La dynamique de l'Univers : des grandes structures aux petits groupes de galaxies

Gary MAMON Institut d'Astrophysique de Paris Sorbonne Université

Abell 1689 / HST

Quartet de Stephan image : E. Mamon obs

simul

Motivations

Tests & améliorations des modèles standards :

- de physique des particules
 - particule de matière noire
 - nombre des saveurs de neutrinos
- de cosmologie : ΛCDM
- de gravitation : Relativité Générale
- de formation et d'évolution des galaxies
 - efficacité de la formation d'étoiles
 - effets des explosions de supernovae
 - effets des jets de trous noirs supermassifs

- ...

Plan

- Rappels de Dynamique
- Tutoriel de Cosmologie
- Evolution dynamique à grande échelle
- Halos de matière noire
- Evolution dynamique à petite échelle (amas & groupes)
- Processus dynamiques
- Orbites des galaxies dans les groupes & amas
- Galaxies en fusion ou interaction dans les amas & groupes
- Perspectives

Rappels de dynamique

Force & accélération

Gravitation & Attraction Universelle

force de gravitation

Newton (1642-1726)

explique orbites elliptiques des planètes & lois de Kepler

Énergie & moment angulaire

Conservation de l'énergie mécanique (orbitale + orbitale-interne) + thermique + magnétique + rayonnement

Énergie mécanique = cinétique + potentielle

Systèmes en equilibrium dynamique : Théorème du *viriel* : 2 $E_{cin} + E_{pot} = 0$ (moyennée sur le temps)

variation du moment angulaire = *torque* (moment des forces) dJ/dt = T

Tutoriel de cosmologie

Hadron = Système de quarks liés (proton, neutron etc.)

Époque de recombinaison (380 000 ans après Big Bang) : lère lumière de l'Univers

Spectre des fluctuations angulaires de temperature

Budget de masse de l'Univers

84% de la masse de l'Univers est invisible, non faite d'atomes = Matière Noire

Budget d'énergie de l'Univers

L'Énergie Noire est responsable de l'accélération de l'expansion

Quantité d'Énergie Noire 60 à 120 ordres de magnitude trop faible ?

Évolution dynamique à grande échelle

Simulation "cosmologique" de l'Univers en expansion matière noire seulement

z âge (10 ⁹ ans)
50 0.05
20 0.2
10 0.5
5 1
2 3
1 6
0.5 8.5
0.2 11
0.1 12.5
0 13.9

Simulation "cosmologique" de l'Univers en expansion matière noire seulement

1024³ particules carré de 45 Mpc, comobile avec l'Univers, tranche de 9 Mpc

Z	âge (10 ⁹ ans)
50	0.05
20	0.2
10	0.5
5	1
2	3
1	6
0.5	8.5
0.2	11
0.1	12.5
0	13.9

요즘 철말 여름은 것 같은 것 같다. 것 같다.			
승규는 이 전에서 집에서 가지 않는 것이 아무나 비행하는 것이 없는 것			
contraste de densité s'amplifie fortemen	+		
toile economic de densite s'amplifie foitement	L		
tolle cosmique : filaments & nalos			
zones vides croissent lentement	old	17	

zones denses se contractent rapidement

16

Évolution linéaire & non-linéáire

densité de matière moyenne de l'Univers ~ $a^3 \sim 1/(1+z)^3$

Galaxies & halos de matière noire

Simulation cosmologique à N-corps

500 kpc

rayon d'équilibre dynamique = rayon du *viriel*: densité moyenne ≈ 300x densité de l'Univers

Évolution dynamique à plus petite échelle

Simulations

Simulation "cosmologique" de l'Univers matière noire seulement

1024³ particules 22x17 Mpc, comobile avec l'Univers, tranche de 14 Mpc

Diemer & Kravtsov 14; Diemer & Mansfield ~17

Évolution dynamique à plus petite échelle

Processus dynamiques

Temps caractéristiques & densité moyenne

Diffusion des trajectoires

Chandrasekhar 42

relaxation à 2 corps

$$t_{\rm relax,2} \approx \frac{N}{\ln N} t_{\rm dyn}$$

temps long \Rightarrow comportement "fluide"

temps court \Rightarrow équipartition d'énergie, ségrégation de masse

Diffusion des trajectoires

oublier sa trajectoire ou son énergie Chandrasekhar 42

relaxation à 2 corps

$$t_{
m relax,2} \approx \frac{N}{\ln N} t_{
m dyn}$$

relaxation violente

galaxies elliptiques apparaissent lisses

Simulation idéalisée

Fusion mineure sans gaz

Mihos ~1999

Diffusion des trajectoires

oublier sa trajectoire ou son énergie

Chandrasekhar 42

relaxation violente

$$t_{
m relax,2} \approx \frac{N}{\ln N} t_{
m dyn}$$

$$t_{\rm relax-violente} \approx t_{\rm dyn}$$

Chandrasekhar 43

perdre son énergie

friction dynamique

$$t_{\rm fric-dyn} \approx \frac{M/m}{\ln(M/m)} t_{\rm dyn}$$

galaxies massives au centre des groupes & amas

3

Déclin orbital par friction dynamique en orbites allongées

simulations : les 2 effets se compensent \rightarrow les formes des orbites restent \approx stables

0 0

2

4 time [Gyr]

6

Marées

force marée = force subie localement - force subie par système

Marées dans l'Univers

Collision de galaxies $(durée = 10^9 ans)$

Disruption de la comète Shoemaker-Levy à l'approche de Jupiter (1994)

17 mai 1994

1er août 1994

Effets des marées sur la friction dynamique

accélèrent Prugniel & Combes 92

déformation de la secondaire

- \rightarrow énergie interne augmente (moins négative)
- → énergie orbitale diminue

dépend de :

- l'orbite (circulaire ou allongée)
- · la concentration de masse de la secondaire

Marées en orbites allongées

orbites allongées en moyenne : $\langle r_{apo} / r_{péri} \rangle \approx 6$ Ghigna+98

Marée instantanée varie énormément, max aux péricentres ⇒ moyenner sur l'orbite

Fusions (coalescences) de galaxies

3 types d'interactions entre galaxies

Fusions après déclin orbital par friction dynamique ("centrale-satellite")

Fusions directes ("satellite-satellite")

Rencontres rapides "Flybys" (satellite-satellite)

Taux de of fusions directes majeures en fonction de la masse du groupe/amas

v ∆t

taux par unité de temps = n S v = (densité en nombre d'objets) x (volume du cylindre)

section efficace S = S(v)

Taux de of fusions directes majeures en fonction de la masse du groupe/amas

taux de fusions majeures satellite-satellite $\propto 1/\sigma_v^3 \approx M_{\text{subhalo}}/M_{\text{halo}}$

Importance des fusions de galaxies

galaxies massives : assemblées par fusions autres galaxies : assemblées par accrétion de gaz

Taux d'assemblage de masse par fusions des halos & des galaxies

modèle du taux de fusions: fonction de masse / temps friction dynamique

Seules les galaxies massives aujourd'hui ont assemblé leur masse par fusions

Fusions majeures vs. mineures

<complex-block>

Filament

Evolution dynamique dans la toile cosmique

Pichon: Codis+12 Welker+14 Laigle+15

Vides \rightarrow Nappes \rightarrow Filaments \rightarrow Halos

Effets de l'hydrodynamique dissipative & de l'astrophysique explosive

Dissipativité \Rightarrow gaz tombe au centre du puits de potentiel \rightarrow galaxies plus liées

Explosions de supernovae & jets des noyaux actifs \rightarrow (perte de gaz au centre \Rightarrow matière noire suit le gaz)

 \rightarrow galaxies moins liées

PARCE QUE phénomènes intermittents ! Pontzen & Governato 12

Orbites des galaxies dans les groupes & amas

3 classes d'orbites

diagramme de phase (unités virielles)

Distance maximale de backsplash

2 to 2.5 *r*_{vir} Balogh, Navarro & Morris 00 Mamon+04 Gill+05

distance backsplash à 2-3 *r*vir

Orbites des galaxies dans les amas

Où sont les galaxies en interaction ? (ou en fusion ?)

GM, Felix, Kaviraj, Darg & Silk, in prep.

$P_{\text{interaction}} = f(M, m, R/r_{200}, v, T)$

M = masse du groupe m = masse stellaire de la galaxie R = rayon en projection sur le ciel r_{200} = rayon du viriel v = vitesse relative au groupe T = type morphologique

Contrainte sur les modèles de formation de galaxies Fusions satellite-satellite (directs) vs. central-satellite (frictionnels)

Galaxy Zoo

00			Galaxy Zoo					
	+ www.galaxyzoo.org/#/classify							c
Bbox MSP Sytadin News * Apple *	Météo 🔻 ENC92 PJ FB LP WMailIAP I	ntralAP astro-ph A	ADS arXivTxt ADSTxt GooSch	WoS Sakai Zuber NED	VizieR SDSS	Astromatic GAVO	MyMill Gal'cus	MD TdS
E.		_	Galaxy 200		_			
Ø								
			Salar aller					
	CLASSIFY SCIENCE	STORY	CALAXY 700	ASTRONOMERS	DISCUSS	PROFILE		
			UALANT LOO					
			Classify	. 0 0		Help Restart		
				SDSS Favourite Invert				
			SHAPE Is the galaxy	simply smooth and rou	nded, with no	sign of a disk?		
					2			
					O	×		
			Smoo	oth Features	or disk	Star or artifact		
			ala a sifi á a r					
~900K SDS	S galaxies, cha	acune	ciassine <u>e</u> p	bar ~50 a	amate	eurs		
Lintott+08								

3300 paires majeures dans Galaxy Zoo

Spirale + Spirale

Elliptique + Elliptique

Echantillon complet de paires de galaxies en interaction

échantillon Galaxy Zoo

- 0.01 < *z* < 0.1
- log *m*_{stars,2} > 9.9
- $\log m_{\text{stars},1} > 9.9 + \log 3$
- $m_2 > m_1/3$
- 2 dans même groupe
- $c\Delta z/(1+z) < 3 \sigma_v^{\text{group}}$
- interaction visible

300 paires:

231 avec galaxie centrale 69 toutes 2 = satellites

⇒ visibilité independente de

masse du halo masse de la galaxie rapport de mass des galaxies

Interacteurs secondaires

cen-sat dominent à faible distance; sat-sat (directs) à grande distance

100% cen-sat pour $R_2 < 70$ kpc; 100% sat-sat pour $R_2 > 70$ kpc

Modèle

Conclusions

La *gravitation* joue rôle prédominant dans l'évolution dynamique de l'Univers : *attraction*, mais aussi *marées*, *friction dynamique*, *fusions* ...

Physique dissipative du gaz & effets astrophysiques de rétro-action : rôles importants à l'intérieur des galaxies, mais secondaires ailleurs

L'évolution dynamique peut se comprendre par *observations* & *calculs analytiques simples* MAIS *simulations numériques* → vision bien + précise

Les galaxies massives acquièrent leur masse par *fusions, plutôt majeures* Les galaxies peu massives par *accrétion de gaz*

La distribution des galaxies en interaction dans les groupes & amas : conforme aux prédictions des *fusions après friction dynamique*, moindre rôle pour les fusions directes, rôle important des *rencontres rapides* aux bords des groupes & amas

61

Perspectives en modélisation

Analyse des dernières simulations hydrodynamiques ILLUSTRIS-TNG

Cinématique déduite : des simulations vs. des observations

Liens dynamique & hydrodynamique avec fertilité des galaxies

Perspectives observationnelles

Évolution des grandes structures

Mesure des accélérations par dz/dt

Cartes très profondes de l'Univers local

Historique assemblage du groupe Voie Lactée

