

Chaire Galaxies et Cosmologie

# Les destructions d'étoiles (TDE)



**Françoise Combes** 



Laboratoire d'Étude du Rayonnement et de la Matière en Astrophysique

## Les grandes lignes

- → Histoire -- Equations
- → Les ~60 Candidats
- → Leurs propriétés



- → Tension entre Observations et Théorie
- → Perspectives
- ➔ Conclusion



## **Bref historique**

Hills (1975) calcule le rayon de marée,  $R_T \sim R_* (M_{BH}/M_*)^{1/3}$ 

Forces de cohésion =  $GM_*/R_*^2$ Marée du trou noir ~  $GM_{BH} R_* / R^3$ 

→  $R^3/R_*^3 = M_{BH}/M_*$  $R_T \sim 1$  AU pour la Galaxie (P~6h toujours)

Rayon d'Eddington  $R_E \sim R_* (M_{BH}/M_*)^{1/2}$ 

Rayon où la pression de radiation du BH dépasse la limite d'Eddington de l'étoile → Enveloppe soufflée, ou étoile enflée



R\*, M\*



#### Rayons caractéristiques

(cn)

Ř

log

Rayon de marée,  $R_T \sim R_* (M_{BH}/M_*)^{1/3}$ 

Rayon d'Eddington  $R_E \sim R_* (M_{BH}/M_*)^{1/2}$ 

Rayon de collision Rcoll, quand Vorb=  $(GM_{BH}/R)^{1/2}$ devient égale à Vesc~  $(GM_*/R_*)^{1/2}$  $R_{coll} = R_*(M_{BH}/M_*)$ 

Rayon d'accrétion Ra=  $GM_{BH} / V_{\infty}^2$ à partir duquel le BH domine la dynamique



## Orbite du gaz

L'énergie pour détruire l'étoile m est prise sur l'énergie orbitale  $E_b = 3/4 \text{ G m}^2/\text{R}$ 

Le gaz sortant aura une orbite de demi-grand axe

 $a = (2M_{BH}/3m)R/(1 - 2V^2R/3GM)$ 

a=  $1.5 \text{pc } M_8/[1 - (\langle V^2 \rangle^{1/2}/535 \text{km/s})^2]$  soit 0.03pc dans notre Galaxie Vorb=600km/s, P=300ans



Problème du moment angulaire L des étoiles,

Il existe très vite une déficience d'étoiles: "loss cone effect" de faible L Limite de la diffusion  $\Rightarrow r_{crit}$ Cône de perte

#### Cône de perte

Seront capturées les étoiles avec orbites  $\theta < \theta_{LC}$ 



Dans l'espace  $(E, \mathcal{R})$ , le cône de perte devient un cylindre

#### Volume occupé par une orbite stellaire

Galaxie non-sphérique  $\rightarrow$  couples = dL/dt

Soucoupe Galaxie à disque Pyramide Galaxie triaxiale



## **Diffusion des orbites**

H 3<sup>ème</sup> intégrale du mouvement, dans un potentiel axisymétrique H~L<sup>2</sup> pour des orbites tubes





#### Destruction d'une étoile (TDE)



Précession  $\rightarrow$  chocs

Durée : quelques années Si 1 M<sub> $\odot$ </sub> en 300ans à R<sub>T</sub>= 0.03pc →L~0.2 L<sub>edd</sub>

Probabilité de chute d'une étoile ~10<sup>-4</sup>/an Supposant isotrope, +Cône facile à re-remplir

Mais couple accélérant la rotation du gaz, qui va être éjecté → 50% du gaz perdu

#### Prédiction courbe de lumière d'un TDE

Les premiers débris sont avalés après 0.03 (M/10<sup>6</sup>M<sub> $\odot$ </sub>)<sup>1/2</sup> an ~10j



*Rees* 1988

#### **Crépes stellaires**



L'aplatissement de l'étoile produit une détonation dûe aux réactions nucléaires C-N-O

Dépend de la nature du fluide (compressible?)



Carter & Luminet 1982, 83, Brassart & Luminet 2008

### Activité des trous noirs par absorption d'étoiles

Possible pour les trous noirs de masse inférieure à la limite de Hills  $M_{\bullet} = 3 \ 10^8 M_{\odot}$  Les TN plus massifs ont une densité moyenne trop faible et les étoiles sont avalées intactes

Pour un TN comme celui de la Voie Lactée, une étoile devrait être détruite **tous les 10 000 ans** 

→Ou bien on pourrait observer le phénomène tous les ans, avec le suivi de 10<sup>4</sup> galaxies

→Observation par les rayons X Miller et al 2015 ASASSN-14li dans PGC 043234 ASAS «All-Sky Automated Survey»



#### Preuve de l'évènement « TDE »

TDE Tidal Disruption Event = ASASSN-14li, galaxie non active Suivi de la décroissance du flux, depuis la découverte en 2014



## Energie de liaison

Période t =  $2\pi GM_{BH} (2E)^{-3/2}$ (selon Newton)

 $\rightarrow$ Luminosité  $\propto$  dE/dt  $\propto$  t<sup>-5/3</sup>

Si dm/dE = cste En fait, dm/dE dépend un peu de la nature de l'étoile ( $\gamma$ )

Le calcul montre de faibles variations

Mais dépend des angles et du spin!



Kesden 2012

#### Laboratoire pour étudier les jets

Un évènement TDE dure qques mois tout au plus Il peut rayonner à la limite d'Eddington Taux de TDE ~10<sup>-4</sup> /an/galaxie Avec 100 000 galaxies,  $\rightarrow$  10 par an

Peut-être plus pour les galaxies avec amas stellaire nucléaire Ou galaxie post-starburst (signatures spectrales E+A)

Limite de Hill  $10^8 M_{\odot} \rightarrow 7 \ 10^8 M_{\odot}$  pour un BH en rotation maximale (a=1)



#### Effets relativistes

Proche du trou noir, les effets relativistes sont importants -- effet de la rotation du trou noir -1 < a < 1 (ISCO 9, 6, 1 Rg) -- prise en compte de l'inclinaison i, de l'angle  $\theta_p$ 



#### **Simulations**

 $\beta = R_T / R_{peri}$   $\beta < 1$  le coeur de l'étoile survit



Guillochon & Ramirez-Ruiz 2013

#### Prédiction des simulations

Taux d'accrétion en fonction du temps, même si le coeur survit Contrairement aux calculs, ce ne sont pas toujours les étoiles les moins concentrées, avec R<sub>peri</sub> le plus petit qui donnent les sursauts rapides



Guillochon & Ramirez-Ruiz 2013

#### Selon la densité d'étoiles

Taux de capture et disruption

Cœur de densité cste  $n=10^{5}/pc^{3}$ avec  $\sigma = 100$ km/s

Densité en loi de puissance avec relation M-  $\sigma$ 



#### Influence des fusions

Lors de fusion de galaxies, et de trous noirs, brassage des étoiles Moins de pertes dans le cône, +forme triaxiale ou axisymétrique



## TDE possibles

R<sub>p</sub> péricentre R<sub>T</sub> rayon de marée

Les étoiles détruites Naines blanches C-O  $0.6M_{\odot}$  <sup>10</sup> Naines blanches He,  $0.17M_{\odot}$  $\rightarrow$  Possible SN

Séquence principale (MS)  $1M_{\odot}$ Géantes rouges (RG)  $1.4M_{\odot}$ Conditions  $R_* < R_S$ Et  $R_T > R_S$ 



Gezari 2021

### **Observations de TDE**

**56 connues actuellement** – Les TDE sont détectées quand il n'y a pas d'AGN, ni de supernovae au centre des galaxies (éviter la confusion)



10% des TDE ont des jets détectés en radio



### Propriétés des TDE

Luminosité, température (émission thermique X-mou, optique) Expected:  $1M_{\odot}$ ,  $M_{BH}=10^{6}-10^{8}M_{\odot}$ 



Gris: detection en optique et X Plus de suivi en optique Les sursauts X sont mous Durée quelques mois →Emission de corps noir T<sub>bb</sub>

Aucune des observations ne correspond au modèle de Disque:  $T_{bb}$  4.10<sup>5</sup>K  $\lambda_{Edd}$  M<sub>BH</sub><sup>-0.25</sup> R<sub>disk</sub>= 2 R<sub>T</sub>

Gezari 2021

### Interprétation des rayons

$$\mathbf{L} = 4 \ \pi \sigma \mathbf{R}_{bb} \mathbf{T}^4$$

Différence optique-X: obscuration, délai, variabilité en X



## Interprétation

Peut-être un vent, de rayon Rwind >> Rbb expliquerait la grande taille en optique/UV **Pour les X, le vent est opaque** par diffusion des e-La géométrie, ou la porosité du milieu laisserait passer les X du disque d'accrétion

Si précession relativiste: les débris ne se rencontrent plus à la re-intersection  $\rightarrow$  période « noire » pour le TDE Il n'y a pas de dissipation, délai qques années Le pic d'émission est retardé, et diminué, et la Décroissance est un peu différente de t<sup>-5/3</sup>

Des TDE ont pu être manqués

Guillochon & Ramirez-Ruiz 2015





#### **Circularisation retardée**

 $M_{BH}$  croissant  $\rightarrow$ 

#### Solution exacte ----Solution heuristique Innermost Bound Circular Orbit



Guillochon & Ramirez-Ruiz 2015

### **Simulations**

Le point d'intersection est artificiellement le lieu d'injection de particules

L'émission optique vient essentiellemnt de Rintersection, et pas du disque d'accrétion

Bonnerot & Lu 2020



### Choc des courants dû à la précession

Particules lancées à partir du choc (jet)





Bonnerot & Lu 2020

#### Détection de jets radio



## TDE PS1-10jh





0.06 days

Guillochon 2013

#### **TDE simulation**

Pour une étoile de  $1M_{\odot}$   $M_{BH}=10^7 M_{\odot}$  conduit à un dt trop petit,  $M_{BH}=10^3 M_{\odot}$ , remis à l'échelle

Le disque d'accrétion est très fourni, très proche du trou noir BLR HeII et pas de H $\alpha$ 



Guillochon 2013

## TDE PS1-10jh



Detection d'une raie large De HeII, un peu avant le pic du sursaut

Cumulée avec le fond de corsp noir à T=29 000 K

FWHM=9000km/s BLR en HeII

Gezari et al 2015

### Dissipation des débris $v = dE/dt t_0/E$

V Taux de dissipation 1-100%, par chocs hydro, précession relativiste



MRI instabilités Magneto-rotationnelles

B très amplifié → compression

Ces mécanismes de dissipation contribuent à la circularisation des débris

Guillochon 2013

#### Interprétation de TDE PS1-10jh

Etat du gaz, 5 jours après le sursaut Couleur = température Débris liés, retombent dans les ellipses ----- $V = q^{-2/3}/\beta$  avec q=1000 10% de l'énergie du gaz est dissipée en retombant



Guillochon 2013

#### Mesure de la masse du trou noir

Temps de chute des débris = 
$$2\pi GM_{BH}$$
 (2E)<sup>-3/2</sup> =  $\frac{\pi}{M_{\star}} \left(\frac{M_{BH}R_{\star}^3}{2G}\right)^{1/2}$   
= 0.11 an  $R_*^{3/2} M_6^{1/2}/M^*$ 

1 mois pour  $10^{6}M_{\odot}$ , jusqu'à 1 an pour  $10^{8}M_{\odot}$ <u>+</u>bien vérifié :  $\Delta T = t_{pic} - t_{D} \propto M_{BH}^{1/2}$ 

Loi de la Luminosité en t<sup>-5/3</sup> surprenamment bien suivie avec des variantes avec  $\lambda$ 

Rap. d'Eddington=133  $M_6^{-3/2} M_*^{4/5}$ Super-Edd  $M_{BH} < 3 \ 10^7 M_{\odot}$ , et sous-Edd au delà



1/9

#### Courbes de lumière

Raies BLR de He II4686, mais pas de H $\alpha$ ; assez général Gaz vient des étoiles enrichies en He, mais aussi le disque d'accrétion non étendu – Certaines TDE ont H $\alpha$ , d'autres HeII +H $\alpha$ 



#### Taille du disque d'accrétion



Luminosité λ< 228A Capable d'ioniser He, et de produire les raies de fluorescence de Bowen, Raies de OIII, NIII

Plusieurs classes de TDE Selon les raies observées

H+He ou H seul, He seul

Gezari 2021

### Echo en infrarouge moyen

La poussière se trouve bien plus loin du noyau On attend un sursaut MIR des années après

Recherche dans WISE de la variabilité

Poussière couvrant f< 0.01 de la surface

f=Edust/Eabs



logf

2

Facteur de remplissage

W1 & W2 Detection Only W1 Detection None Detection

PS16dtm



## Echo de la poussière

J1657+23 z=0.059 Sursaut en MIR, mais Pas de variabilité optique →Pas de Sne Tore de poussière à R~pc?

Yang et al 2019

AGN type 2,  $M_{BH} = 10^{6.5} M_{\odot}$ , Pic de luminosité ~Eddington

Noyau caché par la Poussière?



#### Le cas du post-starburst NGC 3156







Stone & van Velzen 2016

Fréquence 10 fois plus grande 10<sup>-3</sup>/an, grâce à la présence d'un amas nucléaire d'étoiles Potentiel non-axisym Lz non conservé, plus efficace pour faire tomber les étoiles

#### Post-starbursts: TDE plus fréquents

Les galaxies restes de fusions, comme NGC 6240, ou suivant un starburst (galaxies dites E+A, selon leur population d'étoiles: Type A, pas de O ni B, âge très étroit) Formation d'étoiles stoppée brutalement (« quenching »)

Les AGN variables sont de bons candidats TDE → brassage d'étoiles

Arcavi et al 2014



#### Galaxies hôtes



Position des TDE dans les Galaxies de la « Green Valley » Pas de correction en volume

French et al 2020

SMF Stellar Mass Function Corriger du biais de Malmquist Volume (courbe verte) TDE en bleu, compatibles avec Un SMF pour M>10<sup>9</sup>M<sub>☉</sub>



#### Galaxies hôtes

Diagramme Couleur-Magnitude TDE comparés aux galaxies SDSS Non corrigé de volume <sup>2.5</sup> **TDE** se distribuent un peu dans toutes les séquences



#### French et al 2020

#### Chute à grande masse



## Autres problèmes

Pas vraiment de corrélation du  $\overset{\circ}{\times}$ temps de montée avec  $M_{BH}$ Ni du temps de descente, ni du pic de Luminosité Courbe de lumière plus complexe  $\rightarrow$  Outflow?

Il existe des QPO (oscillations quasi-périodiques) dans les TDE En rayons-X, Période ~200sec Si ces QPO correspondent à l'ISCO,  $R_{isco}=3 R_s$  (pour a=0)  $\rightarrow M_{BH}$ 

Reis et al 2012





#### QPO et masse du trou noir

#### ASASSN-14li Un rare exemple de TDE avec QPO régulière → a> 0.7 ?





#### 7.65<u>+</u>0.7mHz soit 131 sec FFT de 80 000 sec d'observation

Pasham et al 2019

#### Mrk1018: causes du changement

Taux d'accrétion augmenté soudainement? **TDE** étoile détruite par les marées du trou noir

Durée: montée rapide ques semaines à  $L_{Edd}$ , puis descente en mois ou dizaines années, loi en t<sup>-5/3</sup> Pas de X durs

→ La variation temporelle de luminosité ne correspond pas





#### Mrk1018: obscuration?



Passage d'une haute colonne densité de gaz+poussière devant AGN Taille nuage 10<sup>-2</sup> pc, V~300km/s, temps ~ 30 ans Ou bien 10<sup>-1</sup> pc, V~3000km/s, orbitant à R=100pc



Toutefois, pas de signe d'obscuration dans le spectre X ou en optique (rougissement..), mais très fort Av?? *Husemann et al 2016* 

## Le quasar qui change de look



→Permet d'étudier la galaxie hôte, éblouie par le QSO

LaMassa et al 2015

#### J0159-0033, z=0.31, quasar Passe de AGN-1 vers AGN-1.9 de 2000 à 2010

Chute de flux d'un facteur 6, optique et X Pas d'obscuration



#### Pas d'absorption de rayons-X

 $M_{BH} = 2.2 \ 10^8 M_{\odot}$ 



LaMassa et al 2015

#### Possible mécanisme

Le quasar J0159-0033, z=0.31, M(BH) ~ $10^8 M_{\odot}$ Destruction d'une étoile par effet de marée: TDE



Compatible avec le spectre – Il existe toutefois une BLR étendue 30 al et massive, qui existait avant l'événement

Merloni et al 2015

#### 2010, X-emission x 240! z=0.018 $M_{BH} = 4 \ 10^5 M_{\odot}$

**GSN 069** Sy2 en 1994



#### GSN 069 – QPE (pas de BLR)

Les sursauts à haute énergie commencent plus tôt, sont plus courts, et ont plus d'amplitude Max/min

Peu variable E < 0.1keV Sursauts ne concernent que le centre du disque d'accrétion

 $L/L_{Edd} = 0.5$ Spectre thermique (corps noir)

Facile à détecter car P=9j Pour des AGN plus massifs > 30j

Miniutti et al 2019



#### Trous noirs masse intermédiaire (IMBH)

Les IMBH n'ont pas encore été observés/confirmés en grand nombre →La signature TDE devrait être un indice fort

Les naines blanches (WD) sont nombreuses et ne peuvent être détruites que par les trous noirs IMBH < 2  $10^5 M_{\odot}$ Ex: ULX dans NGC1399 (Fornax): TDE? CO-WD sans hydrogène, raies de [OIII] et [NII], pas H $\alpha$ Durée de vie du TDE: 2 min, mais accompagné d'une détonation en SNIa (plus faible) <sup>(a)</sup> <sup>1</sup>/<sub>a</sub> <sup>105</sup>/<sub>4</sub> <sup>(b)</sup>

Neutrino VHE en direction d'une TDE AT2019dsg/ZTF19aapreis



### Perspectives

Couleur bleue et forte luminosité distinguent les TDE

NUV - r

Vera Rubin telescope + UV et X dans l'espace (eRosita)

Questions en suspens: -- Selection en optique versus biais en X?

- -- temps d'arrivée versus M<sub>BH</sub>
- -- Fréquence reélle des TDE?



Gezari 2021

#### Les surveys: SDSS, ZTF, ASASSN, ...

ASAS-SN All-Sky Automated Survey for Supernovae Chine, Hawaii, Texas, Chili, Afrique du Sud..

Projet prévu pour les supernovae, mais découvre beaucoup de variables →TDE

LOSS: Lick Observatory SN search



## Conclusion



#### →Les TDE sont de plus en plus détectées (56 aujourd'hui)

→ Des X-rays à la radio, multiples  $\lambda$  correspondant à différentes distances du trou noir (optique/UV au rayon-intersection)

➔ Propriétés bien connues, mais restent des mystères, peut-être à cause d'un vent, ou de l'obscuration, ou précession GR

ightarrow L  $\propto$  t<sup>-5/3</sup>, t<sub>fall</sub>  $\propto$  M<sub>BH</sub><sup>1/2</sup>, le temps de montée non corrélé, pourquoi?

→ BLR: TDE-H, TDE-H+He (chaud+fluorescence), TDE-He (rare)

→ Occasion de mieux trouver et connaître les IMBH

→ Galaxies-hôtes, vallée verte, post-starburst (E+A)