'Étude du Rayonnement et de la Matière en Astrophysique

Les grands observatoires du futur

ALMA inauguré en 2013 Désert d'Atacama

ALMA

En opération

Grand champ et milliards de galaxies

Résultats récents BAO avec spectro-z

BAO dans la forêt Ly α à z=2.3

Points rouges: obs comparées aux simulations de quasars(grey) rd horizon sonore

 D_A dist angulaire, D_H = c /H Tension avec Planck à 2.5 σ 137 000 BOSS quasars
2.1 < z < 3.5
Bleu Lyα autocorrélation
Rouge: Quasar-Lyα cross-correl
(Font-Ribera et al 2013)
Noir: combiné

RSD « Redshift space distortions »

Distortions due aux vitesses particulières sur la ligne de visée (doigts de Dieu)

Effet Kaiser dans les amas Infall systématique

Ces flots de vitesse Permettent de déterminer

$$\label{eq:bias} \begin{split} \beta &= \Omega_m^{0.6} / b \\ \text{bias} \; \delta_{\text{galaxies}} &= b \; (\delta_{\text{mass}}) \\ \text{and} \; \sigma_{\text{gal}} \end{split}$$

Tension sur H_o Planck, Cepheids, BAO ...

BAO à 68 et 95% de niveau de confiance (bleu)

H_o (Cepheids) = 74km/s/Mpc, alors que Planck préfère 67 km/s/Mpc

Delubac et al 2014

Taux de croissance comme test de la gravité

$$\ddot{\delta}+2H(t)\dot{\delta}=4\pi G\left\langle \rho\right\rangle \delta$$

Taux de croissance γ f= dlog (δ) /dlog (a) ~ Ω_m^{γ} Cette croissance produit des vitesses particulières \rightarrow RSD

Le taux de croissance sera mesuré par 1- Lentilles faibles (WL) Tomographie 2- Distortions redshift-espace dans les amas (RSD)

« Square Kilometre Array »

Projet (~2020) pour un radiotélescope géant Dans le domaine de λ de centimètre-mètre

• surface collectrice d'un kilomètre carré

50-100 x plus sensible que les radio télescopes actuels
Pour l'observation des *raies spectrales*1000 x plus sensible que les radio télescopes actuels
Pour les observations *en « continu »*

- fréquences: 70MHz 25 GHz (λ 1.2cm 4m)
- champ de vue:
- 1 (\rightarrow 100?) degrés carrés à λ 21 cm / 1.4 GHz 8 champs de vue indépendants
- résolution angulaire: 0.01 arcsec

à λ 21 cm / 1.4 GHz

 \rightarrow lignes de base jusqu'à ~ 3000 km

En Australie et en Afrique du Sud

Multi-lobes d'observation

EMBRACE Prototype À Nancay

SKA: Square km Array

Surface: un million de m² Projet mondial ondes m/cm

→verra le HI-21cm redshifté
 Dans les galaxies jusqu'à z=5
 (au lieu de z=0.3 aujourd'hui)

Suivre le contenu en MN des galaxies Dans toute l'histoire de l'Univers

Masses HI détectables en fonction de z en 360 h

Recherche naines noires en HI

ALFALFA: Arecibo (300m)

Rouge: optique Bleu HI Vert: les deux

Recherche dans les vides: Négative jusqu'à présent

ALFALFA: Nuages HI à grande vitesse

Recherche d'étoiles en optique: Toujours trouvé un signal→Découvertes de naines normales

→Pas de naines noires

Toujours des étoiles, faible Σ

$M(HI) < 10^{7.2} M_{\odot}$

Haynes 2008

Images SDSS

Découverte de 2 candidats?

Cinématique des nuages HI

1012 1011 Un des systèmes est composé de 2 clumps 1010 $\mathrm{M}_{\mathrm{bary}}$ [M $_{\odot}$] Faut-il prendre le DV entre les 2? 109 Difficile de reconnaître une \square AGC 229383 rotation, ou d'interpréter 108 SE peak les profils de vitesse NW peak AGC 229384 107 Inclinaison? AGC 229385 \times Leo P Peut-être vu de face \times 106 10 100 v_{t} [km/s]

Juste en dehors de l'amas de Virgo

Fraction de baryons (étoiles)

Papastergis et al 2012

Fraction de baryons (étoiles+gaz)

 η_{reio} fraction de baryons prédite par les simulations hydrodynamiques, incluant la réionization *Okamoto et al 2008*

Satellite EUCLID

1-Nature de l'énergie noire: w $P=w\rho$ Equation d'état, histoire de l'expansion et taux de croissance, Plusieurs outils: Weak Lensing, BAO, RSD, Amas de galaxies

2-Gravité au-delà d'Einstein: γ

Tester la gravité modifiée, en mesurant le taux de croissance y

3-La nature de la matière noire, m_v Tester le modèle CDM et mesurer la masse des neutrinos

4- Les graines des structures cosmiques Améliorer d'un facteur 20, n= index spectral, σ_8 =amplitude du spectre de puissance, f_{NL} = non-gaussianités

Masse et nombre des neutrinos

Planck coll (2013) Paper XVI

La masse du neutrino contrainte par le spectre de puissance N_{eff} pourrait être plus grand due à l'asymétrie des leptons Ou à l'existence d'un neutrino stérile Avec Euclid $\rightarrow \sigma (M_{v}) = 0.03 \text{ eV}, \sigma(N_{eff}) = 0.02$

Déviations à la RG 50 millions de galaxies z

0.7

Exploration des modèles d'énergie noire avec Euclid (redshifts seulement sans WL)

EUCLID Legacy

Survey étendu 15 000 deg² Survey profond 40 deg² (+2mag)

12 milliards de sources (3σ)

50 millions de redshifts

Un réservoir de cibles pour JWST,GAIA, ELT ALMA, Subaru, VLT, etc

Objects	Euclid	Before Euclid
Galaxies at 1 <z<3 with<br="">precise mass measurement</z<3>	~2x10 ⁸	~5x10 ⁶
Massive galaxies (1 <z<3))< th=""><th>Few hundreds</th><th>Few tenss</th></z<3))<>	Few hundreds	Few tenss
Hα Emitters with metal abundance measurements at z~2-3	~4x10 ⁷ /10 ⁴	~104/~102?
Galaxies in clusters of galaxies at z>1	~2x104	~10 ³ ?
Active Galactic Nuclei galaxies (0.7 <z<2)< th=""><th>~104</th><th><10³</th></z<2)<>	~104	<10 ³
Dwarf galaxies	~10⁵	
T _{eff} ∼400K Y dwarfs	~few 10 ²	<10
Lensing galaxies with arc and rings	~300,000	~10-100
Quasars at z > 8	~30	None

Strong Lensing: 60 SLACS

SLACS (~2010 - HST)

Va devenir une industrie

Etudes des sous-structures → Contraintes sur la matière noire
 → Nombre similaire par unité de surface avec SKA 100 000

Matière Froide ou tiède?

CDM

WDM

Faire des images avec des lentilles

CLASS B2045+265, VLA 15GHz

NIR, Keck

Dwarf G2: lens

E=G1

Detecter des sous-structures comme des anomalies de rapports de flux entre images

➔ jusqu'à présent: uniquement des naines brillantes, pas besoin de halos noirs

sous-structures comme des anomalies de brillance

Sous-structure: source ou lentille?

Outil des lentilles fortes

Radio (Merlin)

B1938+666

Potentiel $\psi = \psi$ lisse + $\delta \psi$ (pixel)

Modéliser les sous-structures à la fois dans la source et dans la lentille

EVN 3mas McKean

Modèle simple source lisse $\rho \sim r^{-\alpha}$

Data Model

SDSSJ120602.09+514229.5 Vegetti et al 2010

Ajout d'une sous-structure

Potentiel lisse

 $M_{sub} = 10^7 M_{\odot}$

Vegetti et al 2009

Ajout d'une sous-structure (2)

Potentiel lisse

Vegetti et al 2009

35

0.2

0.1

C

0.02

G

-0.02

2

2

Dégénérescence source-lentille

Potentiel lisse

 $M_{sub} = 10^9 M_{\odot}$

Possible de détecter M> $10^7 M_{\odot}$ sur l'anneau d'Einstein, ou bien M> $10^9 M_{\odot}$ proche de l'anneau

Vegetti et al 2009

Contraintes actuelles, 12 anneaux d'Einstein

Les plus faibles M détectables, unités 10¹⁰M_☉

Aucune structure « noire » détectée, Une sous-structure visible détectée $\langle z \rangle = 0.2, \langle \sigma \rangle = 270$ km/s

 α = pente de la fonction de masse

SDSS J0252+0039, Vegetti et al 2014

f< 0.006 fraction de masse dans les sous-structures α < 1.90 ³⁷

CASTLES Proche IR

Anneaux d'Einstein en optique

Einstein Ring Gravitational Lenses Hubble Space Telescope • Advanced Camera for Surveys

NASA, ESA, A. Bolton (Harvard-Smithsonian CfA), and the SLACS Team

STScI-PRC05-32

Anneaux d'Einstein en radio

MG1131+0456, Hewitt 87 PKS1830, Jauncey 1991

B0218, Merlin Biggs et al 2001

Les premières détections! 50 ans après la prédiction d'Einstein

MG1654+1346 Langston 1988

Autres données: délai temporel

Observations de lentilles avec ALMA

Gris: images proche-IR avec HST, VLT, SOAR Vieira et al 2013 (23/26 détectées) 10 sources z > 4Rouge=870 mm contours ALMA, 2min, 0.5" Redshift spectro obtenu avec ALMA Cycle 0 (16 antennes au lieu de 60)

Contraintes statistiques avec ALMA

On ne peut détecter un halo individuel que si M> $10^8 M_{\odot}$, mais Contrainte statistique sur une multitude de halos M~ $10^6 M_{\odot}$ Dalal & Kochanek 2002, Hezaveh et al 2015 Spectre de puissance des résidus

La puissance de la lentille dépend de la concentration de masse

Sources ponctuelles = cste

Courbe verte: la pente α de la fonction de masse est changée de 0.5 dn/dM \propto M^{- α}

Perspectives Lentilles fortes

Square Kilometre Array (SKA), ALMA Large Synoptic Survey Telescope (LSST) Euclid + telescopes de suivi au sol avec haute-fidelité, Nombre de lentilles >> 10⁴ 200 lentilles d'excellente qualité

Sous-structures M> $10^8 M_{\odot}$, La fraction de MN dans les sous-structures pourra être contrainte à f < 0.005 ± 0.001 (inférieure aux prédictions CDM)

Anomalies de rapports de flux entre images, cinématique Aussi méthode des délais temporels entre images (QSO variable)

L'amas du boulet

Cas rare de collision violente, permettantMasde séparer les composantsV=470 \rightarrow Limite sur $\sigma_{DM}/m_{DM} < 1 \text{ cm}^2/\text{g}$ V=470En gravité modifiée, besoin de matière non-collisionelle:
neutrinos ou baryons noirsMas

V=4700km/s (Mach 3)

Abell 520 z=0.201

Rouge = gaz X Contours = lentilles → Matière noire coïncide avec le gaz X mais vide de galaxies

Collisions $\sigma_{DM}/m_{DM} \sim 4cm^2/g$

Ou bien existence de galaxies en 3?

Mahdavi et al 2007, Clowe et al 2012 Jee et al 2012, Jee et al 2014

Controverse: A520, z=0.199

La dérivation de la masse totale faite avec différentes cartes

Okabe & Umetsu 2008

Jee et al 2012

Plusieurs cas (e.g. Abell 1942, Erben+00 et Miralles+02); La détection de matière noire n'est pas forcèment significative

Des observations plus profondes mesurent des galaxies plus faibles avec une orientation/déformation différente, Avec plus de signal/bruit → des structures noires disparaissent

Clowe et al 2012

9 réalisations possibles au hasard

MCC: Merging cluster collaboration

Combien de cas observés? Seulement 5-6 à présent!

→ Perspectives de beaucoup plus de cas significatifs dans le futur

El Gordo, massif et très rare pour Λ CDM z=0.87

2 amas de M = 1.4 et 0.7 $10^{15} M_{\odot}$

El Gordo, masse totale

Le pic de gaz chaud est déplacé à l'extérieur des galaxies, à 62kpc La masse totale est décentrée par rapport aux amas stellaires

Jee et al 2014

L'amas de la balle de mousquet (0.7 Gyr)

Petits boulets

Groupe de galaxies,

Lentille forte, modèle à 2 composantes Contours blancs $M\sim 2\ 10^{14}\ M_{\odot}$ $\sigma_{DM}/m_{DM}\ <\ 10\ cm^2/g$

Gaz chaud X en bleu *Gastaldello et al 2014*

MACS J0025-1222: « Baby bullet »

z = 0.586 Finalement très massif aussi! $M = 6 \ 10^{14} M_{\odot}$, V=2000km/s

Pandora cluster: Abell 2744

z=0.308 Merten et al 2011

Lentilles fortes 11 galaxies Shear HST, VLT, Subaru Au moins 5 composantes Gaz chaud parfois plus loin du centre que les galaxies Effet de fronde $\sigma/m < 3 \text{ cm}^2/\text{g}$

Paraboles

Hautes fréquences (Afrique du Sud)

Moyenne Fréquence Réseaux phasés

Basses Fréquences (Australie)

Plus de **900 stations**, chacune contenant environ **300 antennes individuelles dipolaires**, plus **96-paraboles** Télescope 'SKA1-Survey', incluant le réseau actuel de ASKAP à 36 paraboles

www.skatelescope.org

LSST Large Synoptic Survey Telescope

LSST observe tout le ciel austral à δ =+15° avec des poses de 10 sq.deg

Deux surveys planifiés:

Le principal

Survey étendu profond: 18 000 degrés carrés à une profondeur de u: 26.1 g: 27.4 r: 27.5 i: 26.8 z: 26.1 y: 24.9

Survey très profond, focalisés

10% du temps: ~30 champs sélectionnés 300°² Continuellement poses 15sec. 1heure/nuit

Tout le ciel visité 800 fois avec des poses de 30s Alertes sur les objets variables relayées partout dans les 60s.

Traitement des données

Un énorme défi, pour SKA: qqs Petabytes/sec Machines Petaflops travaillant en continu (~10⁸ PC) Qq Exabytes/heure, paraboles=10x débit internet global, Réseaux Phasés =100x le traffic internet global!

LSST: plus de la moitié du coût est dû aux data processing! 1-2 millions d'alertes par nuit, disponibles à tous en 60sec

15 Tbytes /nuit Tous les 3 jours on observe tout le ciel 20 000 degrés carrés Camera 3200 Megapixels, 10 sq deg, 15sec /pose

Euclid: 100Gbytes /jour

Conclusion: perspectives

→ SKA: observations du HI et de la courbe de rotation étendue des galaxies jusqu'à z=5, Evolution de la matière noire

→ Euclid et SKA: découverte de 10⁴-10⁵ lentilles fortes, caractérisation de la fraction de MN dans les sous-structures

→ Euclid + LSST: lentilles faibles et tomographie, cartographie MN

→ Euclid, taux de croissance des structures (RSD) Contraintes sur la gravité modifiée